Нестационарная теплопроводность

3

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МАГНИТОГОРСКИЙ ГОСУДАРСТВЕННЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Г.И.НОСОВА

КАФЕДРА ТЕПЛОТЕХНИЧЕСКИХ И ЭНЕРГЕТИЧЕСКИХ СИСТЕМ

КУРСОВАЯ РАБОТА

ПО ТЕПЛОМАССООБМЕНУ

ВЫПОЛНИЛ:

студент спец.140104

гр.ЭТБ-08 Горбунёва Е.С.

ПРОВЕРИЛ:

доцент,

к.т.н. Матвеева Г.Н.

МАГНИТОГОРСК

2010

Задача 1. Нестационарная теплопроводность

Металлическая заготовка, имеющая форму пластины (цилиндра), неограниченной длинны, с начальной температурой , нагревается в печи, температура которой поддерживается постоянной до конечной температуры по оси заготовки . Считая длину (и высоту) заготовки большими по сравнению с толщиной, определить:

  1. Время нагревания заготовки до данной конечной температуры;
  2. Температуры на оси и на поверхности заготовки для различных моментов времени (с использование монограмм Будрина);
  3. Распределение температуры по толщине заготовки для четырёх моментов времени (с использованием аналитических формул);
  4. Количество теплоты, подведённой к телу в течение всего периода нагревания (на 1 поверхности пластины или на 1 длины цилиндра);
  5. По результатам (2) и (3) построить графики.

Форма тела: ПЛАСТИНА

Материал: СТАЛЬ 40

1._Определение времени нагревания заготовки до конечной температуры

Сначала найдем из справочных таблиц теплофизические параметры пластины (теплоёмкость, коэффициент теплопроводности, коэффициент температуропроводности и плотность) при начальной температуре и конечной температуре центра пластины , и вычислим их средние значения:

Параметр

Среднее

0,119

0,155

0,137

41,4

25,4

33,4

0,41

0,021

0,2155

7801

7486

7643

Вычислим число и безразмерную температуру для центра пластины в последний момент времени нагрева:

По номограмме Будрина для центра пластины определим:

Вычислим время нагревания заготовки:

2._Определение температур на оси и на поверхности заготовки для различных моментов времени

Интервал времени нагревания заготовки разобьём на несколько промежутков. Для каждого значения вычислим время (в часах), найдём безразмерные температуры в центре и на поверхности пластины по номограммам Будрина (в зависимости от и ). По безразмерным температурам вычислим температуры в центре и на поверхности пластины в градусах Цельсия.

Для :

  1. Время нагревания

  1. Безразмерная температура в центре пластины (определяем по соответствующей диаграмме Будрина в зависимости от и ):

  1. Безразмерная температура на поверхности пластины (определяем по соответствующей диаграмме Будрина в зависимости от и ):

  1. Температура на оси пластины:

  1. Температура на поверхности пластины:

Для остальных значений критерия Фурье вычисления производим по этим же формулам, результаты вычислений заносим в таблицу.

0,5

1

1,5

2,0

2,5

3,0

3,5

4,2

0,169

0,336

0,5

0,673

0,84

1,009

1,17

1,31

0,85

0,65

0,5

0,4

0,3

0,25

0,19

0,13

0,65

0,56

0,37

0,3

0,23

0.17

0,15

0,12

372,5

602,5

775

890

1005

1062,5

1131,5

1200

602,5

706

924,5

1005,5

1085,5

1154,5

1177,5

1212

3._Определение распределения температуры по толщине заготовки для четырёх моментов времени

При определяем из таблиц:

При

При

При

Найдём безразмерные температуры в момент времени

Температура для этой точки:

Для остальных точек и в другие моменты времени вычисления производим аналогичным образом, результаты записываем в таблицу.

0,870

0,5787

0,2559

0,1132

182,1

522,9

900,6

1067,6

0,8588

0,5712

0,2526

0,1117

195,2

531,7

904,5

1069,3

0,8266

0,5498

0,2432

0,1075

232,9

556,7

915,5

1074,2

0,7727

0,5139

0,2273

0,1005

295,9

598,7

934,1

1082,4

0,698

0,4643

0,2053

0,0908

383,3

656,8

960

1094

4._Определение количества теплоты, подведённого к телу за весь период нагревания (в расчёте на 1 метр длинны пластины)

Полное количество теплоты, которое было бы подведено к пластине (на 1 метр её длинны и 1 метр ширины), если бы нагревание длилось до наступления полного теплового равновесия между пластиной и воздухом печи:

Средняя безразмерная температура в последний момент времени нагрева:

Полное количество теплоты, подведённого к пластине (на 1 метр её длинны и 1 метр ширины) за весь период нагрева:

5._Графики, построенные по данным пунктов 2 и 3

Задача 2. Конвективный теплообмен при вынужденном продольном обтекании плоской поверхности

Плоская пластина м. обтекается продольным потоком жидкости (газа) со скоростью м/с. Температура набегающего потока . Задана температура поверхности пластины . Найти:

  1. Критическую координату точки перехода ламинарного пограничного слоя в турбулентный;
  2. Толщины динамического и теплового пограничных слоёв на различных расстояниях от передней кромки поверхности;
  3. Значения местных коэффициентов теплоотдачи на различных расстояниях от передней кромки пластины;
  4. Средние коэффициенты теплоотдачи для участков с различными режимами течения;
  5. Построить графики , .

Жидкость: МАСЛО МК

1. Вычисление критической координаты точки перехода ламинарного пограничного слоя в турбулентный

Определим теплофизические параметры масла МК при температуре :

Определим число Прандтля масла МК при температуре :

Вычислим число Рейнольдса:

Критическое число Рейнольдса:

Т.к. , то режим течения в пограничном слое на конце пластины - турбулентный.

Вычислим координату точки перехода ламинарного течения в пограничном слое в турбулентное:

2. Вычисление толщин динамического и теплового пограничных слоёв на различных расстояниях от передней кромки поверхности

2.1. Расчёт ламинарного режима течения

2.1.1. Вычисление толщин динамического и теплового пограничных слоёв, а также коэффициентов теплоотдачи для различных точек

Для точек вычислим:

Для других точек ламинарного режима течения вычисления производим по этим же формулам, результаты записываем в таблицу.

2.1.2. Вычисление среднего коэффициента теплоотдачи и плотности теплового потока

2.2. Расчёт турбулентного режима течения

2.2.1. Вычисление толщины динамического пограничных слоя, а также коэффициентов теплоотдачи для различных точек

Для точки вычислим:

Для других точек турбулентного режима течения вычисления производим по этим же формулам, результаты записываем в таблицу.

2.2.2. Вычисление среднего коэффициента теплоотдачи и плотности теплового потока

2.3. Результаты вычислений

Параметр

Ламинарный участок

Турбулентный участок

0,3

1,3

2

2,33

2,4

2,8

3,2

3,5

12894

55874

85959

100000

103152

120344

137536

150430

0,012

0,026

0,032

0,034

0,088

0,0996

0,11

0,12

0,0013

0,0028

0,0034

0,0037

---

---

---

---

480

999

1239

1336,2

7578

8466

9420

10120

218,1

104,7

84,4

78,2

430,4

412

401

394

2668,696

12893

156,1

502

6244

20080

3. Построение графиков по результатам вычислений

Задача 3. Тепловой расчёт экономайзера.

Змеевиковый экономайзер парового котла предназначен для подогрева питательной воды в количестве от температуры до . Вода движется вверх по трубам диаметром. Коэфициент теплопроводности материала стенки. Средняя скорость движения воды.Дымовые газы (13% и 11% ) движутся сверху вниз в межтрубном пространстве со средней скоростью в узком сечении трубного пучка . Расход газов .Температура газов на входе в экономайзер на выходе . Заданы расположение труб в пучке (шахматное или коридорное) и относительные шаги: поперечный и продольный . Со стороны газов трубы экономайзера покрыты слоем сажи толщиной , со стороны воды - слоем накипи толщиной. Теплопроводность сажи можно принять ,для накипи .

Определить поверхность нагрева, количество и длину змеевиков экономайзера парового котла. Схема движения теплоносителей в экономайзере показана на рисунке.

Рис. Схема движения теплоносителей в экономайзере.

Дымовые газы:

Вода:

Коэффициент теплопроводности стенки:

Диаметры труб:

Расположение труб:

Коридорное.

Коэффициент теплопроводности

накипи

Поперечный относит. шаг:

Продольный относит. шаг:

Слой сажи:

Слой накипи:

=1,1мм.

Коэффициент теплопроводности сажи:

1. Вычисление внешнего диаметра трубы с учётом слоя сажи

2. Уравнение теплового баланса

Считая, что потери давления по длине экономайзера равны 0, запишем уравнение теплового баланса:

=1,11,

=4,417.

Температура дымовых газов на выходе из экономайзера методом интерполяции:

Средняя температура воды:

Средняя температура дымовых газов:

Разности температур:

3. Вычисление коэффициента теплоотдачи от воды к стенке

Теплофизические параметры воды при температуре :

Число Рейнольдса для воды:

- режим течения воды турбулентный

Число Нуссельта для воды:

Коэффициент теплопередачи от воды к стенке:

4. Вычисление коэффициента теплоотдачи от дымовых газов к стенке

4.1. Вычисление коэффициента теплоотдачи конвекцией

Теплофизические параметры дымовых газов при температуре :

Число Рейнольдса для дымовых газов:

Поправочный коэффициент для коридорного расположения труб:

Число Нуссельта при коридорном расположении чистых труб:

Коэффициент теплоотдачи конвекцией:

4.2. Вычисление коэффициента теплоотдачи излучением

Средняя длина пути луча:

Произведения средней длины луча на парциальные давления двуокиси углерода и водяных паров:

По графикам определяем степени черноты двуокиси углерода и водяного пара:

По графику определяем поправочный коэффициент на парциальное давление для воды:

Суммарная степень черноты газовой смеси:

Температура поверхности труб:

По графикам определяем степени черноты двуокиси углерода и водяного пара по средней температуре стенки труб пароперегревателя :

Поглощательная способность газовой смеси:

Степень черноты стального экономайзера:

Приведённая степень черноты стального экономайзера:

Тепловой поток, обусловленый излучением дымовых газов к стенке:

Коэффициент теплоотдачи излучением:

4.3. Вычисление суммарного коэффициента теплоотдачи

5. Вычисление коэффициента теплопередачи для единицы длины трубы

6. Определение конструктивных характеристик теплообменного аппарата

Плотность потока воды:

Количество труб:

Живое сечение потока:

Тепловой поток:

Общая длина труб:

Длина одной трубы:

Поверхность нагрева:

Задача 4. Теплообмен излучением между газом и твёрдой ограждающей поверхностью

Вычислить плотность теплового потока, обусловленного излучением дымовых газов к поверхности газохода сечением AxB. Состав газов задан. Общее давление газа . Температура газов на входе в газоход и на выходе . Средняя температура поверхности газохода .

Материал: хром


Степень черноты хрома:

Вычислим приведённую степень черноты хром:

Вычислим среднюю температуру газов по тракту:

Эффективная толщина излучающего слоя:

Парциальные давления двуокиси углерода и водяного пара:

объёмная доля и в газе

Первый метод (с использованием диаграмм)

Произведение парциального давления на двуокиси углерода и водяного пара на длину луча:

По графикам определяем степени черноты двуокиси углерода и водяного пара при температуре =900:

По графику определяем поправочный коэффициент учитывающий подчинение поведения водяного пара по закону Бугера-Бера:

Степень черноты газовой смеси:

По графикам определяем степени черноты двуокиси углерода и водяного пара по температуре стенки :

Поглощательная способность газовой смеси:

Плотность теплового потока:

Второй метод (аналитический)

Суммарное парциальное давления водяного пара и двуокиси углерода:

Степень черноты газовой смеси:

Поглощательная способность газовой смеси:

Плотность теплового потока:

Литература

  1. Е.И. Казанцев. Промышленные печи.
    Справочное руководство для расчётов и проектирования.
    Москва, «Металлургия», 1975г.
  2. Ривкин С.Л.,Александров А.А.
    Термодинамические своиства воды и водяного пара: Справочник.
    Москва, «Энергоатомиздат», 1984г.
  3. Г.Н.Матвеева. Тепломассообмен.

Методические указания для выполнения курсовой работы

Магнитогорск, МГТУ, 2008г.

Нестационарная теплопроводность