Холодильная техника и технология продуктов питания

ВЫСШЕЕ ОБРАЗОВАНИЕ

С.А.БОЛЬШАКОВ

ХОЛОДИЛЬНАЯ ТЕХНИКА

И ТЕХНОЛОГИЯ ПРОДУКТОВ

ПИТАНИЯ

УЧЕБНИК

Рекомендовано

Учебно-методическим объединением по образованию

в области товароведения и экспертизы товаров в качестве учебника

для студентов высших учебных заведений, обучающихся по специальности

351100 «Товароведение и экспертиза товаров» (по областям применения)

и другим технологическим специальностям пищевого профиля

по дисциплине «Холодильная техника и технология»

Москва

ACADEMA

2003

Рецензенты:

д-р техн. наук, профессор кафедры «Технологическое оборудование

и процессы отрасли» МГУПБ В. В. Илюхин; зам. директора ГНУ НИИПП и СПТ, канд. техн. наук В.Б.Пенпю

Большаков С. А.

Б 799 Холодильная техника и технология продуктов питания: Учебник для студ. высш. учеб. заведений / Сергей Алексеевич Большаков. — М.: Издательский центр «Академия», 2003. — 304 с.

ISBN 5-7695-1229-6

В учебнике содержатся сведения о назначении и устройстве холодильной техники, физических принципах получения низких температур, типах и циклах холодильных машин. Приведены основные и вспомогательные элементы холодильных установок. Даны теоретические основы холодильной технологии, методы расчета процессов холодильного консервирования, обработки и хранения сырья и продуктов питания. Рассмотрены проблемы изменений, происходящих при обработке, хранении, размораживании, транспортировании и реализации охлажденных и замороженных пищевых продуктов.

Для студентов высших учебных заведений. Может быть полезен слушателям институтов повышения квалификации, специалистам торговли и пищевой промышленности.

УДК621.56/.59

ББК31.392я73

Учебное издание

Большаков Сергей Алексеевич

Холодильная техника и технология продуктов питания

Учебник

Редактор О. Н. Кагановская. Технический редактор О. С. Александрова

Компьютерная верстка: Н. Е. Стаханова. Корректоры Л. А. Котова, Н. С. Потемкина

Изд. № A684-I/1. Подписано в печать 01.07.2003. Формат 60x90/16.

Гарнитура «Тайме». Печать офсетная. Бумага тип. № 2. Усл. печ. л. 19,0. Тираж 20000 экз. (1-й завод 1-5100 экз.). Заказ №12275.

Лицензия ИД № 02025 от 13.06.2000. Издательский центр «Академия».

Санитарно-эпидемиологическое заключение № 77.99.02.953.Д.003903.06.03 от 05.06.2003. 117342, Москва, ул. Бутлерова, 17-Б. к. 223. Тел./факс: (095)330-1092, 334-8337.

Отпечатано на Саратовском полиграфическом комбинате. 410004, г. Саратов, ул. Чернышевского, 59.

ISBN 5-7695-1229-6

Большаков С. А., 2003

Издательский центр «Академия», 2003

ВВЕДЕНИЕ

Природно-климатические условия России обусловливают сезонность производства продукции растениеводства и животноводства. Сохранение ее пищевой и биологической ценности в течение длительного периода возможно только с помощью консервирования. Выбор того или иного способа консервирования зависит от свойств продукта, возможностей поддержания его качеств и эффективности затрат на хранение.

Холодильное консервирование — эффективный способ обработки и хранения продуктов питания высокого качества. Не менее 40 % производимой в нашей стране сельскохозяйственной продукции подвергается холодильной обработке для предотвращения порчи и сокращения потерь. Воздействие холода по сравнению с другими методами консервирования вызывает минимальные изменения первоначальных свойств продукции.

Наиболее распространенный и экономичный способ холодильного консервирования - охлаждение, позволяющее полностью сохранить потребительские свойства. Однако срок хранения охлажденных пищевых продуктов ограничен. Это не позволяет создать достаточные их запасы и обеспечить непрерывное снабжение ими население.

Для увеличения продолжительности хранения продукты замораживают, что существенно тормозит скорость протекания процессов, влияющих на их качество. Замораживание и хранение в замороженном виде изменяют начальное качество продуктов, но позволяют сохранить их ценные свойства значительно дольше, чем охлажденных.

Характерной особенностью производства продуктов питания является то, что выработанная продукция необходима каждому из нас ежедневно. Перебои в снабжении населения продуктами питания отрицательно сказываются на всех сторонах жизни общества. Четкая работа пищевой промышленности немыслима без создания достаточных запасов сырья и готовой продукции, т.е. без холодильного консервирования.

Холодильная техника — это отрасль науки, исследующая и разрабатывающая различные способы получения искусственного холода, а также технические средства получения и применения холода.

Холодильная технология продуктов питания — отрасль науки, которая изучает рациональные и научно обоснованные способы использования холода в пищевой промышленности, решает задачи сохранения сырья и продуктов питания с помощью холода и применения его в их производстве.

Задачи холодильной технологии как науки следующие:

  • изучение влияния холодильной обработки и хранения на пищевые продукты и определение оптимальных условий проведения технологических процессов (охлаждение, замораживание, хранение и др.) с учетом особенностей продуктов и свойственных им изменений;
  • разработка научно обоснованных методов снижения потерь массы продуктов при холодильной обработке и хранении;
  • совершенствование и создание новых технологий холодильной обработки и хранения совместно с другими методами консервирования, позволяющими минимизировать изменения свойств и потери массы продуктов.

Холодильная техника и холодильная технология базируются на знаниях из курсов термодинамики, механики, других наук физического цикла, биологии животных и растений, микробиологии, химии органических и неорганических соединений, биологической, коллоидной и физической химии.

Развитие холодильной техники и холодильной технологии как самостоятельных областей знаний началось с применения холода в пищевых отраслях промышленности и торговле. Искусственный холод для консервирования пищевых продуктов используется немногим более 100 лет. Первый крупный холодильник с машинным охлаждением был сооружен в Бостоне (США) в 1881 г. Первые холодильники в России построены в 1877 г. на рыбных промыслах Мурманского побережья, в 1888 г. — на промыслах в Астрахани, в Махачкале и других городах. Первый промышленный холодильник появился в 1895 г. в Белгороде, вместимость его составляла 250 т.

Начало исследованиям и научно-техническим разработкам в области холодильной техники и использования искусственного холода в пищевой технологии в России положил Ф.С.Касаткин в 1918 г. Были намечены основные направления новой отрасли прикладной науки — холодильной технологии и хранения продуктов питания. С 1926 г. в РЭА (МИНХ) им. Г. В. Плеханова велась систематическая подготовка специалистов высшей квалификации по холодильной технике и холодильной технологии пищевых продуктов.

Значительный вклад в развитие холодильной техники и технологии, систематизацию исследований и обобщение опыта работы холодильных предприятий внесли российские ученые М. В.Тухшнайд, Д.А.Христодуло, Я.Я. Никитинский, Д. Г. Рютов, Ф.В.Церевитинов, Н.А.Головкин, Г.Б.Чижов, Э.И.Каухчевили и др.

Сегодня в нашей стране создано развитое холодильное хозяйство. В пищевых отраслях промышленности и торговле продуктами питания функционируют около 3,3 тыс. холодильников общей вместимостью свыше 7 млн т, в том числе около 2 млн т для хранения фруктов и овощей. Постоянно ведется строительство специализированных холодильников в местах производства сельскохозяйственной продукции.

В России создана и действует непрерывная холодильная цепь, которая позволяет сохранить массу и качество продовольствия на всех этапах товародвижения — от сбора или производства до потребления. Применение искусственного холода, совершенствование технических средств и методов холодильной обработки и хранения сырья и продуктов способствуют снижению потерь, сохранению их биологической и пищевой ценности.

Технологические процессы на холодильниках требуют больших материальных и трудовых затрат, так как термическая обработка и хранение продовольствия связаны с производством и использованием холода, операциями по приему, внутрискладскому перемещению, складированию и выдаче продовольственных грузов. Это определяет межотраслевые связи холодильного хозяйства с холодильным машиностроением, приборостроением, химической промышленностью, другими отраслями.

Своеобразие холодильного хозяйства проистекает из разнообразия его звеньев, поскольку наряду с однородными предприятиями (распределительные холодильники) в него входят холодильники предприятий агропромышленного комплекса (мясной, молочной, рыбной, пищевой промышленности и сельского хозяйства) и потребкооперации. В оптовой и розничной торговле с помощью искусственного холода хранится и реализуется значительное количество пищевых продуктов. В то же время холодильное хозяйство — это единый организационно-хозяйственный комплекс, что обусловливается общностью задач всех его звеньев.

Холод широко используют не только в отраслях агропромышленного комплекса, на транспорте и в торговле, но и в других отраслях промышленности. Он применяется на предприятиях химической, горной, строительной, нефтеперерабатывающей, металлургической, текстильной, фармацевтической промышленности, машиностроения и др., в медицине, спорте, быту и т.д.

В учебнике «Холодильная техника и технология продуктов питания» рассматриваются физические основы и технические средства получения низких температур, устройство и теплотехнический расчет охлаждаемых сооружений, вопросы технической эксплуатации холодильников и холодильных установок, холодильная технология пищевых продуктов и использование холода в отраслях агропромышленного комплекса, торговле. Уделено внимание принципам построения единой непрерывной холодильной цепи.

В последнее десятилетие произошли значительные изменения в холодильном машиностроении, номенклатуре оборудования, типах машин и конструкциях теплообменных аппаратов. Претерпели эволюцию охлаждаемые сооружения, их теплоизоляционные конструкции, схемы автоматизации холодильных установок, схемы и средства механизации грузовых работ. В холодильном транспорте заметную роль стали играть изотермические и охлаждаемые контейнеры. Расширилось использование искусственного холода в различных отраслях промышленности страны, появились более совершенные установки для охлаждения и замораживания пищевых продуктов. Все эти изменения учтены в настоящем издании.

РАЗДЕЛ I

ХОЛОДИЛЬНАЯ ТЕХНИКА

ГЛАВА 1

ФИЗИЧЕСКАЯ СУЩНОСТЬ И СПОСОБЫ

ПОЛУЧЕНИЯ ИСКУССТВЕННОГО ХОЛОДА

  1. Физические процессы получения низких температур

Охлаждение — процесс понижения температуры тела. Для охлаждения нужно иметь два тела: охлаждаемое и охлаждающее — источник низкой температуры. Охлаждение продолжается, пока между телами происходит теплообмен. Источник низкой температуры должен функционировать постоянно, так как охлаждение следует осуществлять непрерывно. Это возможно при достаточно большом запасе охлаждающего вещества или если постоянно восстанавливается его первоначальное состояние. Последнее широко применяется в холодильной технике с использованием различных холодильных машин.

Различают естественное и искусственное охлаждение. При естественном охлаждении теплота от более нагретого тела переходит к менее нагретому (среде). Искусственное охлаждение предполагает получение температуры охлаждаемой среды ниже температуры окружающей среды. Низкие температуры получают путем физических процессов, при протекании которых происходит поглощение извне теплоты без повышения температуры тела.

К основным физическим процессам, сопровождающимся поглощением теплоты, относятся фазовые переходы вещества: плавление или таяние при переходе тела из твердого состояния в жидкое; испарение или кипение при переходе тела из жидкого состояния в парообразное; сублимация или возгонка при переходе тела из твердого состояния непосредственно в газообразное.

Искусственное охлаждение может быть основано и на других физических процессах, например адиабатическом дросселировании газа с начальной температурой меньшей, чем температура верхней точки инверсии; адиабатическом расширении газа с отдачей полезной внешней работы; вихревом эффекте.

Фазовый переход вещества при плавлении или таянии, испарении или кипении, сублимации или возгонке происходит при соответствующих температурах и давлениях с поглощением значительного количества теплоты.

Для получения низких температур (но не ниже 0°С) может быть применен водный лед, который в условиях атмосферного давления плавится при 0°С и имеет сравнительно большую величину удельной теплоты плавления — 335 кДж/кг. Если давление ниже атмосферного, сублимация водного льда происходит при температуре ниже 0°С, что используют в сублимационной сушке пищевых продуктов.

Более низкие температуры плавления можно получить, смешивая лед с некоторыми солями, например с хлоридом кальция (рис. 1).

Рис. 1. Диаграмма состояния системы

хлорид кальция - лед

Самая низкая температура плавления смеси хлорида кальция со льдом достигается в криогидратной (эвтектической) точке, которая равна -55 °С при массовой концентрации хлорида кальция = 29,9 %. Источником низкой температуры может служить твердый диоксид углерода (сухой лед), имеющий при атмосферном давлении температуру сублимации -78,5 °С и удельную теплоту 574 кДж/кг.

Более широко распространено получение низких температур с использованием процесса кипения. С помощью одного вещества можно получить определенный интервал температур, поскольку температура его кипения зависит от давления: с уменьшением давления температура кипения понижается, и наоборот. С помощью различных веществ можно получать низкие температуры в широком диапазоне. Процесс испарения используют, например, для понижения температуры воды или влажных поверхностей.

Адиабатическим дросселированием называют процесс необратимого перехода газа (жидкости) с высокого давления на низкое (расширение) при прохождении через сужение поперечного сечения (перегородка с отверстием, пористая перегородка и т.д.) без совершения внешней работы и отдачи или получения теплоты.

Процесс протекает быстро, вследствие чего теплообмен с окружающей средой практически не происходит и энтальпия (теплосодержание) вещества не изменяется. Полезная работа не совершается, так как работа проталкивания переходит в теплоту трения. Энтальпия — это функция состояния, равная сумме внутренней и потенциальной энергии давления (PV), где Р — давление; V— объем.

При адиабатическом дросселировании реального вещества в отличие от идеального вследствие изменения внутренней энергии производится работа против сил взаимодействия молекул. Это приводит к изменению температуры вещества. Изменение температуры реального вещества при дросселировании называется эффектом Джоуля —Томсона.

В зависимости от начального состояния реального вещества перед дросселем температура его при дросселировании может уменьшаться, увеличиваться и оставаться без изменения.

Точка, соответствующая начальному состоянию вещества, в которой его температура при адиабатическом дросселировании не изменяется и, следовательно, изменяется знак температурного эффекта, называется точкой инверсии, а температура, соответствующая этой точке, — температурой инверсии. Точку инверсии можно определить, построив в координатах TV (температура — объем вещества) изобару и проведя к ней касательную из начала координат. При начальных температурах газа ниже температуры инверсии он при дросселировании будет охлаждаться, выше — нагреваться.

Большинство газов, за исключением водорода и гелия, имеют довольно высокую температуру инверсии (600°С и выше), поэтому практически для всех газообразных веществ в области, близкой к критической, адиабатическое дросселирование приводит к понижению температуры.

При адиабатическом расширении газа с отдачей полезной внешней работы получение низких температур возможно при любом его состоянии, так как температура изменяется в сторону понижения. В отличие от адиабатического дросселирования в этом случае эффект возможен и для идеального газа, при этом понижение температуры в процессе адиабатического расширения при прочих равных условиях бывает более значительным, чем при дросселировании.

Адиабатическое расширение газа в детандере (расширителе) используют для получения криогенных температур.

Вихревой эффект достигается в вихревых трубах при подаче в них по тангенциальному вводу сжатого воздуха, имеющего температуру окружающей среды. Скорость вращения воздуха в трубе обратно пропорциональна ее радиусу. Центральная часть вращающегося потока имеет большую скорость, чем периферийная, вследствие чего температура воздуха у стенок трубы выше, а в центре ниже, чем температура подаваемого в трубу воздуха. Можно получить потоки воздуха с низкой и высокой температурами, если разделить центральную и периферийную части потока. Это явление называется эффектом Ранка.

Таким образом, через определенный физический процесс можно получить источник требуемой низкой температуры, необходимый для охлаждения тела.

Низкие температуры (от температур окружающей среды до близких к абсолютному нулю) условно подразделяют на область умеренного холода (до -103 °С, или 170 К), глубокого охлаждения (от -103 до -203 0С, или от 170 до 70 К), криогенные (от -203 до -272,7 °С, или от 70 до 0,3 К) и сверхнизкие (от -272,7 до -272,9992 °С, или от 0,3 до 8 · 10-4 К).

1.2. Способы охлаждения

Для получения холода используются безмашинные и машинные способы охлаждения. Безмашинные способы охлаждения основываются на плавлении, испарении, сублимации.

В безмашинных способах охлаждения используются готовые хладоносители (водный, эвтектический и сухой лед, сжиженные газы, воздух). Установки, работающие на готовых хладоносителях, просты по устройству и, следовательно, наиболее доступны, но они имеют существенные недостатки: полную зависимость от возможности и условий получения хладоносителей; большой объем грузовых работ, связанных с зарядкой хладоносителями и поддержанием гигиены в охлаждаемых помещениях.

Недостатки, свойственные безмашинным способам охлаждения, отсутствуют у машинных способов, когда энергия (механическая, тепловая, электрическая) поступает извне.

По виду затрачиваемой энергии холодильные машины подразделяются на компрессионные, теплоиспользующие и термоэлектрические. Компрессионные машины используют механическую энергию; теплоиспользующие — тепловую от источников теплоты, температура которых выше окружающей среды; термоэлектрические — электрическую.

При охлаждении в компрессионных и теплоиспользующих машинах теплота переносится в результате совершаемого рабочим телом — холодильным агентом (хладагентом) обратного кругового процесса, а в термоэлектрических — при воздействии потока электронов на атомы вещества.

Охлаждение в термоэлектрических машинах основано на термоэлектрическом эффекте, известном как эффект Пельтье, заключающемся в том, что при пропускании постоянного электрического тока по замкнутой цепи, состоящей из двух разнородных проводников или полупроводников, один из спаев нагревается (горячий спай), а другой охлаждается (холодный спай). Для того чтобы холодный спай термоэлемента имел постоянную низкую температуру и был источником холода, горячий спай нужно охлаждать. В этом случае система представляет собой холодильный агрегат, в котором электрический ток переносит энергию от холодного спая термоэлемента к горячему. Количество перенесенной энергии пропорционально силе тока в цепи термоэлемента. Изменение полярности электрического тока приводит к перемене мест холодного и горячего спаев. Основной показатель качества термоэлемента — коэффициент добротности (эффективности вещества), определяющий максимальную разность температур горячего и холодного спаев. К достоинствам такого рода устройств можно отнести непосредственное использование электрической энергии для переноса теплоты без промежуточных веществ и механизмов; бесшумность и автономность работы; компактность и простоту автоматизации и обслуживания. Однако они значительно дороже других холодильных машин.

В зависимости от вида рабочего тела (холодильного агента) холодильные машины, в основе принципа действия которых лежит обратный цикл Карно (см. подраздел 2.1), подразделяют на паровые и газовые.

В испарителе паровой холодильной машины происходит испарение рабочего тела при переходе к нему теплоты от охлаждаемого объекта, а в конденсаторе — его конденсация при переходе теплоты от рабочего тела в окружающую среду (в воздух или воду).

В качестве рабочего тела в паровых холодильных машинах используют аммиак и хладоны — фтористые и хлористые производные предельных углеводородов, в газовых — воздух.

В зависимости от способа подачи рабочего тела в конденсатор холодильные машины подразделяют на компрессионные, абсорбционные, сорбционные и пароэжекторные. В компрессионных холодильных машинах рабочий цикл совершается за счет механической работы компрессора, в абсорбционных, сорбционных и пароэжекторных — за счет затрат теплоты.

Для получения требуемых температур кипения и конденсации рабочего тела используют одноступенчатые, многоступенчатые и каскадные паровые компрессионные машины. Соответственно в одноступенчатых используют один, в многоступенчатых и каскадных — два компрессора и более, которые обеспечивают осуществление холодильного цикла в каждой ступени машины. Для холодильной обработки и хранения пищевых продуктов в охлаждаемых камерах используют преимущественно паровые компрессионные одно- и двухступенчатые холодильные машины.

ГЛАВА 2

ТЕРМОДИНАМИЧЕСКИЕ ОСНОВЫ

ХОЛОДИЛЬНЫХ МАШИН

2.1. Термодинамический цикл холодильных машин

Для непрерывного охлаждения машинными способами помимо охлаждаемого тела и приемника теплоты требуется третье тело, переносящее теплоту от первого ко второму. Это третье тело называется рабочим телом или холодильным агентом.

Холодильный агент, претерпевая ряд изменений, должен возвращаться в первоначальное состояние, непрерывно участвуя в круговом процессе, или цикле. Подобный цикл называется термодинамическим.

В отличие от прямого цикла (цикл тепловой машины), когда работа производится при переходе теплоты от более нагретого тела к менее нагретому, круговой процесс, в котором для передачи теплоты от менее нагретого тела к более нагретому необходимо подводить энергию (или теплоту), называется обратным циклом. Различают три вида обратного цикла (рис. 2):

холодильный 1—2—3—4, в котором теплота переносится от охлаждаемого тела с температурой Тн к окружающей среде с температурой Тос;

теплового насоса 5— 6— 7— 8, в котором теплота переносится от окружающей среды к телу с более высокой температурой Тв;

комбинированный 9— 10— 11— 12, состоящий из двух первых.

Если при осуществлении процессов, образующих обратный цикл, у взаимодействующих тел не наблюдаются остаточные изменения, т.е. эти процессы обратимы, то и обратный цикл обратим. На осуществление обратимого цикла требуется минимум работы или теплоты, поэтому он является эталоном. Обратимый холодильный цикл 1—2—3—4, приведенный на рис. 2, показан на S— Т – диаграмме, где S — энтропия; Т — абсолютная температура.

Энтропия S — это отношение ничтожно малого количества теплоты q, сообщенной телу (или отнятой у него) в процессе изменения его агрегатного состояния, к абсолютной температуре Т, при которой происходит это приращение теплоты, т.е. S = q / Т (Дж/К). Энтропию в тепловых процессах можно рассматривать как термический заряд, который не меняется в идеализированных обратимых циклах.

Рис. 2. Обратные циклы Карно

Как видно из рис. 2, цикл должен состоять из двух изотермических и двух адиабатических процессов. Такой цикл называется циклом Карно. При этом холодильный агент должен получать теплоту от охлаждаемого тела и передавать ее окружающей среде при постоянных температурах. Температуры холодильного агента и окружающей среды должны отличаться друг от друга на бесконечно малую величину, так как разность температур необходима для осуществления теплообмена.

Точно так же обмен работой между холодильным агентом и окружающей средой должен происходить при бесконечно малой разности давлений.

2.2. Расчет цикла холодильных машин

В изотермическом процессе 4— 1 (см. рис. 2) каждый килограмм циркулирующего холодильного агента получает от охлаждаемого тела теплоту д0, которая называется удельной массовой холодопроизводительностью холодильного агента, выражается площадью а— 4—1 — b и равенством

q0 = TH (Sb – Sa). (1)

В адиабатическом процессе 1—2 при затрате работы /к холодильный агент сжимается и его температура повышается от Тн до Тос. В изотермическом процессе 2— 3 каждый килограмм циркулирующего холодильного агента отдает окружающей среде теплоту q, измеряемую площадью а — 3 — 2—b:

q = To.c (Sb - Sa). (2)

В заключительном адиабатическом процессе 3— 4 холодильный агент расширяется с получением lK, в результате температура его понижается с Тос до Тн.

Работа l превращается в теплоту, подводимую к холодильному агенту, и определяется как разность работ: работы lк, затраченной на сжатие холодильного агента, и работы lр, полученной при его расширении:

l = lk – lp. (3)

В соответствии с первым началом термодинамики сумма энергии, подведенной к холодильному агенту, должна быть равна сумме энергии, отведенной от него:

q = q0 + l. (4)

Отсюда

l = q – q0. (5)

В S— T - диаграмме работа цикла выражается площадью 1—2— 3--4.

Отношение теплоты, полученной холодильным агентом от охлаждаемого тела q0, к работе цикла l называется холодильным коэффициентом, который характеризует эффективность осуществления холодильного цикла:

= q0 / l. (6)

С учетом равенств (1) и (2) холодильный коэффициент можно выразить через температуры:

= TH / (Toc – TH). (7)

Из этого следует, что при температуре окружающей среды Тос затраты работы на единицу отведенной теплоты будут тем больше, чем ниже температура Тн. Совокупность технических устройств, обеспечивающих осуществление холодильного цикла, называется холодильной машиной.

Обратимый цикл теплового насоса также может быть представлен циклом Карно 5— 6— 7— 8 (см. рис. 2).

В этом случае теплота q0, полученная 1 кг холодильного агента от окружающей среды, соответствует площади с— 8— 5— d, а теплота qb, отданная телу с высокой температурой Тв, выражается площадью с— 7—6—d.

Работа цикла l = qb – q0 соответствует площади 5— 6— 7— 8.

Эффективность цикла теплового насоса определяется отношением полученной теплоты к затраченной работе:

= qb / l

или через температуру:

= ТB / (ТВ – Тo.c). (8)

Это отношение называется коэффициентом преобразования теплоты .

Как следует из этого выражения, величина всегда больше единицы. Это свидетельствует о том, что с энергетической точки зрения для отопления целесообразно применять цикл теплового насоса, а не электрический нагреватель. Но при этом надо учитывать, что стоимость холодильного оборудования выше, чем теплового.

Работа комбинированного обратного цикла соответствует площади 9— 10— 11— 12, а отведенная от охлаждаемого тела теплота — площади е—12— 9—f. По такому циклу могут работать машины, одновременно охлаждающие (например, пищевые продукты) и нагревающие (воду или воздух) для технологических либо бытовых целей.

В случаях, когда температура охлаждаемого тела переменна, а окружающей среды постоянна, надо иметь в виду, что холодильный коэффициент цикла Карно будет меньше, чем холодильный коэффициент соответствующего обратного цикла при неизменной температуре охлаждаемого тела.

Реальные циклы необратимы вследствие необратимости действительных процессов, происходящих при их осуществлении: теплообмена при конечной разности температур, расширения и сжатия при наличии трения, дросселирования.

Термодинамическое совершенствование цикла определяется сопоставлением его с обратимым циклом, имеющим ту же величину удельной массовой холодопроизводительности, и оценивается коэффициентом обратимости , равным отношению их холодильных коэффициентов:

= / обр = lобр / l, (9)

где , обр — холодильный коэффициент соответственно реального и обратимого циклов; lобр , l — работа соответственно реального и обратимого циклов.

Холодильный коэффициент обратимого цикла Карно обр больше холодильного коэффициента любого из циклов, осуществляемых в тех же температурных пределах, поэтому < обр и < 1. Чем больше необратимость (приращение энтропии) цикла, тем большую работу надо затратить для получения одного и того же полезного эффекта.

2.3. Принцип действия паровых компрессионных

холодильных машин

Одноступенчатые холодильные машины. При работе паровых компрессионных холодильных машин цикл совершается в области влажного пара холодильного агента, где изобары совпадают с изотермами, что позволяет теоретически рассмотреть цикл Карно.

Функциональная схема паровой одноступенчатой холодильной машины и обратимый цикл Карно, совершаемый ею, приведены на рис. 3.

Рис. 3. Функциональная схема паровой одноступенчатой холодильной

машины с детандером и дросселем и циклы ее работы:

а — схема машины; б — диаграмма работы машины

Жидкий холодильный агент кипит в испарителе И при постоянной температуре ТK (процесс 4—1), в результате чего от охлаждаемого тела, например воздуха, отводится теплота. При кипении холодильного агента происходит поглощение значительного количества теплоты.

Образовавшийся пар вместе с небольшим количеством неиспарившегося холодильного агента адиабатически сжимается в компрессоре КM до давления РK (процесс 1—2) и поступает в конденсатор Кн, конденсируясь при постоянной температуре Тк (процесс 2— 3) и отдавая поглощенную в испарителе теплоту окружающей среде — воздуху или воде. Жидкий холодильный агент адиабатически расширяется в детандере Д до давления Ро (процесс 3—4), совершая при этом полезную работу.

Количество отведенной 1 кг холодильного агента теплоты q0 в испарителе определяется на S—T-диаграмме площадью а—4—1—b и может быть представлено как разность энтальпий i1 – i4. Количество теплоты qобр, отданное 1 кг холодильного агента в конденсаторе, определяется площадью a — 3—2—b или разностью энтальпий i2 - i3.

Работа цикла lобр может быть определена разностью работ компрессора и детандера:

lобр = lK – lp. (10)

Работа компрессора и детандера может быть записана

lk = i2 – i1 и lр = i3 – i4. (11)

Холодильный коэффициент цикла обр0 может быть выражен как

обр0 = qобр0 /lобр = (i1 – i4) / [(i2 – i1) – (i3 – i4)]. (12)

Рассмотренный цикл Карно является обратимым. Однако осуществить его практически трудно, так как работа, полученная в детандере, значительно меньше работы, затраченной в компрессоре, ибо жидкость практически несжимаема, а удельные объемы жидкости и пара различаются в сотни раз.

Следует иметь в виду и то, что часть работы детандера тратится на преодоление сил трения, поэтому вместо детандера в паровой холодильной машине используется дроссельный (регулирующий) вентиль ДВ, изображенный на рис. 3 штрихами. Дроссельный вентиль прост в устройстве и надежен в эксплуатации.

Вследствие замены детандера дроссельным вентилем в цикле появляется необратимый процесс дросселирования 3—4, проходящий без производства работы и теплообмена с окружающей средой, т.е. при постоянной энтальпии, поэтому i = i4.

При адиабатическом дросселировании работа расширения переходит в теплоту трения, поэтому часть циркулирующего жидкого холодильного агента, пропорциональная выделенной теплоте, превращается в пар. В испаритель холодильный агент поступает в виде парожидкостной смеси. Поэтому только часть циркулирующего холодильного агента кипит в испарителе, воспринимая теплоту от охлаждаемого тела, вследствие чего удельная массовая холодопроизводительность холодильного агента уменьшается на величину, соответствующую площади а—4—4'—с:

q0 = i4’ – i4. (13)

Удельная массовая холодопроизводительность холодильного агента в этом случае:

q0 = qобр0 - q0 = (i1 – i4) – (i4’ – i4) = i1 – i4’. (14)

Работа цикла будет больше, чем обратимого:

l = lк – lобр + lp = i2 – i1. (15)

Холодильный коэффициент цикла

= q0 / l = (i1 – i4’) / (i2 – i1). (16)

Как видно, замена детандера дроссельным вентилем приводит к уменьшению удельной массовой холодопроизводительности холодильного агента, холодильного коэффициента и увеличению работы цикла.

В циклах 1—2—3—4 и 1—2—3—4’ влажный пар выходит из испарителя и поступает в компрессор. Это уменьшает производительность компрессора вследствие повышения удельного объема всасываемого пара и падения давления, возникает опасность аварии компрессора в результате гидравлического удара. Чтобы избежать этого, холодильные машины должны работать так, чтобы из испарителя выходил сухой насыщенный или перегретый пар, а в компрессор поступал перегретый пар холодильного агента. Это можно осуществить в цикле 1’— 2’— 3— 4’ со всасыванием в компрессор сухого насыщенного пара.

Для сжатия пара обратимым путем необходимо провести два процесса сжатия: адиабатическое 1’ — 2" и изотермическое 2” — 2, для чего требуется два компрессора. Хотя необратимые потери в цикле 1’—2’—3—4’ больше, чем в цикле 1’—2’’—3—4’, так как холодильный агент передает теплоту окружающей среде в процессе 2’— 2 при конечной разности температур, на практике реализуют цикл 1’—2’—3—4’, так как для него достаточно одного компрессора.

Удельная массовая холодопроизводительность холодильного агента в обоих циклах одинакова:

q0 = i1’ – i4’. (17)

Но количество теплоты, отданной 1 кг холодильного агента в конденсаторе окружающей среде, и работа цикла 1’ —2’— 3—4’ будут больше, чем в цикле 1’—2’’—3--4’, на величину площади 2—2’—2’’. Холодильный коэффициент цикла 1’—2’—3—4’ определяется как

= (i1’ – i4’) / (i2’ – i1’). (18)

и будет меньше, чем коэффициент цикла 1’— 2’’ --3—4’.

При всасывании в компрессор перегретого пара (цикл 1а — 2а — 3—4’) удельная массовая холодопроизводительность холодильного агента увеличивается, но в большей степени возрастает работа цикла, поэтому необратимые потери увеличиваются. Их можно сократить. Так, необратимые потери, связанные с дросселированием хладагента, могут быть уменьшены его охлаждением перед дросселированием (процесс 3—3') до температуры ниже температуры окружающей среды. Это можно осуществить, например, артезианской водой, температура которой ниже температуры окружающей среды. В таком случае удельная массовая холодо-производительность холодильного агента возрастет на величину i4 – i4’’, а величина работы цикла не изменится.

Жидкий холодильный агент перед дросселированием можно охладить также паром, выходящим из испарителя в регенеративном теплообменнике, осуществив цикл, называемый регенеративным. Однако при этом температура всасываемого в компрессор (точка 1а вместо 1’) и нагнетаемого в конденсатор (точка 2а вместо 2') пара повышается, что увеличивает необратимые потери так называемого перегрева.

Теоретически выгоднее влажный ход компрессора, так как при этом цикл ближе к идеальному циклу Карно. Однако практически производительность компрессора при влажном ходе всегда и для всех холодильных агентов значительно ниже, чем при сухом ходе, т.е. при всасывании сухих насыщенных паров или несколько перегретых при том же давлении кипения Ро. Отсюда получаем теоретический цикл современной паровой компрессионной машины на S—T-диаграмме в виде 1а — 2а—3’— 4". Сейчас почти во всех холодильных машинах компрессоры работают при сухом ходе.

В машинах, работающих на аммиаке, этот режим работы компрессора достигается при помощи специального аппарата — отделителя жидкости либо путем регулирования подачи холодильного агента в испаритель. Отделитель жидкости включается во всасывающую линию холодильной установки между испарителем и компрессором.

В хладоновых установках сухой ход компрессора достигается при помощи специальных теплообменников или путем регулирования подачи холодильного агента в испаритель.

Эффективность работы машины оценивается ее холодильным коэффициентом и холодопроизводительностью, которые зависят от типа и конструкции установки, вида и свойств холодильного агента, конструкции компрессора, а также условий работы. Под условиями работы холодильной машины подразумевают температуру кипения холодильного агента в испарителе t0, температуру конденсации сжатых паров агента в конденсаторе tK, температуру переохлаждения жидкого холодильного агента, поступающего в регулирующий вентиль tп.

Чем выше температура кипения t0, чем ниже температура конденсации паров tK и температура переохлаждения tп, тем больше холодопроизводительность установки. Однако все эти изменения надо проводить в разумных пределах. Так, например, понижение температуры кипения холодильного агента t0 в хладоновой компрессионной машине с -15 до -30 °С не повысит, а понизит ее холодопроизводительность в 2 раза. Это объясняется тем, что с понижением t0 уменьшаются давление кипения Ро и удельный вес паров, поступающих в компрессор. В результате снижается производительность компрессора.

Следовательно, без необходимости не нужно переводить холодильную машину на работу с более низкой температурой кипения.

Многоступенчатые холодильные машины. Одноступенчатые компрессорные машины применяют при Рк/Р0 9, что соответствует температуре кипения -20 °С и конденсации 30 0С. При больших значениях отношения давлений холодопроизводительность значительно снижается, поэтому вместо одноступенчатых применяют двух-, трехступенчатые и каскадные холодильные машины. Кроме того, при больших значениях отношения Рк/Р0 температура пара в конце сжатия в одноступенчатой машине чрезмерно высока, что приводит к потере маслом смазочных свойств, его самовозгоранию, повышению износа деталей компрессора.

Переход к многоступенчатому сжатию обусловлен и необходимостью соблюдения условий прочности, так как по расчетам разность давлений Рк - Ро компрессоров не должна превышать 1,7 МПа. В многоступенчатых машинах температура паров холодильного агента в конце сжатия первой ступени компрессора обычно выше температуры окружающей среды, поэтому приходится охлаждать перегретый пар прямоточно в водяном межступенчатом холодильнике. Кроме водяного применяют промежуточное охлаждение холодильным агентом, что увеличивает холодильный коэффициент. Многократное дросселирование холодильного агента с промежуточным отбором пара снижает энергетические потери.

Холодильный агент сжимается до давления конденсации последовательно в две или более ступеней с промежуточным охлаждением частично сжатых паров. На каждой ступени отношение давления нагнетания к давлению всасывания меньше, чем Рк/Р0 для полного цикла данной машины.

В схемах с многократным дросселированием промежуточное охлаждение между ступенями сжатия может быть полным и неполным (рис. 4).

Рис. 4. Принципиальные схемы многоступенчатых парокомпрессионных машин:

а — с неполным промежуточным охлаждением;

6 — с полным промежуточным охлаждением

Неполное промежуточное охлаждение осуществляется водой. В этом случае (см. рис. 4, а) температура сжатого пара после цилиндра низкого давления (ЦНД) — процесс 1— 2 - снижается в водяном межступенчатом холодильнике I до состояния 3' сухого перегретого пара, а затем пар поступает в цилиндр высокого давления (ЦВД). Состояние 4' на S—T-диаграмме (рис. 5) соответствует состоянию пара после сжатия в ЦВД в двухступенчатой холодильной машине без промежуточного отбора пара.

Промежуточный отбор пара осуществляется из промежуточного сосуда II, в который поступает парожидкостная смесь после первого дросселирования в РВ1. Жидкость на РВ1 подается из конденсатора III при давлении конденсации Рк, соответствующем давлению пара в ЦВД, и снижается после дросселирования до промежуточного давления Р'o (см. рис. 5) и соответствующей температуры T0'.

Сухой насыщенный пар из промежуточного сосуда (состояние 3) поступает в ЦВД. В результате смешивания сухого насыщенного и перегретого паров после холодильника всасываемый в ЦВД пар переходит в состояние 3", а после сжатия — в 4" (процесс 3"—4", см. рис. 5).

Рис. 5. Цикл многоступенчатой парокомпрессионной машины

Жидкость из промежуточного сосуда используется для кипения в испарителе V (рис. 4) при более низкой температуре То и давлении P"0 после вторичного дросселирования в РВ2, но может использоваться и для кипения в испарителе IV при более высокой температуре кипения Т"о и давлении P'0 в цикле после первого дросселирования в РВ1. Из испарителя IV сухой насыщенный пар (точка 3) выходит в том же состоянии, что и из промежуточного сосуда.

При полном промежуточном охлаждении состояние рабочего тела перед всасыванием в компрессор более высокой ступени соответствует состоянию сухого насыщенного пара.

Сжатый в ЦНД пар после межступенчатого водяного холодильника (точка 3', рис. 4, б) поступает на доохлаждение в промежуточный сосуд II, где приходит в состояние насыщенного пара (точка 3, рис. 5). Из промежуточного сосуда сухой насыщенный пар отсасывается в ЦВД. При наличии испарителя IV из него в ЦВД также поступает сухой насыщенный пар. Процесс сжатия пара в ЦВД характеризуется линией 3—4 (см. рис. 5), температура конца сжатия в этом случае более низкая, чем при других двухступенчатых схемах.

Через разные элементы многоступенчатых схем с промежуточным отбором пара циркулирует неодинаковое количество вещества. Следовательно, изображение процессов в многоступенчатых холодильных установках на термодинамических диаграммах носит условный характер, так как каждый процесс в них относится к изменению состояния 1 кг вещества. Поэтому массовые потоки в элементах многоступенчатых машин при их расчете относят к 1 кг рабочего тела, проходящего через низкотемпературный испаритель.

Для получения очень низких температур применения одного рабочего тела недостаточно из-за давлений кипения рабочего тела, близких к глубокому вакууму, затвердевания его при низкой температуре кипения в испарителе и по другим причинам. В этих случаях приходится использовать каскадные холодильные машины, в каждой ступени которых применяют свое рабочее тело. При этом испаритель каждой следующей ступени является конденсатором предыдущей. Холодильный коэффициент цикла холодильной машины, приведенный выше, который называют теоретическим, составляет примерно 80 % холодильного коэффициента идеального цикла Карно при тех же значениях Тк и То. Холодильный коэффициент реального цикла холодильной машины, в свою очередь, еще меньше из-за объемных и энергетических потерь.

Рассмотрим работу поршневого компрессора двойного действия (рис. 6).

При движении поршня П в цилиндре слева направо давление пара над поршнем становится несколько ниже, чем давление в сборнике пара низкого давления Г, вследствие чего открывается самодействующий всасывающий клапан Е1 и пар заполняет полость цилиндра А. Пар рабочего вещества заполняет весь цилиндр, когда поршень достигает крайнего правого положения (нижняя мертвая точка — н.м.т.). Далее поршень сжимает пар, перемещаясь справа налево (к верхней мертвой точке — в.м.т.). Давление пара повышается, вследствие чего всасывающий клапан Е1 закрывается. Поскольку рассматривается схема компрессора двойного действия, аналогичные процессы, смещенные по фазе, происходят в цилиндре и под поршнем (полость Б). При дальнейшем движении поршня к в.м.т. давление в цилиндре возрастает, и пар, сжимаясь, совершает соответствующий условиям термодинамический процесс (изотермический, адиабатический или политропический) до величины давления, несколько превышающего давление в сборнике Д. Тогда открывается нагнетательный клапан Ж1, и сжатый пар по мере движения поршня к в.м.т. поступает в сборник Д. По достижении поршнем в.м.т. пар полностью вытесняется из полости А цилиндра, а в полости Б в этот момент завершился процесс всасывания, и в компрессоре повторяются все описанные выше процессы.

Рис. 6. Схема поршневого компрессора двойного действия

Рис. 7. Теоретическая индикаторная диаграмма поршневого компрессора

Происходящие в рабочей полости цилиндра компрессора процессы анализируют с помощью индикаторной диаграммы, построенной в координатах давление пара Р — объем цилиндра V (рис. 7).

При этом принимают, что объем, описанный поршнем, в точности равен объему цилиндра, давление всасывания и давление нагнетания в цилиндре равны соответственно давлению в испарителе Ро и давлению в конденсаторе Рк, параметры состояния пара в процессах всасывания и нагнетания не изменяются, процесс сжатия происходит по адиабатическому закону.

При движении поршня из крайнего левого положения вправо открывается всасывающий клапан и пары холодильного агента заполняют рабочую полость цилиндра. Всасывание происходит при постоянном давлении, равном давлению кипения Ро в испарителе (линия 4— 1), и заканчивается в крайнем правом положении поршня (н.м.т.). Всасывающий клапан в этот момент закрывается.

При обратном движении поршня происходит адиабатическое сжатие паров холодильного агента (линия 1—2) до давления, равного давлению конденсации Рк в конденсаторе. При достижении давления Рк внутри цилиндра открывается нагнетательный клапан, через который сжатые пары вытесняются поршнем из цилиндра при Рк = const (линия 2—3).

При рассмотрении теоретического процесса принимают также, что между поршнем, достигшим крайнего левого положения (в.м.т.), и крышкой компрессора не осталось пространства, следовательно, весь холодильный агент выталкивается из цилиндра, т.е. не остается вредного (мертвого) пространства.

Теоретическую холодопроизводительность компрессора можно определить по формуле

QT=Vc qv; (19)

Vc= Vh n Z = 0,25 D2 s n Z, (20)

где Vc — объем, описываемый поршнями компрессора; qv — удельная объемная холодопроизводительность холодильного агента; Vh — объем цилиндра без мертвого пространства; п — частота вращения коленчатого вала; Z — число цилиндров компрессора; D — диаметр цилиндров; s — ход поршня.

Однако действительные процессы, протекающие в компрессоре, сопровождаются рядом потерь, вызываемых гидравлическим сопротивлением в клапанах и трубопроводах, теплообменом между парами холодильного агента и внутренними стенками цилиндров, наличием вредного пространства в цилиндрах, трением, проникновением паров холодильного агента через неплотности и другими причинами.

Индикаторная диаграмма действительного рабочего процесса значительно отличается от теоретической (рис. 8).

Рис. 8. Индикаторная диаграмма действительного рабочего

процесса в цилиндре компрессора

Из диаграммы видно, что между крышкой компрессора и поршнем, находящимся в в.м.т., имеется мертвый объем V0, который уменьшает объем всасываемого пара. Процесс расширения сжатых паров холодильного агента из мертвого пространства изображен кривой 3—4, представляющей собой политропу.

Точка 4 на диаграмме соответствует моменту открытия всасывающего клапана компрессора и началу процесса всасывания. Процесс всасывания отображает линия 4—1, расположенная ниже уровня Ро на величину Р0 из-за сопротивлений во всасывающих трубопроводах, клапанах и каналах.

Точка 1 характеризует конец процесса всасывания, закрытие всасывающего клапана и начало процесса сжатия. Сжимаются пары холодильного агента по политропе 1 —2 до давления, превышающего давление конденсации Рк на величину РК, равную гидравлическому сопротивлению в каналах, клапанах и трубопроводах нагнетательной стороны компрессора. Точка 2 соответствует моменту открытия нагнетательного клапана, а линия 2 — 3 отображает процесс нагнетания.

Точка 3 показывает момент окончания процесса нагнетания, закрытие нагнетательного клапана и начало процесса расширения паров холодильного агента, оставшихся в мертвом пространстве, т.е. момент, когда поршень занимает в.м.т.

Отрезок Vh пропорционален рабочему объему цилиндра, а отрезок Vo — объему мертвой зоны. Величина Vcl пропорциональна той части рабочего объема цилиндра, которая теряется из-за наличия мертвого пространства, а величина Vc2 = Vh - (V1 + Vc1) - части рабочего объема цилиндра, которая теряется из-за гидравлического сопротивления на стороне всасывания.

Объемные потери, обусловленные наличием мертвого пространства, зависят от его объема и отношения давлений Рк/Р0 и оцениваются объемным коэффициентом

c=1 – Vc1 / Vh. (21)

Для всасывания пара в цилиндр давление в нем должно быть меньше, чем в испарителе, а при выталкивании выше, чем в конденсаторе (см. рис. 8). Объемные потери вследствие дросселирования учитываются соответствующим коэффициентом

др= 1 - [(1 + Vc /Vh) p0 / c); (22)

p0 = (Ро - Рвс)/Р0, (23)

где р0 — относительная величина потери давления всасывания в каналах (р0 = 0,02 — 0,05).

В действительном процессе стенки цилиндров компрессора нагреты, пары во время всасывания подогреваются и их удельный объем увеличивается, масса уменьшается, что учитывается коэффициентом подогрева

П=Т0 /ТК, (24)

где Tо и Тк — соответственно температуры кипения и конденсации холодильного агента.

Интенсивность теплообмена больше при всасывании в цилиндры компрессора влажного пара, чем сухого. Кроме того, она зависит от отношения давлений Р0 /Рк и частоты вращения коленчатого вала компрессора. Чем меньше это отношение и быстроходнее агрегат, тем меньше теплообмен в его цилиндрах.

Действительный объем паров холодильного агента, проходящих через цилиндр компрессора, определяют по формуле

Vd = Vh = Vh c др п пл; (25)

= f (PK / P0),

где — коэффициент подачи; пл — коэффициент плотности, учитывающий потери объема всасываемого холодильного агента от неплотностей в поршневых кольцах и клапанах (пл = 0,96 — 0,98).

Производительность компрессора холодильной машины должна обеспечивать отсасывание пара из испарителя с той же интенсивностью, с которой он образуется в результате кипения жидкого холодильного агента. Если холодильный агент кипит быстрее, чем компрессор может отводить пар, то избыточное количество пара накапливается в испарителе, давление увеличивается, в результате повышается температура кипения.

Температура кипения холодильного агента в испарителе — главный фактор, влияющий на производительность компрессора. Если она повышается при постоянной температуре конденсации, то степень сжатия Рк/Р0 уменьшается, коэффициент подачи компрессора возрастает и его производительность увеличивается.

Если производительность компрессора такова, что пар отводится из испарителя слишком быстро, то давление в испарителе уменьшается, температура кипения снижается и увеличивается удельный объем холодильного агента. Все это приводит к уменьшению холодопроизводительности компрессора. При повышении температуры конденсации при постоянной температуре кипения степень сжатия Рк/Р0 увеличивается, коэффициент подачи компрессора снижается. В результате действительный объем перемещаемого компрессором пара в единицу времени уменьшается, холодопроизводительность компрессора снижается.

Паровые компрессионные холодильные машины входят в состав холодильных установок. Схемы холодильных установок помимо холодильных машин включают системы охлаждения объекта, например холодильника, рефрижераторного поезда и т.д.

2.4. Система охлаждения холодильной установки

Системой охлаждения называют ту часть холодильной установки, которая располагается между регулирующим вентилем и всасывающим патрубком компрессора. Назначение этой системы — поддержание заданного температурно-влажностного режима охлаждаемого объекта.

По способу подачи рабочего тела к потребителям холода, а также способу отвода от них теплоты различают системы непосредственного охлаждения (безнасосные и насосные) и с промежуточным хладоносителем.

В безнасосной системе непосредственного охлаждения рабочее тело (холодильный агент) поступает в охлаждающие приборы от регулирующего вентиля с отбором паров из них компрессором. Жидкий холодильный агент циркулирует за счет разности давлений конденсации и испарения.

В насосной системе циркуляция жидкого холодильного агента в низкотемпературном контуре осуществляется с помощью насоса. В этом случае в схему вводится емкость (ресивер), в которой находится определенный объем холодильного агента. Такая система называется насосно-циркуляционной.

В системах с промежуточным хладоносителем в охлаждающих приборах циркулирует жидкий хладоноситель, который охлаждается холодильным агентом в испарителе холодильной машины.

В зависимости от способа отвода теплоты от потребителя холода и конструкции охлаждающих приборов различают системы батарейного (панельного), воздушного, смешанного и контактного охлаждения.

В батареях (панелях) теплообмен происходит при переходе теплоты при естественной конвекции от охлаждаемого тела в воздух, а затем из воздуха через тонкие стенки охлаждающих приборов к холодильному агенту или хладоносителю.

В воздушных системах охлаждения движение воздуха осуществляется принудительно, благодаря чему скорость перемещения его по сравнению со скоростью при естественной конвекции возрастает в 10 — 20 раз.

В смешанных системах сочетаются батарейное и воздушное охлаждение.

При контактном охлаждении отвод теплоты от потребителя холода осуществляется при непосредственном контакте с ним охлаждающего прибора.

2.5. Холодильные агенты и хладоносители

Холодильные агенты. Как уже было сказано, какой-либо термодинамический процесс или цикл совершается с помощью холодильного агента (рабочего тела).

При нормативном атмосферном давлении 0,1 МПа холодильный агент должен иметь достаточно низкую температуру кипения, чтобы при работе холодильной машины не было разрежения в испарителе. Например, для аммиака NH3 температура кипения при давлении 0,1 МПа составляет 33,4°С.

Основными холодильными агентами являются вода, аммиак, хладоны и воздух.

Воду применяют главным образом в установках кондиционирования воздуха, где обычно температура теплоносителя tH > 0 0С. В качестве холодильного агента воду используют в установках абсорбционного и эжекторного типов.

Аммиак имеет малый удельный объем при температуре кипения -70 °С, большую теплоту парообразования, слабую растворимость в масле и другие преимущества. Его применяют в поршневых компрессионных и абсорбционных установках. К недостаткам аммиака следует отнести ядовитость, горючесть, взрывоопасность при концентрациях в воздухе 16 — 26,8 %.

Хладоны (фреоны) химически инертны, мало- или невзрывоопасны. Хладоны — галоидопроизводные предельных углеводородов, получаемые путем замены атомов водорода в насыщенном углеводороде СnН2n + 2 атомами фтора, хлора, брома (СnНx, Fy, С1z, Вгu). Число молекул отдельных составляющих, входящих в химические соединения хладонов, связаны зависимостью х + у + z+ u = = 2n + 2. Любой холодильный агент обозначается символами RN, где R — символ, указывающий на вид холодильного агента, N — номер хладона или присвоенный номер для других холодильных агентов.

Для хладонов номер расшифровывается следующим образом. Первая цифра в двузначном номере или первые две цифры в трехзначном обозначают насыщенный углеводород СnН2n + 2, на базе которого получен хладон: 1 — СН4 (метан); 11 — С2Н6 (этан); 21 — С3Н8 (пропан); 31 — С4Н10 (бутан). Справа указывают число атомов фтора в хладоне: CFC13 — R11, CF2C12 — R12, C3F4C14 — R214, СС14 — R10. При наличии в хладоне незамещенных атомов водорода их число добавляют к числу десятков номера: CHFC12 — R21, CHF2C1 — R22. Если в состав хладона входят атомы брома, после основного номера пишут букву В, а за ней число атомов брома: CF2Br2 — R12B2.

В качестве рабочих тел могут использоваться азеотропные смеси, составляемые из двух холодильных агентов. Например, азеотропную смесь, состоящую из 48,8 % R22 по массе и 51,2 % R115 (C2F5Cl), называют хладоном R502, его температура кипения при давлении 0,1 МПа -45,6 0С.

В обозначениях смесей холодильных агентов указывают названия составляющих и их массовые доли. Хладон R502 можно обозначить R22/R115 (48,8/51,2). Цифрами, начиная с 500, условно обозначают азеотропные смеси, процентный состав которых в процессе кипения и конденсации практически не изменяется.

Холодильным агентам неорганического происхождения (аммиак, вода) присваивают номера, равные их молекулярной массе, увеличенной на 700. Так, аммиак и воду обозначают соответственно R717 и R718.

Холодильный агент должен обладать определенными теплофизическими и физикохимическими свойствами, от которых зависят конструкция холодильной машины и расход энергии.

К теплофизическим свойствам относятся вязкость , теплопроводность , плотность и др. Они, как и теплота парообразования r, оказывают влияние на коэффициент теплоотдачи при кипении и конденсации. Большим значениям , , r и малой вязкости соответствуют большие значения коэффициентов теплоотдачи.

На гидравлическое сопротивление при циркуляции холодильного агента в системе влияют и : чем они больше, тем больше сопротивление. Количество циркулирующего в системе холодильного агента уменьшается с ростом теплоты парообразования.

К физико-химическим свойствам относятся растворимость холодильных агентов в смазочных маслах и воде, инертность к металлам, взрывоопасность и воспламеняемость.

При ограниченной растворимости холодильных агентов в масле в жидкой фазе смеси наблюдаются два слоя, из которых в одном преобладает масло, в другом — холодильный агент. К холодильным агентам с ограниченной растворимостью относятся аммиак R717, диоксид углерода R44 и ограниченно растворимые хладоны R13, R14, R115.

К холодильным агентам с неограниченной растворимостью относятся R11, R12, R21, R40. В этом случае для смеси хладона и масла требуется поддержание более низкого давления кипения, поэтому на сжатие пара затрачивается излишняя работа.

Хладоны R22 и R114 составляют промежуточную группу.

Аммиак неограниченно растворяет воду. При небольшом количестве воды работа холодильной машины заметно не нарушается. Хладоны почти не растворяют воду.

Избыточная влага в хладоне при прохождении через дроссель превращается в лед (если t0 < 0°С) и «запаивает» дроссельное отверстие. По этой причине холодильные машины имеют специальные осушительные устройства.

Хладоны при отсутствии влаги в области применяемых в холодильной технике температур на металлы не действуют.

Аммиак не оказывает коррозирующего действия на сталь. В присутствии воды он разъедает медь, цинк, бронзу и другие медные сплавы, за исключением фосфористой бронзы. Хладоны R11, R12, R13, R22 невзрывоопасны.

Хладоны с большим содержанием атомов фтора или полностью фторированные (R13, R113) практически безвредны для человека. Хладон R12 на открытом пламени разлагается, и в продуктах его разложения содержатся ядовитый фосген и вредные для человека фтористый и хлористый водород.

Рассмотрим область применения холодильных агентов. Аммиак (R717), хладоны R12 и R22 используют в компрессионных холодильных машинах для получения температур кипения от -30 до -40 °С без вакуума в системе охлаждения. Хладон R12 применяют в одноступенчатых холодильных машинах с температурой конденсации не более 75 °С и температурой кипения не ниже -30 0С, в бытовых холодильниках, кондиционерах, водоохлаждающих холодильных машинах. Хладон R22 используют в машинах с поршневыми и винтовыми компрессорами одно- и двухступенчатого сжатия, а также в бытовых холодильных машинах. Диапазон температур кипения от +10 до -70 °С при температуре конденсации не выше 50 0С. Одноступенчатое сжатие рекомендуется применять до температур кипения не ниже -35 °С.

Холодильный агент R502 применяют в низкотемпературных одноступенчатых холодильных машинах при температуре конденсации до 50 °С, кипения до -45 °С.

Широкое распространение получили появившиеся в 1930-е годы галогенизированные хладагенты R12, R22 и др. Только в России в начале 1990-х годов работало более 50 млн бытовых холодильников и сотни тысяч единиц промышленного, торгового и других видов холодильного оборудования, в которых использовались эти хладоны. Однако в ходе исследований «озоновых дыр» (значительного уменьшения содержания озона на высоте 20 — 25 км в земной атмосфере) было установлено, что промышленные и бытовые отходы, содержащие атомы хлора, в том числе хладоны, достигая атмосферы, высвобождают хлор, который участвует в разрушении озонового слоя. Известно, что озоновый экран (среднее содержание озона в атмосфере 0,001%) защищает поверхность Земли от избыточных ультрафиолетовых лучей, большая доза которых способна уничтожить все живое. Поэтому Международной конвенцией в Вене в 1985 г., Протоколом в Монреале в 1987 г. и последующими протоколами с участием представителей крупнейших стран мира были приняты решения о прекращении к 2000 г. производства и использования озоноопасных хладонов, в первую очередь R11, R12, R113, R114, R115. Хладагенты R22, R123, R124, R141 и R142 разрешены в качестве переходных для замены запрещаемых. Но и они должны быть исключены из использования к I 2040 г., а по возможности и раньше (к 2020 г.)

Взамен вышеперечисленных хладонов предлагаются гидрофторуглеводороды (ГФУ) и гидрохлорфторуглеводороды (ГХФУ), которые благодаря содержанию водорода разлагаются гораздо быстрее, чем хлорфторуглеводороды, в нижних слоях атмосферы, не достигая озонового слоя. На мировом рынке такие озонобезопасные хладоны предлагает, например, фирма «Дюпон» (США) под торговой маркой «СУВА». «Дюпон» поставляет на рынок хладагент НР62 (R404a), имеющий при давлении 0,1 МПа температуру кипения порядка -46 °С, гидрофторуглеводород R134a (CH2FCF3) и др. В России также освоен выпуск R134a. Он может полностью заменить R12, хотя при его использовании несколько снижаются удельная холодопроизводительность установки (92 % от удельной холодопроизводительности R12), холодильный коэффициент (98 % по сравнению с R12), увеличивается соотношение давлений конденсации и кипения (123%, если принять это соотношение для R12 равным 100 %). Для R134a подобраны и синтетические масла (ХС-22, ХФС-134). Температура кипения R134a при давлении 0,1 МПа составляет -26,5 °С. В выпускаемых в России холодильниках и морозильниках «Стинол» (г. Липецк) используется преимущественно R134a.

Разработаны заменители и для других хладонов. Так, альтернативным для R22 может быть R407C или R290. Холодильный агент R407C представляет собой смесь R32/125/134a в соотношениях 23/25/52%. Хладон R502 может быть заменен на R125 (CHF2CF3), имеющий температуру кипения -48,5 °С. Для низкотемпературных машин (каскадных) может быть рекомендован озонобезопасный R23.

Расширяется использование аммиака, не влияющего на окружающую среду. Аммиак в два раза легче воздуха и при утечке быстро поднимается в атмосферу, где разлагается в течение нескольких дней. При выбросе жидкий аммиак немедленно испаряется. Но следует иметь в виду, что он ядовит, горюч и взрывоопасен. Если ранее аммиак использовали преимущественно в крупных по холодопроизводительности холодильных машинах, то теперь промышленность осваивает конструкции средних и малых аммиачных компрессоров и холодильного оборудования на их основе.

Хладоносители. Хладоносители являются промежуточным веществом между источником холода и объектом охлаждения. Они подразделяются на жидкие и твердые.

К жидким хладоносителям относятся водные растворы солей — рассолы и однокомпонентные вещества, замерзающие при низких температурах (этиленгликоль, кремнийорганическая жидкость). Применяют водные растворы солей NaCl, MgCl2, СаС12, температура замерзания которых до известного предела (состояния криогидратной точки) зависит от концентрации рассола. Для раствора NaCl криогидратная точка -21,2°С, для MgCl2 -33,6°С, для СаС12 -55°С. Для уменьшения коррозирующего действия рассолов на металлические части оборудования в них добавляют пассиваторы: силикат натрия, хромовую соль, фосфорные кислоты.

Этиленгликоль в зависимости от концентрации в воде может иметь температуру замерзания от 0°С (вода) до -67,2 °С при концентрации 70 % по объему.

Твердые хладоносители — это эвтектический лед, образующийся при криогидратной температуре, представляющий собой смесь льда и соли и имеющий постоянную температуру плавления.

ГЛАВА 3

ТИПЫ ХОЛОДИЛЬНЫХ МАШИН

3.1. Газовые и вихревые холодильные машины

Холодильной машиной называют комплект оборудования, необходимый для осуществления холодильного цикла.

В зависимости от вида физического процесса, в результате которого получают холод, холодильные машины подразделяют на следующие типы: использующие процесс расширения воздуха (газовые, вихревые); использующие фазовый переход рабочего тела из жидкого в газообразное состояние (компрессионные паровые, абсорбционные, сорбционные, пароэжекторные).

В зависимости от вида потребляемой энергии различают холодильные машины на механической энергии (компрессионные паровые, газовые), теплоиспользующие (пароэжекторные, абсорбционные и сорбционные).

К холодильным машинам можно также отнести воздушные детандерные, использующие процесс расширения воздуха с производством внешней работы, и безмашинные термоэлектрические, потребляющие непосредственно электроэнергию на основе эффекта Пельтье. Холодильные машины подразделяют и по другим типам.

В газовых холодильных машинах холодильными агентами являются газообразные вещества, агрегатное состояние которых не изменяется при совершении цикла, в основном воздух; поэтому их называют воздушными холодильными машинами.

Первые воздушные холодильные машины появились 100 лет назад. Однако тогда они не получили широкого распространения и были вытеснены с рынка парокомпрессионными, так как удельная массовая холодопроизводительность воздуха значительно меньше, чем кипящего холодильного агента в цикле паровой холодильной машины. При использовании воздушных холодильных машин требуется большая массовая подача холодильного агента, поэтому только по мере развития газотурбинной и особенно турбореактивной техники удалось создать воздушные турбохолодильные машины, близкие по экономичности в области относительно низких температур (от -80 до -120°С) к парокомпрессионным. Функциональная схема и идеальный цикл воздушной холодильной машины в S—T-диаграмме изображены на рис. 9.

Воздух в компрессоре адиабатически сжимается от давления Р1 до Р2 (процесс 1—2), нагреваясь при этом от температуры T1 равной температуре охлаждаемого тела То, до Т2. Далее воздух охлаждается в теплообменнике ТО от температуры Т2 до Т3 (процесс 2—3),

Рис. 9. Функциональная схема воздушной холодильной машины и цикл

ее работы: а — схема машины; б — диаграмма работы машины

равной температуре охлаждающей среды Тос, отдавая поглощенную теплоту внешней среде, например воде. После этого воздух адиабатически расширяется в детандере Д от давления Р2 до Р1 (процесс 3—4), совершая полезную работу, и поступает в охлаждаемый объект Об, где нагревается от температуры Т4 до T1 (процесс 4—1), отводя теплоту от охлаждаемого тела, например воздуха. Из охлаждаемого объекта воздух поступает в компрессор, и цикл повторяется.

Если допустить, что воздух является идеальным газом, т.е. Ср = const, и представить для адиабатических процессов сжатия и расширения воздуха отношение температур в виде

T2 / T1 = Т3/Т4 = (Р2/Р1)(n – 1) / n, (26)

где п — показатель адиабаты, холодильный коэффициент цикла:

=Т1 / (Т2 - Т1) = Т4 / (Т3-Т4). (27)

Коэффициент обратимости цикла

h = / обр, (28)

где обр — холодильный коэффициент обратимого цикла Карно.

Цикл воздушной холодильной машины имеет большие необратимые потери, поэтому термодинамически он целесообразен, если машина осуществляет комбинированный цикл, охлаждая и нагревая одновременно.

В воздушных холодильных машинах типа ТХМ, разработанных в нашей стране, охлаждение происходит благодаря расширению воздуха в расширительной машине — детандере с производством внешней полезной работы. Такие машины имеют холодопроизводительность 30 — 60 кВт и более и используются для быстрого замораживания эндокринного сырья (желез внутренней секреции, направляемых на медицинские цели), некоторых видов продуктов растительного происхождения (плодов, овощей, ягод), кулинарных изделий.

Машины вихревого типа представляют собой цилиндрическую трубу, разделенную диафрагмой на холодную и горячую части.

С термодинамической точки зрения процессы, протекающие в вихревой трубе, сводятся к тому, что слои воздуха, вращающиеся вблизи оси, отдают кинетическую энергию остальной (периферийной) массе воздуха и при этом охлаждаются. Другая же часть воздуха воспринимает эту энергию и нагревается в результате трения, на преодоление которого затрачивается значительная часть кинетической энергии.

Термодинамическое совершенство воздушных холодильных машин вихревого типа не превышает нескольких процентов и зависит от использования теплоты потока воздуха, выходящего из горячей части вихревой трубы. Если эта теплота утилизируется, то общая эффективность повышается. Вихревые трубы просты в изготовлении и эксплуатации, компактны и высоконадежны. Однако область их использования ограничена вследствие низкой экономичности термодинамических процессов.

3.2. Компрессионные паровые холодильные машины

Подавляющее большинство действующих холодильных машин — парокомпрессионные, которые в зависимости от типа используемого компрессора подразделяют на поршневые, центробежные, винтовые и ротационные. Для обеспечения требуемых температур кипения и конденсации рабочего тела используют одноступенчатые, многоступенчатые и каскадные компрессионные паровые холодильные машины.

Функциональные схемы паровой одноступенчатой холодильной машины с детандером и дросселем и их циклы, а также принципиальная схема многоступенчатых парокомпрессионных машин и их цикл были рассмотрены выше. Также было дано описание Циклов в парокомпрессионных холодильных машинах.

Для реализации цикла в комплект компрессионной паровой холодильной машины входят компрессор, конденсатор, испаритель, теплообменник, приборы автоматики, пускозащитная электроаппаратура, монтажные трубопроводы и другие элементы.

Наиболее широко распространены компрессионные паровые холодильные машины с поршневыми компрессорами, обладающие наиболее высокими по сравнению с машинами других типов энергетическими коэффициентами, способностью работать при более высоком отношении давлений конденсации и кипения. Однако они менее надежны, чем машины с центробежными и винтовыми компрессорами. Это машины средней холодопроизводительности. Их используют в рассольных системах охлаждения, но можно применять и в системе непосредственного охлаждения, как и машины малой холодопроизводительности.

Холодильные машины с центробежными компрессорами имеют низкую энергетическую эффективность при небольшой холодопроизводительности (менее 700 кВт), поэтому используются при повышенной холодопроизводительности.

Холодильные машины с винтовыми маслозаполненными компрессорами высоконадежны, имеют удовлетворительные энергетические показатели при производительности, превосходящей верхний предел эффективности холодильных машин с поршневыми компрессорами. Несмотря на основной недостаток — наличие металлоемкой масляной системы, холодильные машины с винтовыми компрессорами получили большое распространение.

Холодильные машины с ротационными пластинчатыми компрессорами отличаются простотой устройства, изготовления и эксплуатации, большей уравновешенностью, чем поршневые, так как в них нет деталей, совершающих возвратно-поступательное движение, нечувствительностью компрессора к гидравлическим ударам. Однако они имеют недостатки: значительные потери на трение, повышенный шум. При холодопроизводительности от нескольких сот ватт до нескольких киловатт сравнимы с показателями холодильных машин с поршневыми компрессорами.

3.3. Абсорбционные и сорбционные холодильные машины

Абсорбционные и сорбционные холодильные машины отличаются от компрессионных тем, что в них отвод теплоты от охлаждаемого объекта к окружающей среде осуществляется путем затраты внешней энергии в виде теплоты, а не работы.

В абсорбционных холодильных машинах циркулирует рабочее тело, представляющее собой бинарный раствор веществ, имеющих различные нормальные температуры кипения. Низкокипящее вещество выполняет роль холодильного агента, а высококипящее — абсорбента (поглотителя).

Бинарные растворы, используемые наиболее широко, — это аммиак — вода и вода — бромид лития. Причем аммиак в первом растворе и вода во втором являются холодильными агентами. Водоаммиачные машины используют для получения относительно низких температур (до -70°С), а бромистолитиевые — для более высоких. Теплоиспользующие абсорбционные холодильные машины перспективны с точки зрения экономии топливно-энергетических ресурсов, поскольку позволяют использовать вторичные ресурсы (отходящие газы, отработанный пар, горячую воду), теплоту ТЭЦ в неотопительный период. С точки зрения экологии также есть положительные моменты: эти машины позволяют избежать применения в качестве хладагентов хлорфторуглеводородов, отрицательно воздействующих на озоновый слой атмосферы, а также выбросов машинного масла в окружающую среду.

Однако абсорбционные холодильные машины работают при температуре греющего источника 70 — 180 °С (чаще 155 — 180 °С), поэтому диапазон температур до 70 °С не реализуется и соответственно теплота часто просто сбрасывается в атмосферу. В этом диапазоне могут работать сорбционные холодильные машины, к которым подводится теплота низкого уровня температур, а запасы тепловой энергии в указанном температурном диапазоне огромны.

В сорбционных холодильных машинах используют рабочие смеси, обладающие эффектом не только сорбции, но и полной взаимной растворимости компонентов. Сорбционные холодильные машины (СХМ) не имеют конкурентов в выработке холода от теплоты низкого потенциала, начиная с температуры, превышающей всего на 10 — 15 °С температуру среды, охлаждающей конденсатор. Рабочими веществами таких машин могут быть ацетон (50 %) и пропанбутановая смесь техническая зимняя (50 %), а также водные растворы роданида аммония и др. С помощью СХМ возможно получение холода на уровне -30 °С при тепловом коэффициенте от 5 до 10 % и выше.

Область применения СХМ — бытовые холодильники и кондиционеры, автомобильный транспорт, выбрасывающий в окружающую среду большое количество теплоты на уровне температур выше 70 °С.

В бытовых холодильниках и кондиционерах может быть использована энергия солнечного излучения, полученная с помощью солнечных коллекторов. СХМ, установленные на холодильниках агропромышленного комплекса и торговли, позволяют дополнительно вырабатывать холод за счет использования теплоты перегрева паров хладагента и теплоты охлаждающего масла винтовых компрессоров. Холодопроизводительность СХМ составляет порядка 1 кВт.

3.4. Пароэжекторные холодильные машины

Пароэжекторные холодильные машины относятся к группе теплоиспользующих. В них осуществляются одновременно два цикла: прямой (силовой), в котором теплота превращается в механическую работу, и обратный (холодильный), в котором эта механическая работа используется для получения холода. В качестве рабочих тел в пароэжекторных холодильных машинах могут быть использованы вода, аммиак и хладоны. Однако практически применяют чаще всего пароводяные эжекторные холодильные машины, в которых рабочим телом и одновременно хладоносителем служит вода.

Пароводяные эжекторные холодильные машины работают при температуре кипения выше 0°С. В них охлаждают воду для установок кондиционирования воздуха и производственно-технологических нужд. Холодильный цикл протекает при давлении ниже атмосферного, температура кипения рабочей воды обычно 2 — 15 °С, что соответствует остаточному давлению в испарителе 700 — 1700 Па. Показатель современных пароэжекторных холодильных машин в зависимости от условий работы и конструкции составляет 0,14 — 0,18.

Машины обычно выполняют в виде агрегатов, включающих теплообменные аппараты, эжекторы и внутримашинный трубопровод с запорной, регулирующей и защитной арматурами. Агрегатированные пароэжекторные холодильные машины имеют холодопроизводительность от 200 до 2000 кВт.

ГЛАВА 4

КОМПРЕССОРЫ ХОЛОДИЛЬНЫХ МАШИН

4.1. Поршневые компрессоры

Виды поршневых компрессоров. Поршневые компрессоры подразделяют по холодопроизводительности, виду холодильного агента, области применения, устройству кривошипно-шатунного механизма, конструкции корпуса, расположению цилиндров, направлению движения пара в последних, числу степеней сжатия, степени герметичности и некоторым другим признакам.

По холодопроизводительности поршневые компрессоры подразделяют на малые (Q0 до 12 кВт), средние (Q0 12—120 кВт) и крупные (Q0 более 120 кВт).

По виду холодильного агента различают аммиачные, хладоновые (фреоновые) и универсальные компрессоры.

В зависимости от области применения компрессоры подразделяют на стационарные, транспортные и др.

По устройству кривошипно-шатунного механизма различают компрессоры крейцкопфные, или ползунковые (двойного действия), и бескрейцкопфные (простого действия).

Крейцкопфные компрессоры бывают в основном одноцилиндровые, горизонтальные, сальниковые, непрямоточные (см. рис. 6).

Наиболее распространены бескрейцкопфные открытые компрессоры вертикальные и V-образные, прямоточные и непрямоточные (рис. 10).

Число цилиндров у бескрейцкопфных компрессоров колеблется от 2 до 16. Двухцилиндровые компрессоры, как правило, вертикальные. Если цилиндров больше, применяют различные пространственные схемы их расположения.

Бескрейцкопфные компрессоры разнообразны по конструктивному исполнению.

По конструкции корпуса компрессоры подразделяют на блок-картерные (общая отливка блока с картером) и разъемные (блок цилиндров и картер представляют собой отдельные детали).

Большое распространение получили блок-картерные компрессоры. В цилиндровую часть блок-картера вставляют сменные цилиндровые гильзы. Блок-картерные компрессоры по сравнению с разъемными отличаются большей жесткостью и прочностью при меньшей толщине стенок цилиндров; их изготовление и ремонт проще.

В зависимости от кинематической схемы и расположения оси цилиндров компрессоры делят на прямоточные и непрямоточные; горизонтальные и вертикальные; с угловым расположением цилиндров — V-, W-образные или веерные, крестообразные, звездообразные.

В прямоточном компрессоре всасывающие клапаны располагаются на днище поршня, а нагнетательные — в верхней части цилиндра, в ложной крышке.

В непрямоточных компрессорах клапаны всасывающие и нагнетательные размещаются в верхней части цилиндра — на клапанной доске. При движении поршня вниз давление в цилиндре компрессора становится ниже, чем во всасывающей полости, и пар проходит через вентиль во всасывающую полость, а затем через всасывающий клапан в полость цилиндра. При движении поршня вверх пар сжимается до давления конденсации и через нагнетательный клапан попадает в нагнетательную полость.

По числу степеней сжатия компрессоры бывают одно- и многоступенчатые.

По степени герметичности и числу разъемов компрессоры подразделяют:

на герметичные — со встроенным электродвигателем в запаянном кожухе без разъемов;

бессальниковые — со встроенным электродвигателем, с разъемами и съемными крышками;

открытые, или сальниковые, в которых ведущий вал уплотняется при помощи сальника;

простого действия, в которых сжатие пара осуществляется одной стороной поршня, и двойного действия, в которых обе стороны поршня рабочие.

Герметичные компрессоры — компрессор и электродвигатель заключены в общий герметически закрытый сварной стальной кожух. Электродвигатели устанавливают однофазные и трехфазные асинхронные. Ротор электродвигателя насаживается непосредственно на вал компрессора. Частота вращения вала может быть близка к 50 с-1, что позволяет уменьшить геометрические размеры, габариты и массу компрессора при той же холодопроизводительности. Обмотка электродвигателя охлаждается потоком всасываемого пара холодильного агента, благодаря чему возможно повышение на него нагрузки. Герметичные машины почти бесшумны. Их холодопроизводительность находится в пределах от нескольких сотен ватт до 10 кВт. Герметичные компрессоры изготавливают для трех различных диапазонов температур кипения холодильного агента: С — среднетемпературного от-25 до +10 оС; Н - низкотемпературного от -40 до -25 °С и В — высокотемпературного от -10 до +10 °С.

Компрессоры С используют в торговом холодильном оборудовании и бытовых холодильниках. В бытовых холодильниках применяют в основном одноцилиндровые поршневые непрямоточные герметичные компрессоры с вертикальным цилиндром и горизонтальным валом. Электродвигатели в последнее время используют однофазные асинхронные с пусковой обмоткой и короткозамкнутым ротором, скорость вращения которого, а следовательно, и вала компрессора 50 с-1.

Компрессоры Н применяют в низкотемпературном холодильном оборудовании и небольших морозильных устройствах.

Компрессоры В используют для кондиционеров, охладителей напитков, соков, молока и других устройств.

Бессальниковые компрессоры непрямоточные. Разъемное соединение и съемные крышки обеспечивают доступ к их внутренним частям. Обмотки электродвигателей, как и герметичных компрессоров, охлаждаются всасываемым паром холодильного агента.

Отличительная особенность бессальниковых компрессоров – отсутствие сальников, так как электродвигатель находится на одном валу с компрессором и располагается в его картере. Такая конструкция позволяет уменьшить габариты и практически полностью исключить утечку рабочего тела.

Холодопроизводительность таких компрессоров находится в пределах от нескольких до нескольких десятков киловатт (средние по величине холодопроизводительности компрессоры).

Рис. 10. Бескрейцкопфный непрямоточный VV-образный

одноступенчатый компрессор П220:

а - продольный разрез; б — поперечный разрез; 1 — блок-картер; 2 — гильза Цилиндра; 3— поршень с кольцами; 4— шатун; 5— заборный масляный фильтр; 6 - шестеренчатый затопленный насос; 7— шестерни привода масляного насоса; 8 - коленчатый вал с противовесами; 9 — ложная крышка; 10 — всасывающий клапан; 11 — нагнетательный клапан; 12— сальник уплотнения вала

В сальниковых компрессорах самым уязвимым конструктивным узлом является уплотнение коленчатого вала, через которое наиболее вероятна утечка холодильного агента. Особенно велика опасность утечки в малых хладоновых компрессорах.

По характеру охлаждения блока цилиндров бывают компрессоры с воздушным и водяным охлаждением. Воздушное охлаждение используется в малых холодильных компрессорах, во всех остальных применяют водяное принудительное охлаждение.

Для смазки трущихся деталей используются принудительная, непринудительная или комбинированная системы смазки.

По типу привода различают компрессоры с ременной передачей; непосредственно соединенные с электродвигателем муфтой; с электродвигателем, ротор которого насажен на вал компрессора.

По частоте вращения коленчатого вала компрессоры разделяют на тихоходные — до 500 об/мин и быстроходные — свыше 500 об/мин.

Унифицированные поршневые компрессоры выпускают для хладонов I и II баз, для аммиака и хладонов — III и IV баз, для аммиака — V базы.

Герметичные компрессоры I базы имеют горизонтальное и вертикальное расположения двух или четырех цилиндров.

Компрессоры герметичные и бессальниковые предназначены для хладонов, сальниковые — для аммиака и хладонов. Хладоновые компрессоры I, II и III баз — непрямоточные, IV — прямоточные; аммиачные III и IV баз — прямоточные; аммиачные компрессоры V базы — крейцкопфные непрямоточные с опозитным расположением двух или четырех цилиндров.

Для смазки цилиндров и механизма движения в аммиачных компрессорах используют масла ХА, ХА-30, ХС-40, а в хладоновых - ХФ-12-16, ХФ-22-24, ХФ-22с.

При маркировке унифицированных поршневых компрессоров применяют следующие обозначения: П — поршневой, Ф — хладоновый (фреоновый), А — аммиачный, В — вертикальный, V — V-образный, W — веерообразный, Б — бессальниковый, Г — герметичный, О — опозитный. Цифры после букв означают холодопроизводительность (кВт).

В сальниковых компрессорах марок П14, П20, П28 и др. расположение цилиндров V-, W-, VV-образное.

В бессальниковых компрессорах марок ПБ5, ПБ7 — ПБ220 расположение цилиндров также V-, W-, VV-образное.

Основные конструктивные узлы и детали поршневых компрессоров — рама, картер, блок-картер, цилиндры, коленчатые валы, шатуны, поршни, поршневые кольца, клапаны, сальники.

Картер представляет собой конструктивную основу машины. Картер вертикальных и V-образных компрессоров имеет вид коробки с боковыми окнами, которые закрываются съемными крышками. Крышку со стороны маховика, через которую проходит коленчатый вал компрессора, называют задней, а противоположную ей — передней. Сверху картера крепится блок цилиндров. Многие конструкции вертикальных компрессоров выполняются блок-картерными. В этом случае цилиндры и картеры отливаются в виде единой детали. Блок-картерные компрессоры компактнее, имеют меньше фланцевых соединений, проще и дешевле в производстве.

В каждый цилиндр запрессовывают сменные гильзы, которые в случае износа могут быть заменены новыми. Сменные гильзы уплотняют по верхнему и нижнему поясам резиновыми кольцами. Для охлаждения цилиндров верхнюю часть их боковой поверхности отливают с ребрами (при охлаждении воздухом) или со специальной полостью (при охлаждении водой — водяной рубашкой).

Коленчатые валы по конструкции могут быть кривошипными и эксцентриковыми. Их выполняют штампованными, литыми или цельноковаными из высококачественной углеродистой или легированной стали. Опорой коленчатого вала служат подшипники, расположенные в крышках картера или корпусе.

Чтобы движение поршня было равномерным, на конец коленчатого вала, выступающий из картера, насаживается маховик — шкив большего диаметра с тяжелым ободом. При непосредственном соединении компрессора с электродвигателем надобность в маховике отпадает, его роль выполняет ротор двигателя.

Шатуны передают движение от коленчатого вала к поршням. Они — штампованные стальные двутаврового сечения с разъемной нижней головкой, с вкладышем, залитым баббитом, и неразъемной верхней головкой с бронзовой втулкой.

Нижние головки шатунов, которые охватывают шейки коленчатого вала, стягиваются стальными болтами с зашплинтованными корончатыми гайками. Верхние головки пальцами поршня закрепляются в поршне.

Поршни по конструкции делят на дисковые и тронковые. Дисковые используют в крупных крейцкопфных компрессорах двойного Действия, когда по обе стороны поршня расположены рабочие объемы цилиндра. Тронковые поршни могут быть двух типов: проходные для прямоточных машин, непроходные для непрямоточных.

Конструкция проходных поршней позволяет увеличить проходные сечения всасывающего и нагнетательного клапанов.

Непроходные поршни отличаются простотой конструкции и небольшой массой. Их используют в малых и средних непрямоточных компрессорах. Поршни для герметичных компрессоров делают без поршневых колец. Вместо них на боковой поверхности протачивают неглубокие канавки для сбора и равномерного распределения масла по зеркалу цилиндра.

Всасывающие и нагнетательные клапаны выполняют в компрессоре распределительную функцию. Через всасывающие клапаны происходит засасывание паров холодильного агента из всасывающего трубопровода в цилиндр компрессора, а через нагнетательные — выталкивание сжатых паров в нагнетательный трубопровод. В поршневых холодильных компрессорах клапаны самодействующие, т.е. они открываются и закрываются под действием разности давлений по обе их стороны.

На всасывающие клапаны прямоточных компрессоров, расположенные в днище поршня, помимо давления газа действуют силы инерции. В вертикальном прямоточном компрессоре при движении поршня вверх и достижении им верхней мертвой точки клапанная пластина по инерции стремится продолжить движение вверх, и клапан открывается, в то время как поршень после остановки начинает двигаться вниз. Когда же поршень останавливается в нижней мертвой точке, клапанная пластина по инерции стремится продолжить движение вниз, прижимается к седлу клапана, и он закрывается.

В бескрейцкопфных компрессорах применяют пластинчатые клапаны, получившие свое название потому, что их рабочей запорной деталью служат тонкие (0,8— 1,5 мм) стальные пластины. Пластинчатые клапаны в зависимости от конфигурации и крепления клапанных пластин бывают кольцевыми, полосовыми, язычковыми.

Кольцевые клапаны применяют в средних и крупных компрессорах.

В конструкциях клапанов, закрепленных на поршнях, используют беспружинные кольцевые и полосовые клапаны. Полосовые клапаны называют еще ленточными, поскольку в них отверстия для прохода пара перекрываются упругими пластинами, имеющими форму лент.

Предохранительные клапаны предотвращают аварии при чрезмерном повышении давления нагнетания. При превышении предельной разности давлений нагнетания и всасывания (P = 1,68 МПа) предохранительные клапаны перепускают сжатый пар из полости нагнетания в полость всасывания.

Применяют в основном пружинные самодействующие предохранительные клапаны. Когда разность давлений превышает допустимую, пружина сжимается, клапан открывается и нагнетательная сторона компрессора соединяется с всасывающей.

Сальниками называют специальные устройства для уплотнения подвижных деталей, например валов, штоков, плунжеров, в целях предотвращения утечки жидкостей, пара или газа. Применяют сальники с кольцами трения. Сальники открытых хладоновых компрессоров бывают сильфонного и мембранного типов.

4.2. Ротационные компрессоры

Ротационные компрессоры более уравновешены, чем поршневые, поскольку у них нет кривошипно-шатунного механизма, совершающего возвратно-поступательное движение. Кроме того, они не имеют всасывающих клапанов и могут работать при больших частотах вращения вала. Габариты ротационных компрессоров невелики. Изготавливают их с катящимися, качающимися и вращающимися роторами, последние (пластинчатые компрессоры) — с двумя, четырьмя и более пластинами, с круглым или эллиптическим цилиндром.

Вал ротационных компрессоров расположен эксцентрично по отношению к цилиндру. На вал насажен ротор (поршень) с фрезерованными по всей длине пазами, в которые вставлены асботекстолитовые пластины. При вращении ротора пластины под действием центробежной силы выходят из пазов и прижимаются к поверхности цилиндра, образуя замкнутые полости.

Пар из всасывающего трубопровода захватывается пластинами, отсекается в верхней части цилиндра вращающимся ротором и сжимается. При дальнейшем вращении полость со сжатым паром соединяется с нагнетательным трубопроводом и пар выталкивается.

Ротационные компрессоры используют в основном в установках большой холодопроизводительности в качестве ступеней низкого давления в агрегатах двухступенчатого сжатия. Но выпускают и герметичные компрессоры небольшой холодопроизводительности.

Ротационный герметичный компрессор с катящимся ротором состоит из неподвижного цилиндра и поршня-ротора, вращающегося на эксцентриковой шейке вала. К ротору при помощи пружины прижимается лопасть, разделяющая рабочий объем цилиндра на две части: в одной протекает процесс всасывания, в другой — сжатия и нагнетания.

При работе компрессора пары хладона поступают через всасывающий патрубок в кожух, омывают электродвигатель и охлаждают его, затем через всасывающую трубку всасываются компрессором. Сжатые пары холодильного агента через нагнетательный клапан выталкиваются из цилиндра в глушитель, а из него по трубопроводу подводятся к нагнетательному штуцеру. Холодопроизводительность таких компрессоров от 255 до 640 Вт.

4.3. Винтовые компрессоры

Основу винтовых компрессоров составляют два ротора (оба с зубчато-винтовыми лопастями): ведущий и ведомый, расположенные в корпусе (рис. 11).

Рис. 11. Роторы винтового компрессора:

1 — ведущий ротор с четырьмя зубьями; 2 — ведомый ротор

с шестью впадинами; 3 — синхронизирующие шестерни

Винтовые впадины роторов, проходя мимо всасывающего окна, заполняются газообразным холодильным агентом. При дальнейшем вращении роторов газ сжимается, так как зубья одного ротора входят во впадины другого и при этом уменьшается объем, занимаемый газом. К концу сжатия впадины со сжатым газом объединяются с нагнетательным окном. Винтовое расположение на роторах нескольких впадин обеспечивает непрерывность подачи газа компрессором.

Применяют большей частью маслозаполненные винтовые компрессоры, в рабочее пространство которых подается масло. Это повышает производительность компрессора вследствие уменьшения внутренних перетечек холодильного агента через зазоры между корпусом и роторами и между самими роторами, а также снижения температуры нагнетания холодильного агента.

После прохождения компрессора хладагент направляется в маслоотделитель, в котором отделяется до 95 % масла. Шестеренчатым насосом масло направляется в маслоохладитель, через фильтры снова подается в рабочее пространство компрессора и на смазку подшипников.

Винтовые компрессоры надежны в эксплуатации, их холодопроизводительность можно плавно регулировать с помощью золотникового устройства, изменяющего активную длину винтов, у них отсутствует трение в полости сжатия. Они имеют небольшие габариты и массу по сравнению с поршневыми и даже ротационными компрессорами.

Винтовые компрессоры характеризуются очень низким пределом давления всасывания (5 — 2 кПа), что позволяет широко использовать их в низкотемпературных установках. Частота вращения ведущего ротора у них составляет 50 с-1.

Целесообразно применение аммиачных винтовых компрессоров холодопроизводительно-стью 350—1745 кВт. При более низкой производительности они утрачивают преимущества перед поршневыми по массе и габаритным размерам из-за громоздкости маслосистемы.

4.4. Турбокомпрессоры

Турбокомпрессоры редко используют в пищевой промышленности из-за большой холодопроизводительности и широкого применения аммиака в качестве холодильного агента. По сравнению с поршневыми они обладают рядом преимуществ: отсутствие клапанов, динамическая уравновешенность, высокооборотность и малые габариты. Турбокомпрессоры обычно имеют несколько колес, поэтому являются многоступенчатыми машинами. По принципу работы они подразделяются на осевые и центробежные.

Осевые компрессоры применяют для очень большой холодопроизводительности, центробежные — для холодопроизводительности от 500 до нескольких тысяч киловатт. На валу центробежного компрессора вращаются рабочие колеса с лопатками, передающие кинетическую энергию холодильному агенту, который выбрасывается из колеса в диффузор, где его кинетическая энергия преобразуется в энергию давления. Диффузор выполняется безлопаточным, лопаточным и прямолинейным. Движение пара на рабочем колесе складывается из вращения его вместе с колесом (абсолютное движение) и перемещения вдоль лопаток (относительное движение), что в сумме определяет абсолютную скорость движения пара, а следовательно, его кинетическую энергию. Работа, затрачиваемая на сжатие пара, уменьшается по мере приближения процесса сжатия к изотермическому, поэтому после группы колес применяется промежуточное охлаждение пара в холодильниках.

ГЛАВА 5

ТЕПЛООБМЕННЫЕ АППАРАТЫ ХОЛОДИЛЬНЫХ МАШИН

5.1. Конденсаторы

Различают следующие типы конденсаторов: кожухотрубные горизонтальные, кожухотрубные вертикальные, кожухозмеевиковые, испарительные и воздушные.

Кожухотрубные горизонтальные конденсаторы используют в аммиачных и хладоновых холодильных установках пищевых предприятий. Они имеют цилиндрический стальной кожух, в котором Прямые трубы (стальные или медные) расположены горизонтально, концы их развальцованы в трубных решетках. Охлаждающая вода под напором проходит по этим трубам. На конденсаторе устанавливают предохранительный клапан, указатель уровня холодильного агента, вентиль для выпуска воздуха из межтрубного пространства. Пары хладагента конденсируются в межтрубном пространстве на наружной поверхности труб.

Такие конденсаторы обычно работают в комплекте с водоохлаждающими устройствами.

Кожухотрубные вертикальные конденсаторы используют в крупных аммиачных холодильных установках. Главный их недостаток — сложность равномерного распределения воды по трубам.

Кожухозмеевиковые конденсаторы отличаются от кожухотрубных горизонтальных отсутствием второй трубной решетки, кожух конденсатора выполнен в виде горизонтально расположенного стакана, внутри которого водяные трубки соединены попарно.

Испарительные конденсаторы применяют на пищевых предприятиях. В них теплота от холодильного агента передается через стенку трубы воде, стекающей тонкой пленкой по наружной поверхности труб, и далее воздуху посредством испарения части воды.

Конденсатор представляет собой закрытый корпус. Под конденсатором располагается водяной бак, куда вода сливается самотеком. Из водяного бака циркулирующая вода снова нагнетается насосом в водяной коллектор (оросительную систему). Сверху вентилятором подается поток воздуха, который усиливает испарение воды и служит приемником теплоты водяного пара. Использование этого типа конденсаторов эффективно в районах с сухим и жарким климатом.

Воздушные конденсаторы широко используют в агрегатах, обслуживающих торговое оборудование, бытовых холодильниках, изотермическом транспорте. Применение их позволяет уменьшить расход воды, сократить затраты на сооружение устройств для охлаждения оборотной воды.

Воздушные конденсаторы представляют собой систему трубчатых змеевиков, расположенных в металлическом корпусе. Холодильный агент проходит внутри змеевиков, с наружных оребренных поверхностей которых осуществляется съем теплоты естественной или принудительной конвекцией движения воздуха. Ребра труб змеевиков пластинчатые, но иногда для устранения контактного сопротивления теплопередачи между трубой и ребрами эти конденсаторы изготавливают с литыми ребрами.

5.2. Испарители

Испарители — теплообменные аппараты, предназначенные для охлаждения промежуточного хладоносителя путем теплообмена с кипящим холодильным агентом.

По конструкции кожухотрубный и кожухозмеевиковый испарители подобны горизонтальному кожухотрубному и кожухозмеевиковому конденсаторам. Хладоноситель циркулирует в трубах, а в межтрубном пространстве испарителя кипит холодильный агент.

Испарители изготавливают с закрытой и открытой циркуляцией охлаждаемой жидкости. Испарители с закрытой циркуляцией выполняются кожухотрубными. Охлаждаемая жидкость протекает в них под напором, который создает насос. В испарителях с открытой циркуляцией трубы, по которым протекает кипящий холодильный агент, погружаются в охлаждаемую жидкость, наливаемую в баки.

Испарители с открытой циркуляцией — панельные. В них жидкость перемешивается мешалкой. Панельный испаритель выполнен в виде прямоугольного бака, в который помещаются испарительные секции панельного типа.

Панельные испарители поставляются в комплекте с отделителями жидкости. При применении в качестве хладоносителя ледяной воды панельные испарители можно использовать как испарители-аккумуляторы для сглаживания неравномерности тепловой нагрузки на молочных предприятиях.

5.3. Охлаждающие приборы

Охлаждающие приборы (батареи) подразделяют на приборы непосредственного кипения и с промежуточным хладоносителем (рассольные). Наружная поверхность труб может быть гладкой или оребренной.

Распространены воздухоохладители из оребренных труб или пластин с каналами, внутри которых кипит хладагент или циркулирует хладоноситель. Воздух продувается с помощью вентилятора. Разность температур воздуха и поверхности охлаждения может достигать 12°С.

Воздухоохладители бывают постаментные и подвесные, они компонуются из секций-модулей. Подвесные воздухоохладители обозначаются: ВОП-50, ВОП-75, ВОП-100, ВОП-150, где ВО — воздухоохладитель, П — подвесной, цифры — теплопередающая поверхность (в м2). Производительность ВОП от 5,8 до 17,4 кВт. Для оттаивания инея в них предусмотрены электронагреватели — ТЭНы мощностью от 8,7 до 12 кВт.

Помимо ВОП выпускают воздухоохладители ВОГ-230, в которых воздух перемещается горизонтально осевым вентилятором. Батареи ВОГ-230 выполняют из тех же секций, что и ВОП. Оттаивание происходит с помощью горячих паров аммиака или электронагревателей мощностью 25 кВт.

Подвесные воздухоохладители применяют в холодильных камерах молокозаводов и на мясокомбинатах для охлаждения и замораживания пищевых продуктов.

Для охлаждения камер длительного хранения мороженых грузов используют панельные батареи, представляющие собой стальные листы, к которым приваривают цельнотянутые трубы.

Хладоновые потолочные и пристенные батареи из оребренных красномедных труб применяют в небольших холодильных установках. В бытовых холодильниках, льдогенераторах кубикового льда и некоторых видах торгового холодильного оборудования применяют листотрубные испарители. Их изготавливают электросваркой листов с выштампованными канавками или гидравлической раздачей канавок в плоских сваренных между собой листах.

ГЛАВА 6

ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ ХОЛОДИЛЬНЫХ

МАШИН И УСТАНОВОК

К вспомогательному оборудованию относятся отделители жидкости, маслоотделители, промежуточные сосуды, ресиверы и др. Они обеспечивают стабильность и безопасность работы холодильных установок.

Отделители жидкости предназначены для улавливания капель жидкости, которые содержатся в парожидкостной смеси холодильного агента, поступающего из испарителей. Тем самым они защищают компрессор от опасного режима работы при попадании в цилиндр жидкости вместе с паром холодильного агента, обеспечивают сухой ход компрессора, приближая режим холодильной машины к расчетному. Капли жидкости осаждаются в этих аппаратах вследствие резкого уменьшения скорости и изменения направления движения потока парожидкостной смеси на 90, 180°.

Аммиачные отделители жидкости обозначают 125 Ожг, 150 Ожг, 200 Ожг, 250 Ожм, 300 Ожм (О — отделитель, ж — жидкость, г — условное обозначение, м — с обогревом зоны маслосбора, цифры перед буквами — диаметры входного и выходного паровых патрубков).

Отделители жидкости устанавливают только на панельных испарителях и в некоторых системах охлаждения фруктохранилищ. При использовании охлаждающих систем с принудительной циркуляцией холодильного агента жидкость отделяется в циркуляционном ресивере.

Маслоотделители предназначены для отделения масла, уносимого холодильным агентом из компрессора. Масло увлекается агентом как в виде капель, так и в парообразном состоянии. Уменьшение масляной пленки приводит к повышению эффективности теплообменных аппаратов. Маслоотделители подразделяются на промывные и инерционные.

В промывных маслоотделителях пар проходит через слой жидкого холодильного агента. При этом он охлаждается в результате испарения части жидкости и освобождается от масла на 85 — 90 %.

В инерционных маслоотделителях происходит отделение масляных капель в результате резкого изменения скорости и направления потока, а также действия центробежной силы. Степень отделения масла — до 80 %.

Маслоотделитель представляет собой сварной вертикальный сосуд, заполненный до определенного уровня жидким аммиаком, через который проходят пары аммиака. Очистившись от масла, пары аммиака выводятся из сосуда. Обозначения промывных отделителей: 50 ОММ, 300 ОММ (О — отделитель, М — масло, М — модернизированный, цифры перед буквами означают диаметр условного прохода входного и выходного патрубков).

Промежуточные сосуды используют в аммиачных холодильных установках двухступенчатого сжатия для полного промежуточного охлаждения паров холодильного агента, поступающего из компрессора ступени низкого давления, и для переохлаждения жидкого аммиака в змеевике аппарата перед регулирующим вентилем. Охлаждение паров хладагента осуществляется путем барботирования их через слой жидкого аммиака. Промежуточный сосуд типа ПСз (П — промежуточный, С — сосуд, з — змеевиковый) представляет собой вертикальный сосуд со встроенной теплопередающей поверхностью, выполненной в виде змеевика, который укреплен на днище. Он заполняется жидким аммиаком так, чтобы змеевик был полностью погружен в него. Промежуточный сосуд отделяет также масло после ступени низкого давления. Для периодического слива масла в нем предусмотрен трубопровод с вентилем.

Ресиверы — это герметичные цилиндрические сосуды, служащие емкостью для жидкого холодильного агента. Различают линейные, дренажные, циркуляционные и защитные ресиверы. По конструкции они бывают вертикальные и горизонтальные.

Линейные ресиверы предназначены для компенсации различия в заполнении испарительного оборудования жидкостью при изменении тепловой нагрузки. Они освобождают конденсатор от жидкости и создают равномерный поток жидкого агента к регулирующему вентилю. Их устанавливают между конденсатором и регулирующим вентилем. Постоянно поддерживаемый уровень Жидкого холодильного агента является гидравлическим затвором, который препятствует перетеканию пара высокого давления в испаритель. Линейный ресивер — хороший сборник воздуха и масла.

Дренажные ресиверы служат для слива жидкого холодильного агента из аппаратов и трубопроводов холодильной установки при эксплуатации и ремонте.

Циркуляционные ресиверы используют в насосно-циркуляционных схемах питания испарительных систем жидким холодильным агентом. Они представляют собой резервуар, постоянно содержащий жидкий холодильный агент в количестве, обеспечивающем непрерывную работу циркуляционного насоса, подающего жидкость в испарители. Ресиверы устанавливают на стороне низкого давления ниже отметки, на которой размещается все оборудование испарительной системы. Это обеспечивает свободный слив жидкости из испарителей и отделителей жидкости.

Защитные ресиверы вместе с отделителем жидкости, который устанавливают на всасывающем трубопроводе между испарителями и компрессором, служат для защиты компрессоров от гидравлических ударов. Применяют их в безнасосных системах питания испарителей жидким холодильным агентом.

Горизонтальные ресиверы типа РД (Р — ресивер, Д — дренажный) используют как линейные, дренажные, циркуляционные и защитные; ресиверы РДВ (В — вертикальный) — как циркуляционные и защитные.

Насосы холодильных установок предназначены для циркуляции охлаждающей воды в оборотных системах водоснабжения, промежуточного хладоносителя (рассол или ледяная вода), а также жидкого аммиака в насосно-циркуляционных системах. Для жидкого аммиака применяют специальные аммиачные бессальниковые насосы.

Переохладители в аммиачных машинах необязательны. В виде отдельного аппарата их применяют только на больших холодильных установках, обязательно на тех, которые снабжены оросительными конденсаторами.

Теплообменники для хладоновых машин необходимы не только для переохлаждения жидкого холодильного агента, но и для перегрева парообразного хладона, поступающего из испарителя в компрессор.

Теплообменник представляет собой стальной сварной кожух в виде отрезка трубы с приваренными к ее торцам сферическими донышками. Внутри трубы (кожуха) — змеевик из медной трубки. Концы его выведены из кожуха через отверстия в донышках. Жидкий хладон проходит через теплообменник внутри змеевика, а парообразный — в кожухе, омывая наружную поверхность змеевика. Движение жидкости и пара осуществляется противотоком.

В малых холодильных машинах, применяемых для бытовых холодильников, функцию теплообменника выполняют спаянные между собой на некотором участке трубки: капиллярная, по которой жидкий хладон направляется к испарителю, и отсасывающая, по которой пар холодильного агента проходит в противоположном направлении — от испарителя к компрессору.

ГЛАВА 7

АВТОМАТИЗАЦИЯ, АВТОМАТИЧЕСКОЕ РЕГУЛИРОВАНИЕ И

АГРЕГАТЫ ХОЛОДИЛЬНЫХ МАШИН И УСТАНОВОК

7.1. Автоматизация холодильных установок

Автоматизация холодильных установок предполагает оснащение их автоматическими устройствами (приборами и средствами автоматизации), с помощью которых обеспечиваются безопасная работа и проведение производственного процесса или отдельных операций без непосредственного участия обслуживающего персонала или с частичным его участием.

Объекты автоматизации совместно с автоматическими устройствами образуют системы автоматизации с различными функциями: контроля, сигнализации, защиты, регулирования и управления. Автоматизация повышает экономическую эффективность работы холодильных установок, так как уменьшается численность обслуживающего персонала, снижается расход электроэнергии, воды и других материалов, увеличивается срок службы установок вследствие поддержания автоматическими устройствами оптимального режима их работы. Автоматизация требует капитальных затрат, поэтому проводить ее надо, основываясь на результатах технико-экономического анализа.

Холодильную установку можно автоматизировать частично, полностью или комплексно.

Частичная автоматизация предусматривает обязательную для всех холодильных установок автоматическую защиту, а также контроль, сигнализацию и нередко управление. Обслуживающий персонал регулирует основные параметры (температура и влажность воздуха в камерах, температура кипения и конденсации холодильного агента и т.д.) при отклонении их от заданных значений и нарушении работы оборудования, о чем информируют системы контроля и сигнализации, а некоторые вспомогательные периодические процессы (оттаивание инея с поверхности охлаждающих приборов, удаление масла из системы) выполняются вручную.

Полная автоматизация охватывает все процессы, связанные с поддержанием требуемых параметров в охлаждаемых помещениях и элементах холодильной установки. Обслуживающий персонал может присутствовать лишь периодически. Полностью автоматизируют небольшие по мощности холодильные установки, безотказные и долговечные.

Для крупных промышленных холодильных установок более характерна комплексная автоматизация (автоматические контроль, сигнализация, защита).

Автоматический контроль обеспечивает дистанционное измерение, а иногда и запись параметров, определяющих режим работы оборудования.

Автоматическая сигнализация — извещение с помощью звукового или светового сигнала о достижении заданных величин, тех или иных параметров, включении или выключении элементов, холодильной установки. Автоматическую сигнализацию подразделяют на технологическую, предупредительную и аварийную.

Технологическая сигнализация — световая, информирует о работе компрессоров, насосов, вентиляторов, наличии напряжения в электрических цепях.

Предупредительная сигнализация на защитных, циркуляционных ресиверах сообщает, что величина контролируемого параметра приближается к предельно допустимому значению.

Аварийная сигнализация световым и звуковым сигналами извещает о том, что сработала автоматическая защита.

Автоматическая защита, обеспечивающая безопасность обслуживающего персонала, обязательна для любого производства. Она предотвращает возникновение аварийных ситуаций, выключая отдельные элементы или установку в целом, когда контролируемый параметр достигает предельно допустимого значения.

Надежную защиту в случае возникновения опасной ситуации должна обеспечивать система автоматической защиты (САЗ). В простейшем варианте САЗ состоит из датчика-реле (реле защиты), контролирующего величину параметра и вырабатывающего сигнал при достижении ее предельного значения, и устройства, преобразующего сигнал реле защиты в сигнал остановки, который направляется в систему управления.

На холодильных установках большой мощности САЗ выполняют так, чтобы после срабатывания реле защиты автоматический пуск отказавшего элемента без устранения вызвавшей остановку причины был невозможен. На небольших холодильных установках, например на предприятиях торговли, где авария не может привести к тяжелым последствиям, нет постоянного обслуживания, объект включается автоматически, если величина контролирусмоге параметра возвращается в допустимую область.

Разновидностью защиты можно считать блокировку, когда, например, компрессор может быть включен только если включен хотя бы один водяной насос, подающий воду в конденсатор, и рассольный насос для систем с промежуточным хладоносителем.

Наибольшее число видов защиты имеют компрессоры, поскольку по опыту эксплуатации 75 % всех аварий на холодильных установках происходят именно с ними.

Число параметров, контролируемых САЗ, зависит от типа, мощности компрессора и вида холодильного агента.

Виды защиты компрессоров:

от недопустимого повышения давления нагнетания — предотвращает нарушение плотности соединений или разрушение элементов;

недопустимого понижения давления всасывания — предотвращает повышение нагрузки на сальник компрессора, вспенивание масла в картере, замерзание хладоносителя в испарителе (реле высокого и низкого давления, оснащают практически все компрессоры);

уменьшения разности давлений (до и после насоса) в масляной системе — предотвращает аварийный износ трущихся деталей и заклинивание механизма движения компрессора, реле разности давлений контролирует разность давлений на стороне нагнетания и всасывания масляного насоса;

недопустимого повышения температуры нагнетания — предотвращает нарушение режима смазки цилиндра и аварийный износ трущихся деталей;

повышения температуры обмоток встроенного электродвигателя герметичных и бессальниковых хладоновых компрессоров — предотвращает перегрев обмоток, заклинивание ротора и работу на двух фазах;

гидравлического удара (попадание жидкого холодильного агента в полость сжатия) — предотвращает серьезную аварию поршневого компрессора: нарушение плотности, а иногда и разрушение.

Виды защиты других элементов холодильной установки:

от замерзания хладоносителя — предотвращает разрыв труб испарителя;

переполнения линейного ресивера — предохраняет от снижения эффективности конденсатора в результате заполнения части его объема жидким холодильным агентом;

опорожнения линейного ресивера — предотвращает прорыв газа высокого давления в испарительную систему и опасность гидравлического удара.

Предотвращение аварийной ситуации обеспечивает защита от недопустимой концентрации аммиака в помещении, что может вызвать пожар и взрыв. Концентрация аммиака (максимум 1,5 г/м3, или 0,021 % по объему) в воздухе контролируется газоанализатором.

7.2. Автоматическое регулирование и управление

Системы автоматического регулирования и управления позволяют осуществлять производственный процесс без обслуживающего персонала.

Автоматическое регулирование обеспечивает поддержание в определенных пределах параметров, характеризующих работоспособность холодильной установки.

В холодильной установке с одной испарительной системой достаточно регулировать температуру и влажность воздуха в охлаждаемой камере и перегрев пара, всасываемого в компрессор.

Регулирование перегрева пара, выходящего из испарителя, обеспечивает эффективность передачи теплоты в испарителе и безопасность работы компрессора. Автоматическое регулирование перегрева пара осуществляется путем плавного изменения подачи холодильного агента в испаритель с помощью ТРВ — терморегулирующего вентиля (рис. 12).

ТРВ устанавливают на трубопроводе, по которому жидкий холодильный агент поступает в испаритель. Чувствительный элемент (датчик) ТРВ размещают на трубопроводе, по которому отводится пар из испарителя. Если испаритель заполнен жидким холодильным агентом, то из него выходит насыщенный пар, температура которого равна температуре кипения. Регулирующий орган ТРВ закрывается. Если из испарителя выходит пар, перегрев которого превышает установку ТРВ, то регулирующий орган ТРВ должен быть открыт настолько, чтобы площадь его проходного сечения соответствовала допустимой величине перегрева.

Рис. 12. Схема регулирования перегрева пара с помощью ТРВ:

1 - датчик; 2 - термодинамическая система; 3 - регулирующий орган;

4 — камера; 5 — испаритель

Регулирование температуры охлаждаемого объекта осуществляют путем изменения производительности холодильной установки, в первую очередь испарителя и компрессора. При наличии одного объекта изменяют холодопроизводительность компрессора. В простейшем случае регулирование осуществляют ступенчато путем пуска и остановки поршневых компрессоров. В поршневых компрессорах последних модификаций имеется устройство для ступенчатого изменения производительности посредством отключения цилиндров.

Производительность поршневых компрессоров можно регулировать плавным изменением частоты вращения вала компрессора, дросселированием всасываемого в компрессор пара, перепуском пара со стороны нагнетания на линию всасывания, перепуском пара из цилиндра в полость всасывания. Производительность винтовых компрессоров можно изменять практически плавно.

Специальный золотник, встроенный в компрессор, при перемещении уменьшает или увеличивает зону сжатия холодильного агента винтами и тем самым изменяет зависящую от зоны производительность. На рис. 13 приведены схемы регулирования температуры воздуха в камере с помощью реле температуры и давления.

Рис. 13. Схема регулирования температуры воздуха в камере с помощью

реле температуры (а) и давления (б):

1 — датчик; 2 — реле; 3 — магнитный пускатель; 4 — электродвигатель;

5 — компрессор

Датчик 1 реле температуры 2 (см. рис. 13, а) ощущает изменение температуры воздуха, датчик 1 реле давления 2 (рис. 13, б) воспринимает давление кипения, и реле заданной установки дает команду магнитному пускателю 3 в зависимости от ситуации на пуск или остановку электродвигателя 4 компрессора 5.

Реле давления обеспечивает меньшую точность регулирования и применяется в некоторых типах торгового холодильного оборудования, когда продукты хранят непродолжительное время и не требуется высокой точности поддержания температуры.

Циклической работе компрессора соответствует периодическое изменение температуры кипения, конденсации холодильного агента и воздуха в помещении.

В установках с несколькими охлаждаемыми объектами, подключенными к испарительной системе с одним или несколькими компрессорами, температура воздуха в камере и перегрев пара, выходящего из испарителя, регулируются с помощью реле температуры или реле давления, изменяющих холодопроизводительность испарителя (см. рис. 12). По мере уменьшения теплопритока в охлаждаемых объектах будут выключаться реле температуры и возникает необходимость изменять производительность компрессоров. На небольших холодильных установках система автоматического управления выключает один из компрессоров или компрессор, если он один, и включает его при увеличении теплопритоков.

Регулирование влажности воздуха в камере возможно путем изменения влагопритока и влагоотвода. Влагоотвод осуществляется вследствие конденсации водяного пара из воздуха на поверхности испарителя. При уменьшении влажности воздуха, что устанавливается специальными приборами, увеличивается влагоприток путем подачи влажного воздуха, водяного пара или воды в распыленном состоянии.

Автоматическое управление обеспечивает выполнение ряда запрограммированных операций по сигналу. Например, при пуске поршневого компрессора автоматически отжимаются пластины всасывающих клапанов, открываются соленоидные вентили на трубопроводах подачи воды для охлаждения компрессора и холодильного агента в испарителе.

7.3. Агрегаты холодильных машин и установок

Агрегатом называют конструктивное объединение нескольких или всех элементов холодильной машины. Агрегаты подразделяются:

на компрессорные (тип К) — компрессор объединяется с электродвигателем, электропусковой аппаратурой и приборами автоматики;

компрессорно-конденсаторные (тип АК) — компрессор, конденсатор, электродвигатель и приборы автоматики смонтированы на одной станине;

аппаратные:

испарительно-регулирующие (тип АИР) — испаритель, ресивер, регулирующая станция и приборы автоматики;

испарительно-конденсаторные (тип АИК) — испаритель, конденсатор, регулирующая станция с приборами автоматики;

комплексные — объединяющие все элементы машины — компрессор, конденсатор, испаритель и весь комплекс автоматических регулирующих приборов и электропривод.

Холодильные машины могут компоноваться из отдельных агрегатов, например компрессорно-конденсаторного (АК) и испарительно-регулирующего (АИР).

Агрегаты одноступенчатого сжатия комплектуются поршневыми компрессорами.

Агрегаты двухступенчатого сжатия следует применять при температуре кипения холодильного агента -30 0С и ниже, когда отношение давлений Рк/Р0 9.

Двухступенчатое сжатие может осуществляться следующими способами:

одним компрессором, часть цилиндров которого работает как ступень низкого давления, а остальные — как ступень высокого давления;

агрегатами двухступенчатого сжатия, скомпонованными как из компрессора низкого давления, так и из компрессора высокого давления.

В качестве ступени низкого давления в двухступенчатых агрегатах используют ротационные или винтовые компрессорные агрегаты, высокого — поршневые компрессорные агрегаты. В комплект поставки агрегата входит также промежуточный сосуд с щитом приборов.

ГЛАВА 8

ОХЛАЖДАЕМЫЕ СООРУЖЕНИЯ И ХОЛОДИЛЬНОЕ ОБОРУДОВАНИЕ

8.1. Классификация холодильников для пищевых продуктов

Охлаждаемые сооружения, или холодильники, — это промышленные специально оборудованные здания с холодильной компрессорной установкой, обеспечивающей в них температурно-влажностный режим, соответствующий технологическим нормам хранения или производства пищевых продуктов.

В холодильниках поддерживают пониженную температуру воздуха (от +4 до -30 °С) и повышенную относительную влажность (80 — 95 %). Для создания и поддержания таких параметров их сооружают без окон, они имеют мощную тепловую изоляцию кровли, наружных и внутренних ограждений, дверей, оснащаются оборудованием для охлаждения помещений и устройствами для предотвращения промерзания грунта в основании здания.

Классификация холодильников по назначению. По назначению различают следующие типы холодильников: заготовительные, производственные, распределительные, базисные, для хранения овощей и фруктов, продовольственных баз, портовые, перевалочные, предприятий розничной торговли и общественного питания, смешанного назначения.

Заготовительные холодильники сооружают в районах заготовок скоропортящихся пищевых продуктов. Они предназначены для первоначальной холодильной обработки, кратковременного хранения и подготовки заготавливаемых продуктов к транспортировке на торговые предприятия или распределительные холодильники и холодильники других типов.

Производственные холодильники — составная часть пищевых предприятий (мясокомбинатов, рыбокомбинатов, консервных, молочных заводов и др.). Они осуществляют холодоснабжение технологических процессов производства. Их используют для охлаждения, замораживания и хранения сырья и готовой продукции.

Распределительные холодильники предназначены для создания и хранения резервных, сезонных, текущих и страховых запасов скоропортящегося сырья и готовой продукции, обеспечивающих ритмичность производства пищевых отраслей и равномерное снабжение пищевыми продуктами населения в течение года.

Распределительные холодильники могут быть универсальными или специализированными в зависимости от номенклатуры сохраняемых грузов. В состав распределительных холодильников, особенно вместимостью от 7000 до 20 000 т, могут входить цехи по выработке мороженого или быстрозамороженных пищевых продуктов (ягод и т.д.), сухого и водного льда, фасовке масла, изготовлению полуфабрикатов. Такие холодильники называются хладокомбинатами.

Базисные холодильники предназначены для длительного хранения резервов скоропортящихся продуктов (госрезерв). Эти холодильники сооружают в местах, которые удалены от населенных пунктов и надежно защищены.

Холодильники для хранения овощей и фруктов могут быть самостоятельными предприятиями либо входить в состав плодоовощных и продовольственных баз. Они располагаются в сельской местности, играя роль заготовительных, или в местах потребления (в городах, поселках).

Холодильники продовольственных баз предназначены для обслуживания торговой сети небольших городов. В них поступают пищевые продукты с производственных и распределительных холодильников.

Портовые холодильники используют для хранения пищевых продуктов, перевозимых водным транспортом. В них осуществляется перевалка пищевых продуктов с судов-рефрижераторов на железнодорожный и автомобильный транспорт и наоборот, поэтому их относят к группе транспортно-экспедиционных.

Перевалочные холодильники предназначены для кратковременного хранения грузов при передаче их с одного вида транспорта на другой, например с железнодорожного на автомобильный и наоборот.

Холодильники предприятий розничной торговли и общественного питания предназначены для хранения запасов продуктов, которые реализуются предприятиями в течение нескольких дней.

Холодильники смешанного назначения выполняют несколько функций. Например, производственные и портовые холодильники в крупных городах могут осуществлять одновременно функции распределительных. А портовые холодильники в рыбных портах могут выполнять роль производственных холодильников рыбокомбинатов.

Классификация холодильников по грузовместимости. По грузовместимости холодильники подразделяют на мелкие (до 100 т), малые (до 300 т), средние (до 500 т), крупные (до 10 000 т) и сверхкрупные (свыше 10 000 т).

Грузовместимость (емкость) холодильников выражают в тоннах условного груза. За условный груз принимают мясо в полутушах, имеющее при укладке на пол в штабель объемную массу 0,35 т/м3 или при размещении на подвесных путях загрузку 0,25 т на 1 м пути (исключая распределительные пути и стрелки). В зависимости от характера груза, его упаковки и укладки расчетная объемная масса груза может быть больше или меньше указанной. Условную грузовместимость холодильника определяют по формуле

Ех = Ек.о + Ек.з + Ек.п,

где Ек.о и Ек.з — условные грузовместимости всех камер хранения соответственно охлажденных и замороженных грузов, т; Ек.п — условная грузовместимость всех камер хранения охлажденного мяса, оборудованных подвесными путями, т;

Ек.о = 0,35 Vг.о; Ек.з = 0,35 Vг.з; Ек.п = 0,25L,

где Vг.о, Vг.з – грузовой объем камер хранения соответственно охлажденных и замороженных грузов, м3; L — грузовая длина подвесных путей, м.

Условную грузовместимость можно перевести в фактическую (для конкретного груза) путем ее деления на коэффициент пересчета. Так, коэффициент пересчета, например, для яиц в картонных коробках принимают равным 1,35, для сливочного масла в картонных ящиках — 0,44.

При определении грузовместимости холодильника не учитывают камеры охлаждения и замораживания, охлаждаемые помещения, не предназначенные для хранения продуктов (экспедиции, накопительные камеры, загрузочные и разгрузочные помещения, льдохранилища), а также неохлаждаемые помещения (подсобные помещения, коридоры, вестибюли, лифтовые шахты и лестничные клетки).

Охлаждаемый строительный объем камеры холодильника, м3, определяют по формуле

Vc = FH,

где F — площадь пола камеры, м2; Н — высота камеры от пола до потолка, м.

Грузовой объем камеры Vг, меньше строительного:

Vг = Fг Hг < Vc,

где Fг — площадь пола камеры, на который уложен груз, м2; Нг — грузовая высота помещения, м;

Fг = F - f,

где f — общая площадь пола, занятая колоннами, проходами и проездами, холодильным оборудованием, м2;

Hг = H – h,

где h — расстояние от верха штабеля до потолка или балок, приборов охлаждения и воздушных каналов (0,2 — 0,3 м).

Грузовместимость распределительных холодильников устанавливается на основе годового грузооборота. Имеющиеся в нашей стране распределительные холодильники рассчитаны на кратность грузооборота 4 —6 в год.

На холодильнике мясокомбинатов вместимость камер для хранения замороженного мяса должна соответствовать 40 —60-сменной производительности комбината по выработке мяса, а камер хранения охлажденного мяса — двухсуточному производственному запасу. Грузовместимость холодильника при городском молочном заводе принимается равной 10— 15-сменному объему производства продукции, подлежащей хранению.

Холодильники грузовместимостью до 700 т относятся к I классу, свыше 700 т — ко II классу капитальности здания со сроком эксплуатации 50— 100 лет, от 250 до 700 т — к III классу со сроком эксплуатации 25 — 50 лет, менее 250 т — к IV классу со сроком эксплуатации 5 — 25 лет.

Основные несущие конструкции зданий II и III классов выполняются из железобетона или стали.

Здания холодильников — одноэтажные и многоэтажные; иногда в них устраивают подвальный этаж.

В одноэтажных холодильниках, где нет необходимости поэтажного вертикального перемещения грузов, появляется возможность увеличения пролетов несущих конструкций здания до 24 — 30 м (по сравнению с сеткой колонн 6 · 6 м в многоэтажных холодильниках), в два-три раза полезной нагрузки на полы вследствие их расположения на грунте, что позволяет складировать грузы на большую высоту (10 — 20 м). Однако одноэтажные холодильники отличаются повышенными по сравнению с многоэтажными теплопритоками через наружные ограждения (на 20 — 40 %), особенно через кровлю, поверхность которой может составлять до 70 % всей поверхности их наружных ограждений.

Для многоэтажных холодильников проще решается вопрос защиты грунта в основании здания от промерзания. Они занимают меньшую площадь, теплопритоки через кровлю в общем балансе теплопоступлений в них меньше, чем в одноэтажных.

Объемно-планировочное решение и число холодильных камер того или иного назначения (структура грузовместимости) должны позволять внедрять передовую технологию холодильной обработки и хранения пищевых продуктов, организовывать рациональные грузопотоки в здании, добиваться высокого уровня механизации погрузочно-разгрузочных и транспортно-складских работ, минимальных теплопритоков и расхода холода.

В России холодильники грузовместимостью свыше 4000 т оснащены в основном камерами грузовместимостью более 400 т (свыше 90 %). Грузовместимость камер хранения замороженных продуктов (-20 °С) распределительных холодильников составляет 50 — 70%, камер хранения охлажденных продуктов (+4...-3°С) — 20 — 35%, универсальных (0...-20 °С) — 10—15%, камер замораживания (-30°С) — 0,5—1 %. Размеры камер различны. Например, в одноэтажных холодильниках камеры для хранения замороженных продуктов имеют площадь 300 — 600 м2, а камеры для хранения охлажденных продуктов — до 300 м2. В многоэтажных холодильниках площадь камер больше — до 1000 м2.

Камеры с одинаковым температурным режимом формируют блоки (отсеки) по горизонтали (на этажах) и вертикали (в здании). В подвале располагают камеры с температурой не ниже -3 0С, чтобы не промерзал грунт под полом.

Многоэтажные холодильники строят шириной до 40 м, одноэтажные — 24 — 72 м. Длина холодильника определяется в основном фронтом погрузочно-разгрузочных работ, т.е. длиной железнодорожной и автомобильной платформ, которая зависит от вместимости холодильника и грузооборота. Для холодильников вместимостью свыше 3000 т длина железнодорожной платформы должна быть не менее 120 м, т.е. достаточной для разгрузки 5-вагонной рефрижераторной секции.

Для охлаждения мяса используют до 3 камер, для замораживания — 5 - 7, для хранения охлажденного мяса — 1 - 2 (площадью 200 — 300 м2), замороженного мяса — 3 - 4 (площадью 300 — 1000 м2). В зависимости от необходимости для холодильной обработки и хранения используют универсальные камеры (от 1 до 3).

С утверждением в нашей стране рыночных отношений изменились предусмотренные в проектах условия работы холодильных предприятий, в первую очередь распределительных холодильников, спроектированных и построенных в период планово-распределительной экономики и предназначенных для единовременного длительного хранения пищевых продуктов в больших количествах.

В связи с ростом грузооборота, вызванным сокращением сроков хранения грузов, неритмичным их поступлением, малыми партиями грузов, использование имеющихся емкостей холодильников не превышает 25 — 35 %, в то время как раньше оно доходило до 100 %. Появилась необходимость в камерах небольшой вместимости, которые могли бы арендовать мелкие торговые фирмы. Необходима перепланировка существующих холодильных камер, что позволит повысить степень загрузки холодильников, снизить себестоимость грузооборота, увеличить прибыль.

Создание холодильных камер вместимостью 100 т на базе холодильных вместимостей имеющихся распределительных холодильников позволяет увеличить количество охлаждаемых объемов и эффективность их использования.

На рис. 14 представлена схема реструктуризированной холодильной камеры.

Рис. 14. Реструктуризированная холодильная камера:

1 — теплоизоляционное ограждение; 2, 9 — боковые ограждения; 3 — воздухоохладитель;

4 — передвижная перегородка; 5— пристенные батареи; 6— монорельсовые пути;

7 — двери; 8 — уплотнитель из эластичного материала; 10 — автономные отсеки

При создании новых холодильников рационально компоновать их в виде модулей различной грузовместимости, приспособленных как для хладообработки грузов, так и для их хранения.

В качестве примера на рис. 15 приведена планировка модуля холодильной камеры для охлаждения, замораживания и хранения полутуш производительностью 6 т/сут хладообработки и 80 т хранения.

Такие модули могут быть использованы и на действующих производственных и распределительных холодильниках при поступлении малых партий мяса для охлаждения и замораживания туш и последующего их хранения в холодильных камерах, а также для хранения мяса при малых сроках реализации. Эти модули могут устанавливаться и на удаленных территориях, где не развиты транспортные коммуникации, для обеспечения снабжения местного населения.

Приведем технические характеристики холодильных модулей производительностью по замораживанию 1; 3 и 6 т мяса в сутки (табл. 1).

В отличие от существующих холодильников, каркасы которых выполняются из сборных железобетонных конструкций с многослойными ограждающими стенами из кирпича или железобетонных панелей с тепловой изоляцией, каркас модулей выполняется из металлических рам, профильного железа и трубных стоек, а стены — из теплоизолированных пенополиуретаном панелей типа «сэндвич». Такая конструкция позволяет транспортировать модуль в разобранном виде по железной дороге и автомобильным транспортом.

Холодоснабжение обеспечивают 4 холодильные машины с воздушным охлаждением конденсаторов, позволяющие регулировать, температуру путем отключения отдельных агрегатов в зависимости от загрузки камер и наружной температуры. Максимальная потребляемая мощность при температуре в камерах -3°С 1,2 кВт.

Таблица 1

Технические характеристики холодильных модулей

Показатель

Производительность модулей

1/15

3/40

6/80 (тип I)

6/80 (тип II)

Габаритные размеры, мм

7640х3240х3800

9850х4200х5040

11700х8000х5040

9850х8000х5040

Тип холодильных машин и их число

МММ 6-2-4; 2

МВБ 6-2-4; 2

МКВ 40-7-2; 1

МВВ6-2-4; 4

Суммарная установленная мощность, кВт

11

11

32

22

Примечание. В числителе приведено значение производительности модулей при замораживании в т/сут, в знаменателе — при хранении в т.

Рис. 15. Планировка модуля холодильной камеры:

1 — камера охлаждения на 3 подвесных пути; 2 — камера замораживания на 3 подвесных пути; 3 — платформа с навесом; 4 — моноблочные холодильные машины; 5 — легкое металлическое укрытие; 6 — откатные утепленные двери; 7 — испарительные батареи; 8 — подвесные пути; 9 - стеллажи для субпродуктов

8.2. Охлаждающие среды, их свойства и параметры

Охлаждающей средой называется среда с более низкой, чем у продукта, температурой, при контакте с которой происходит теплообмен и снижается температура продукта. Возможно охлаждение и без непосредственного контакта со средой, когда продукт находится в упаковке.

К охлаждающим средам предъявляют ряд требований. Они не должны ухудшать товарный вид продуктов, иметь запах, быть токсичными, оказывать химическое воздействие на продукты и оборудование.

Охлаждающая среда с физической точки зрения может быть газообразной, жидкой, твердой и смешанной.

Газообразная охлаждающая среда. В холодильной обработке и хранении продовольственных товаров распространение получила воздушная среда как наиболее безопасная, технологичная и экономичная.

В комбинации с воздухом в качестве газовой охлаждающей среды на практике применяют также диоксид углерода, азот, модифицированную и регулируемую газовую среду.

Атмосферный воздух— это базовая смесь сухого воздуха и водяных паров. В состав сухого воздуха входят азот (78 %), кислород (21 %), углекислый газ (0,02 — 0,03%), а также аргон, неон, гелий, водород. Количество водяного пара, содержащегося в 1 м3 воздуха, может колебаться от долей грамма до нескольких десятков граммов, что зависит от его температуры. Водяной пар в 1,6 раза легче воздуха.

Основными физическими величинами, характеризующими воздух как охлаждающую среду, являются температура, относительная влажность, парциальное давление насыщенных паров, скорость движения воздуха.

Температура — термодинамическая величина, характеризующая тепловое состояние тела и определяющая степень его нагретости. Прямо пропорциональна кинетической энергии теплового движения молекул.

Относительная влажность воздуха характеризует степень его насыщения водяными парами и измеряется как отношение количества водяного пара, содержащегося в 1 м3 воздуха, к максимальному количеству водяного пара, которое может содержаться в этом объеме при той же температуре. Относительную влажность выражают в процентах или относительных единицах.

Большинство продуктов животного и растительного происхождения содержит значительное количество воды, причем до 90 % ее находится в свободном виде в межклеточных пространствах и в составе ткани в виде мельчайших капель. Такая вода легко удаляется из продукта и так же легко поглощается им, поэтому в камерах холодильной обработки и хранения воздух имеет высокую относительную влажность. Она устанавливается в зависимости от соотношения влагопритоков от продуктов, через ограждения, дверные проемы и влагоотвода (конденсации) на охлаждающих приборах.

С повышением температуры воздуха увеличивается его влагоудерживающая способность. Поскольку вне камеры температуры обычно выше, то содержание влаги и парциальное давление также более высокие. Под действием разности парциальных давлений поток влаги через ограждающие конструкции направлен внутрь камер, а холодный воздух, содержащий меньшее количество водяных паров, — наружу. Соотношение количества влаги, поступившей в камеры вместе с теплым воздухом и ушедшей с холодным, определяет величину тепло- и влагопритока.

При естественных условиях парциальное давление насыщенных паров над поверхностью продуктов, как правило, выше, чем в воздухе холодильной камеры, что вызывает перенос влаги от продукта к воздуху и потерю массы продукта (усушку).

Перенос влаги вследствие испарения зависит и от скорости движения воздуха. При контакте с приборами охлаждения воздух, насыщенный водяными парами, отдает часть влаги, которая оседает на них в виде капель или инея. Процесс этот носит постоянный характер. Соотношение между количеством влаги, поступившей к воздуху в камере и отданной воздухом теплоотводящим охлаждающим поверхностям, определяет установившееся значение относительной влажности воздуха в камере.

Масса испарившейся влаги G, кг, может быть определена по разности парциальных давлений у поверхности продукта и в окружающей среде:

G = (P – P') F,

где — коэффициент испарения, кг/(м2·Па·с); Р — парциальное давление насыщенного пара у поверхности продукта, Па; Р' — парциальное давление насыщенного пара в окружающей среде, Па; — относительная влажность воздуха в холодильной камере; F — площадь испаряющейся поверхности, м2; — продолжительность процесса испарения, с.

В камерах длительного хранения продуктов поддерживают оптимальное значение относительной влажности путем автоматического регулирования количества водяного пара, подаваемого в камеру.

Газообразный диоксид углерода может применяться при всех методах холодильной обработки, а также в сочетании с другими методами консервирования.

При атмосферном давлении диоксид углерода тяжелее воздуха, он имеет меньшую удельную теплоемкость — соответственно 0,837 и 1,0006 кДж/(кг·К) и коэффициент теплопроводности соответственно 0,0137 и 0,0242 Вт/(м·К). Плотность сухого льда 1,4—1,5 кг/дм3, а объемная холодопроизводительность — в три раза выше, чем водяного. При помощи диоксида углерода можно получить широкий диапазон температур, а в смеси с эфиром до -100°С.

На диаграмме равновесия фаз диоксида углерода (рис. 16) видны три линии, выходящие из одной точки а, называемой тройной. При параметрах, соответствующих этой точке (Р = 5,28 • 10-5 Па, t= -56,6 °С), диоксид углерода может находиться сразу в трех состояниях, а ниже 5,28 · 10-5 Па — только в твердом и газообразном. Это означает, что если к твердому диоксиду углерода подвести теплоту при давлении, меньшем указанного, то он перейдет в газообразное состояние, минуя жидкую фазу (сублимация). При дросселировании диоксида углерода с давления 2—3 МПа до атмосферного можно получить струю газообразной и мелкодисперсной (в виде снега) смеси температурой -79 °С. При разбрызгивании ее в камере и на продукты дополнительно создается сильная циркуляция и за счет испарительного эффекта отводится теплота, что способствует ускорению охлаждения. Диоксид углерода тормозит развитие микроорганизмов, что способствует созданию консервирующего эффекта при хранении продуктов. Степень его воздействия зависит от концентрации, температуры среды и вида микроорганизмов.

Рис. 16. Диаграмма равновесия фаз диоксида углерода:

1 — парообразная; 2 — твердая; 3 — жидкая; а — тройная точка

Холодильное хранение продуктов в сочетании с диоксидом углерода задерживает развитие плесневых грибов, бактерий, а эффективность процесса хранения определяется его температурой. Консервирующее действие диоксида углерода усиливает поваренная соль. Кроме того, он обладает хорошей растворимостью в жирах и продуктах с высоким содержанием жира, где находится в свободном состоянии, а при перемещении продукта в обычную среду легко выделяется. Растворяясь в жире, диоксид углерода вытесняет из него кислород, что способствует замедлению окисления жира при длительном хранении.

Перспективно применение диоксида углерода для замораживания мяса в полутушах, охлаждения и замораживания мяса после обвалки в парном виде, охлаждения и замораживания мяса птицы, замораживания полуфабрикатов и формования фаршевых изделий, упаковки продуктов в среде диоксида углерода, охлаждения транспортных средств, реализации мороженого и т.д.

Газообразный азот для охлаждения и замораживания продуктов получают из жидкого азота, который хранится в специальных резервуарах при давлении несколько выше атмосферного. Жидкий азот имеет температуру кипения -195,8 °С и в газообразном виде позволяет понижать температуру в охлаждаемом объеме очень быстро и в широком диапазоне. Поскольку воздух на 78 % состоит из азота, физические свойства этих газов различаются мало. Так, азот имеет несколько меньшие плотность и коэффициент теплопроводности, а теплоемкость выше. Теплота фазового превращения примерно в три раза ниже, чем у диоксида углерода. При охлаждении продуктов средний расход газообразного азота составляет 1 — 1,2 кг на 1 кг продукта, а с учетом сравнительно высокой стоимости его применяют для хранения особо ценных Продовольственных товаров (либо при отсутствии энергии). В тоже время его применение достаточно эффективно при предварительном охлаждении плодов и транспортировании безмашинным холодильным транспортом. При охлаждении, транспортировании I и хранении продуктов принимают меры для предотвращения подмораживания. С этой целью газ низкой температуры в специальном резервуаре перемешивают с газом из охлаждаемого помещения, понижая его температуру до необходимой. При использовании газообразного азота, так же как и диоксида углерода, резко сокращается содержание кислорода, что тормозит развитие микроорганизмов и окислительные процессы.

Жидкая охлаждающая среда. В качестве жидких охлаждающих сред для охлаждения продуктов используют ледяную воду и слабые солевые растворы, а для замораживания — водные растворы солей высокой концентрации, гликоли, жидкие азот, диоксид углерода и воздух, хладоны и т.д.

Жидкие среды обладают большей теплопроводностью и теплоемкостью, чем газообразные, поэтому при их применении существенно сокращается продолжительность холодильной обработки продуктов.

Для охлаждения продуктов до температуры, близкой к 0°С, применяют чистую ледяную воду. Охлаждают продукты методами погружения или орошения. Эти способы достаточно эффективны для охлаждения птицы, рыбы, плодов.

Более низкие температуры можно получить при использовании слабых солевых растворов — морской воды и слабых растворов хлорида натрия, магния, кальция. Температура замерзания морской воды в зависимости от содержания в ней солей колеблется от -1,5 до -3 °С. Лучшие результаты дает добавление льда в холодную воду.

Продолжительность охлаждения в холодной воде зависит от вида и объема продукта, температуры воды, скорости ее циркуляции и составляет от нескольких минут до нескольких часов.

Для замораживания продуктов применяют водные растворы солей высокой концентрации. При повышении концентрации соли температура их замерзания понижается. Самая низкая температура их замерзания называется криогидратной, а соответствующая концентрация соли — эвтектической. Такое состояние является следствием термодинамического равновесия трех фаз — раствора, соли и льда. С дальнейшим повышением содержания соли в смеси температура плавления не понижается, а повышается.

На практике применяют водные растворы солей хлорида натрия, магния и кальция, которые при эвтектической концентрации имеют минимальную температуру замерзания — соответственно -21,2, -33,6 и -55 °С. Ограниченно используют также растворы сульфата натрия, цинка и хлорида калия, криогидратная температура которых составляет соответственно -1,2, -6,5 и -11,1 °С.

Хлорид натрия дешев, обладает высокой теплопроводностью, но имеет большую коррозионную способность, при замораживании неупакованных продуктов частично их просаливает; к тому же он весьма токсичен, что ограничивает применение растворов этих солей. Как правило, их используют в закрытых системах охлаждения, которые меньше подвержены коррозии благодаря более низкому содержанию кислорода и применению специальных добавок — пассиваторов (силикат натрия, хромовая смесь и др.), уменьшающих коррозию. Наибольшее применение они находят в безмашинных способах охлаждения холодоаккумуляторами с эвтектическим раствором (эвтектические плиты) на холодильном транспорте, а также при рассольном охлаждении в старых системах охлаждения больших холодильников.

Гликоли — жидкости, водные растворы которых имеют низкую температуру замерзания. Гликоли менее агрессивны по отношению к металлам, но более вязки и менее теплопроводны. Этиленгликоль слабо ядовит, без запаха, смешивается с водой в любых соотношениях, температура замерзания чистого этиленгликоля -17,5°С, а его 70%-ного раствора в воде -67,2°С. Пропиленгликоль в водных растворах не взаимодействует с металлами, нетоксичен. Эти хладоносители очень эффективны для быстрого замораживания продуктов небольшой массы в упакованном виде.

Для замораживания продуктов до -40 °С можно использовать также дихлорметан, представляющий собой бесцветную жидкость, почти нерастворимую в воде, с температурой замерзания -6°С. К его недостаткам относятся небольшая теплоемкость и горючесть.

Жидкий азот применяют для замораживания особо ценных продуктов орошением или погружением, а также для получения газообразного азота и его использования в смеси с воздухом. Температура кипения жидкого азота -195,6°С, поэтому между замораживаемым продуктом и охлаждающей средой создается большой температурный перепад, что значительно интенсифицирует процесс. Аналогично используют жидкие диоксид углерода, воздух, хладоны.

Твердая охлаждающая среда. К твердым охлаждающим средам относят водный лед, смесь льда и соли (льдосоляное охлаждение), сухой лед.

Водный лед, полученный из пресной и морской воды, используют для охлаждения, хранения и транспортирования продуктов питания.

Широкое применение льда в качестве охлаждающей среды объясняется прежде всего его физическими свойствами, а также экономическими факторами. Температура плавления водного льда при атмосферном давлении 0 °С, удельная теплота плавления 334,4 Дж/кг, плотность 0,917 кг/м3, удельная теплоемкость 2,1 кДж/(кг • К), теплопроводность 2,3 Вт/(м · К). При переходе воды из жидкого состояния в твердое (лед) происходит увеличение объема на 9 %.

Естественный лед заготавливают путем вырезания или выпиливания крупных блоков изо льда, образовавшегося на естественных водоемах, послойного намораживания воды на горизонтальных площадках, наращивания сталактитов в градирнях. (Особым спросом для пищевых целей пользуется гренландский и антарктический лед как наиболее чистый. Возраст гренландского льда более 100 000 лет.) Лед хранят на площадках в буртах, укрытых насыпной изоляцией, и в льдохранилищах с постоянной и временной теплоизоляцией.

Искусственный лед получают путем замораживания чистой пресной или морской воды в льдогенераторах. Качество льда, его форма, размер и способ получения, хранения и доставки потребителю обусловлены назначением и спецификой применения.

Матовый лед изготавливают из питьевой воды без какой-либо ее обработки в процессе замораживания. В отличие от естественного он имеет молочный цвет, обусловленный наличием большого количества пузырьков воздуха, которые образуются в процессе превращения воды в лед. Пузырьки уменьшают проницаемость льда для световых лучей, и он становится непрозрачным.

Прозрачный лед по виду напоминает стекло. Для его получения в форму наливают воду и при помощи форсунок продувают через нее сжатый воздух. Проходя через замораживаемую воду, он захватывает и увлекает за собой пузырьки воздуха. Прозрачный лед изготавливают в виде кусков небольших размеров и используют для охлаждения напитков.

Лед с бактерицидными добавками предназначен для охлаждения рыбы, мяса, птицы и некоторых видов овощей путем непосредственного соприкосновения с ними. Бактерицидные добавки снижают обсемененность продуктов микроорганизмами.

В зависимости от формы и массы искусственный лед бывает блочный (5 — 250 кг), чешуйчатый, прессованный, трубчатый и снежный.

Блочный лед дробят на крупный, средний и мелкий.

Чешуйчатый лед получают путем напыления воды на вращающийся барабан, плиту или цилиндр, являющиеся испарителями хладагента. Вода на поверхности барабана быстро замерзает, а образовавшийся лед при его вращении срезается фрезами или ножом. Льдогенераторы производят от 60 до 5000 кг/сут такого льда. Чешуйчатый лед эффективен при охлаждении рыбы, мясных изделий, зеленых овощей, некоторых плодов. Наибольший коэффициент теплоотдачи достигается, когда при охлаждении продукты плотно соприкасаются со льдом.

В результате смешивания дробленого водного льда с различными солями помимо теплоты таяния льда поглощается теплота растворения соли в воде, что позволяет существенно понизить температуру смеси. Раствор может быть охлажден до криогидратной точки.

Льдосоляное охлаждение осуществляют как контактным, так и бесконтактным способом.

Недостатком контактного льдосоляного охлаждения является просаливание продукта, которое при длительном хранении стимулирует окисление жира, вызывает снижение товарного вида и потребительских достоинств. Бесконтактное льдосоляное охлаждение в виде полых плит с эвтектическими растворами позволяет избежать этих недостатков.

Сухой лед — твердый диоксид углерода. Производство сухого льда состоит из трех последовательных стадий: получения чистого газообразного диоксида углерода, сжижения его до образования снегообразной массы и прессования последней блоками плотностью 1400— 1500 кг/м3. Различают его производство по циклу высокого, среднего и низкого давлений.

Сухой лед из жидкого диоксида углерода также получают двумя способами: дросселированием жидкого диоксида углерода по давлению тройной точки с последующим прессованием рыхлого влажного снега в блоки сухого льда; дросселированием до атмосферного давления с уплотнением блока льда в процессе льдообразования. Как охлаждающая среда он имеет значительные преимущества перед водным льдом: холодопроизводительность на единицу массы в 1,9, а на единицу объема в 7,9 раза больше; при атмосферном давлении сухой лед переходит в газообразное состояние-, минуя жидкую фазу, что исключает увлажнение поверхности продукта. Благодаря низкой температуре сублимации сухого льда (-78,9 °С) и выделению газообразного диоксида углерода понижается концентрация кислорода у поверхности продукта, создаются неблагоприятные условия для жизнедеятельности микроорганизмов.

Сухой лед укладывают поверх и между упаковок продуктов и используют как охлаждающую среду для хранения мороженого, фруктов, ягод. Сухой дробленый лед используют в специальных системах охлаждения, для чего его помешают в металлические емкости. Продукты сублимации льда отводят в грузовой объем помещения или наружу.

Прямым эжектированием жидкого диоксида углерода получают твердый гранулированный, или снегообразный, диоксид углерода, который используют для охлаждения упакованных продуктов (мясных, рыбных, овощных).

В многоплиточных и конвейерных морозильных аппаратах в качестве теплопередающей среды используют различные металлы в виде полых плит, внутри которых циркулирует промежуточный хладоноситель. Металлы имеют высокую тепло- и температуропроводность и, непосредственно соприкасаясь с продуктом, интенсифицируют теплообмен. Наиболее широко применяют сталь, чугун, медь, алюминий и алюминиевые сплавы.

В качестве охлаждающей взвешенной в воздухе промежуточной теплопередающей среды при флюидизационном способе замораживания применяют мелкодробленый лед, полимерные шарики, а также композиции (например, смесь, состоящую из манной крупы, сахара, соли и мелкодробленого льда). Такая среда под воздействием направленного вверх с небольшой скоростью воздушного потока, создаваемого вентиляторами, превращается в кипящий слой, через который движется замораживаемый продукт. Таким способом замораживают ягоды, овощи, полуфабрикаты.

8.3. Приборы измерения и контроля параметров

охлаждающих сред и продуктов

Основные режимные параметры холодильной обработки и хранения продуктов — температура, относительная влажность воздуха и скорость его движения. Они взаимосвязаны и в совокупности позволяют достаточно точно охарактеризовать состояние охлаждающей среды и продуктов.

Наиболее важным параметром, который необходимо поддерживать в заданных пределах, является температура охлаждающей среды и продуктов.

Средства и методы контроля температурного режима занимают важное место в обеспечении нормального функционирования системы холодильной цепи. Для этого используют как классические термоизмерительные средства (термометры, термографы), так и различные специальные термоиндикаторы и электронные цифровые приборы. Условия функционирования различных звеньев холодильной цепи имеют свои особенности, поэтому необходимо, чтобы термоизмерительные средства соответствовали конкретным условиям и типам используемого холодильного оборудования. Контроль за температурой осуществляют для того, чтобы зарегистрировать отклонения от требуемого режима, а также убедиться в том, что оборудование функционирует нормально.

Приборы контроля за температурой среды и продуктов. Для этих целей используют различные виды термометров.

Жидкостные термометры расширения в зависимости от наполнителя бывают ртутные и спиртовые. Принцип их работы основан на зависимости объема жидкости от температуры.

Ртутные термометры используют для измерения температур до -30 °С, а спиртовые и толуоловые — ниже -30 °С.

Ртутные термометры отличаются высокой точностью, стабильностью в работе, простотой в использовании. Их основной недостаток — токсические свойства ртути.

Спиртовые термометры фиксируют фактическое показание температуры в момент считывания. Их преимущества — достаточно высокая точность, простота применения, безопасность в случае утечки жидкости, а также невысокая стоимость.

Жидкостные термометры имеют большую инерционность, поэтому отсчет показаний начинают через 5—10 мин после установки в твердых и жидких телах и через 30 мин — в газообразных.

Принцип действия циферблатных термометров основан на тепловом расширении газов или металлов с применением термочувствительных элементов. Такие термометры могут быть снабжены указателями минимальной и максимальной температур, а также фиксаторами этих значений с момента считывания предыдущих показаний.

В жидкокристаллических термометрах термочувствительный элемент — жидкий кристалл, цвет которого изменяется в зависимости от температуры внешней среды. Шкала такого термометра может быть откалибрована в нужном диапазоне с интервалом 1 — 2 °С.

Принцип действия цифровых электронных термометров основан на изменении термоэлектрических свойств термочувствительного элемента в зависимости от температуры внешней среды. Результаты измерения отображаются посредством цифровой индикации на дисплее. Их преимущества — высокая точность, мгновенная индикация температуры, простота и удобство использования, особенно для дистанционного контроля температуры. В качестве термочувствительного элемента используют, как правило, металлы и их сплавы (медь, платина).

Электрические термометры состоят из первичного преобразователя температуры в электрическое сопротивление и вторичного, который преобразует изменения электрических параметров в показания на шкале. Такие термометры сопротивления присоединяют к телетермометрам, логометрам или электронным мостам, что позволяет осуществлять групповой контроль температуры. В этих приборах последовательное подключение термометров сопротивления (датчиков) и регистрация температур производятся автоматически. Расстояние от датчиков для дистанционного измерения температуры может быть любым. Такие приборы особенно удобны для контроля температурного режима в различных видах стационарного и транспортного холодильного оборудования, которое можно при этом не открывать.

Термоиндикаторы бывают химическими и биологическими (биосенсорами). Принцип действия химических индикаторов основан на использовании специальных красителей, которые при активации индикатора реагируют на повышение температуры сверх определенного уровня необратимым изменением окраски.

Термографы применяют для непрерывной графической регистрации температуры внутри холодильной камеры. Он представляет собой комбинированное устройство, состоящее из термометра и приспособления для непрерывной графической регистрации температуры. Цикл работы такого прибора, как правило, составляет сутки и неделю. Применяют недельный термограф для контроля температурного режима в камерах хранения охлажденных и замороженных продуктов.

Методы и приборы контроля относительной влажности воздуха. Для измерения относительной влажности воздуха в камере используют психометрический и гигрометрический методы.

Психометрический метод основан на зависимости разности показаний сухого и мокрого термометров психрометра от степени насыщения воздуха водяными парами. У одного из термометров (мокрого) ртутный или спиртовой шарик обернут батистом или марлей, смоченными в воде. Процесс испарения влаги сопровождается затратой энергии, и температура мокрого термометра становится ниже температуры сухого. Причем психометрическая разность температур пропорциональна степени сухости воздуха. По этой разнице с помощью специальных таблиц определяют относительную влажность воздуха.

Прибор используют для измерения относительной влажности воздуха при температуре не ниже -5°С. С понижением температуры воздуха психометрическая разность температур уменьшается и точность замера снижается.

Для измерения влажности воздуха в холодильных камерах при малых и переменных скоростях его движения служит психрометр с побудительной циркуляцией — аспирационный психрометр Ассмана.

Гигрометрический метод определения влажности воздуха позволяет осуществлять ее контроль при температурах от +40 до -60 °С. Различают сорбционные гигрометры, принцип действия которых основан на изменении длины чувствительного элемента под действием на него влаги воздуха, и гигрометры, работающие по принципу определения точки росы. Метод определения влажности с помощью гигрометра достаточно точен и при отрицательных температурах.

Чувствительным элементом сорбционных гигрометров является обезжиренный человеческий волос, который при увеличении относительной влажности воздуха от 0 до 100% удлиняется на 2,5 %. Вместо волос в качестве чувствительного элемента применяют животные (жилы) и вискозные пленки, капроновые нити. Сорбционные гигрометры показывают относительную влажность воздуха непосредственно на шкале прибора и в отличие от психрометров не нуждаются в подготовке к измерениям.

Для измерения и регулирования влажности непосредственно в камере применяют пленочный регулятор влажности (ПРВ), а для дистанционного измерения — пленочный измеритель влажности (ПИВ).

Комплектные устройства дистанционного измерения, регистрации и регулирования относительной влажности воздуха состоят из электронного одно- или многоточечного автоматического моста, являющегося измерительным блоком, и электролитического влагочувствительного элемента (датчика), на котором сопротивление влагочувствительной пленки изменяется в зависимости от влажности контролируемого воздуха.

Для непрерывного графического контроля влажности воздуха служит гигрограф, записывающее устройство которого аналогично устройству термографа. Гигрографы бывают с суточным или недельным заводом.

Принцип действия гигрометров, работающих на основе измерения точки росы, заключается в определении температуры, до которой необходимо охладить (при постоянном давлении) находящийся в воздухе водяной пар, чтобы вызвать его конденсацию. Такие гигрометры называются конденсационными.

Приборы контроля скорости движения воздуха. Скорость движения воздуха при холодильной обработке продуктов измеряют механическими и электрическими анемометрами и кататермометрами. Последние применяют для измерения скорости движения воздуха менее 0,5 м/с.

Чашечные анемометры предназначены для измерения скорости движения воздуха от 1 до 50 м/с, а крыльчатые — от десятых долей до 3 — 4 м/с.

Для дистанционного контроля скорости движения воздуха используют электрические анемометры. Принцип их действия основан на охлаждении потоком воздуха проводника, подогреваемого электрическим током. Чем выше скорость движения воздуха при постоянной силе тока через проводник, тем интенсивнее отвод теплоты, а следовательно, ниже температура проводника. Температуру проводника измеряют с помощью термопары или определяют косвенным путем по изменению сопротивления.

Переносные полупроводниковые электротермоанемометры, в которых в качестве датчика применяется полупроводниковое термосопротивление, позволяют с высокой точностью определять температуру и малые скорости движения воздуха в течение нескольких секунд.

8.4. Конструкции холодильников

Конструкции холодильника подразделяют на несущие и ограждающие.

Ограждающие конструкции защищают здание от воздействия внешней среды (стены и покрытия) или условий соседних помещений (междуэтажные перекрытия в многоэтажных холодильниках, полы, внутренние стены).

Несущие конструкции для многоэтажных и одноэтажных холодильников различны.

В многоэтажных холодильниках несущей конструкцией служит каркас, наружные стены являются самонесущими.

Каркас состоит из сборных железобетонных вертикальных колонн (их сетка 6x6 м), сборных капителей, надколонных и пролетных плит. Каркас воспринимает собственную массу конструкций, массу снега на кровле, ветровую нагрузку, массу хранящихся продуктов, а также механизмов и передает эту нагрузку через фундамент на основание — грунт, на котором расположен холодильник.

Наружные стены несут нагрузку собственной массы, т.е. независимы от каркаса (самонесущие), и крепятся к каркасу. Они выполняются из полнотелого кирпича с применением теплоизоляционного слоя или специальных сборных стеновых панелей.

В одноэтажных холодильниках несущие конструкции монтируют из сборных железобетонных элементов — колонн, балок и плит покрытия. Сетка колонн 6х12 м. Стены самонесущие. Масса хранящихся на холодильнике продуктов и механизмов воспринимается полами, расположенными на грунте, а не несущей конструкцией холодильника. Это позволяет увеличить нагрузку на пол до 4000 кг/м2.

В последнее время строят одноэтажные холодильники из облегченных конструкций. В них колонны и балки (фермы) выполнены из стальных профилей. Сетка колонн имеет размер 6х24 (36) м. Элементы наружных стен и покрытия монтируют из облегченных трехслойных панелей, получивших название «сэндвич». В этом случае большие холодильные камеры могут быть без внутренних колонн. Холодильники такого типа бывают двух видов: с внутренним или наружным каркасом. Если каркас наружный, колонны и фермы остаются снаружи здания, их закрывают профилированным стальным настилом, отнесенным от них на расстояние 50 — 60 см для образования сквозного прохода вдоль стен. Панели типа «сэндвич» монтируют к каркасу изнутри.

Наружные ограждающие конструкции. В наружных стенах зданий можно выделить три основных слоя.

Наружный слой — несущий, выполняется из кирпича, оштукатуренного с одной или двух сторон, железобетонных (в многоэтажных холодильниках) или керамзитовых (в одноэтажных холодильниках) панелей. Этот слой воспринимает нагрузку собственной массы всех слоев стены и ветровую нагрузку, защищает тепловую изоляцию от механических повреждений и погодных факторов, а также создает общий вид фасада здания. Кирпичные стены крепят стальными анкерами к каркасу здания в уровнях междуэтажных перекрытий или покрытия здания.

Средний слой — изоляция из теплоизоляционных материалов. Между наружным слоем и тепловой изоляцией осуществляется пароизоляция, защищающая тепловую изоляцию от увлажнения.

Третий слой — внутренний — оштукатурен и предназначен для зашиты теплоизоляции от разрушения при грузовых работах на холодильнике и устранения контакта изоляционных материалов с пищевыми продуктами.

В стенах из облегченных панелей типа «сэндвич» наружный и внутренний слои выполняют из листового металла (гладкого или профилированного) — алюминия либо стали. Средний теплоизоляционный слой — из пенопластов. Пароизоляцию не делают. Ее функции выполняют металлические листы облицовки. Панели крепят к каркасу здания, тщательно герметизируя стыки между ними.

Покрытия холодильников после 1960-х годов сооружают совмещенными бесчердачными. Они состоят из трех конструктивных элементов: несущих конструкций (балок, ферм, плит), теплоизоляции и плоской кровли-гидроизоляции и основания под нее.

Для гидроизоляции наклеивают на горячей битумной мастике на основание 4 - 5 слоев рулонных кровельных материалов — рубероида подкладочного и покровного. Для повышения отражающей способности кровли по отношению к солнечной радиации в целях уменьшения теплопритоков в холодильник, а также защиты гидроизоляции от механических повреждений и влияния погоды поверх кровельного ковра укладывают более светлый материал, например фольгоизол. В России разработан и выпускается теплоотражательный материал ДМПС (дублированный металлизированной пленкой спецматериал), имеющий степень черноты не более 0,06. Этот материал может наноситься взамен последнего слоя кровельного покрытия, он резко уменьшает поступление тепла от солнечной радиации, что особенно важно для одноэтажных холодильников.

Внутренние ограждающие конструкции. Междуэтажные перекрытия многоэтажных холодильников выполняют трехслойными. Нижний слой составляют железобетонные плиты перекрытия. Теплоизоляцию укладывают на перекрытие сверху. Теплоизоляционную конструкцию защищают от увлажнения пароизоляцией, которая может быть сверху или снизу. Пароизоляцию относительно теплоизоляционного слоя наносят со стороны помещений с более высокой температурой. Верхний слой составляет конструкция пола, включающая бетонную стяжку (подстилающий слой) и покрытие «чистого» пола.

Подстилающий слой придает полу прочность, равномерно Распределяя нагрузку на расположенную ниже теплоизоляцию, и выравнивает основание под покрытие пола. Покрытие пола может быть из асфальтобетона, металлических, бетонных армированных, Мозаичных, шлакоситалловых плит.

При наличии подвала перекрытие между первым этажом и подвалом выполняют как междуэтажное.

Конструкция полов первого этажа в зданиях без подвалов может быть различной в зависимости от того, какое устройство применено для защиты от промерзания грунта под холодильником. При замерзании грунта его объем увеличивается, в результате создается вертикальная выталкивающая сила, воздействующая на здание. Это приводит к деформации полов и конструкций здания и даже к его разрушению. Наличие подвального этажа, в котором температура воздуха 0°С, предотвращает промерзание грунта под холодильником.

При отсутствии подвала грунт в основании защищают от промерзания путем подвода теплоты к основанию здания одним из трех способов: теплым воздухом, нагретой жидкостью или электрообогревом. Воздушная система обогрева грунта обеспечивается за счет ветрового напора подполья, т.е. отрыва полов холодильника от грунта на высоту 1 — 1,8 м, или устройством под полом воздушных каналов (шанцев), по которым летом вентилятором прогоняется теплый наружный воздух, а зимой — подогретый.

При жидкостном обогреве в железобетонную плиту основания, расположенную под полом, закладывают систему трубопроводов, по которой с помощью насоса циркулирует жидкость (этиленгликоль, смазочное масло), подогреваемая в теплообменниках паром, электроэнергией и т.д. Электрический обогрев осуществляется электронагревателями, к которым электрический ток подводится через трансформаторы, понижающие напряжение до 36 В.

Стальные стержни (арматурную проволоку) укладывают в бетонные плиты основания. Особое внимание уделяют гидроизоляции конструкции пола, которую выполняют в виде двух слоев гидроизола на горячей битумной мастике.

В зоне расположения устройств для обогрева грунта необходимо поддерживать температуру 2°С.

Межкамерные перегородки сооружают из блоков строительных материалов с хорошими теплоизоляционными свойствами (пенобетон, пеностекло) или двухслойными — кирпичная стенка (бетонные панели) и эффективная изоляция с зашитой от увлажнения пароизоляцией и оштукатуриванием внешних поверхностей.

В холодильниках устанавливают специальные изолированные двери. По контуру примыкания дверей к дверной коробке закладывают герметизирующие прокладки из упругих материалов (губчатая резина). Двери оснащают замками натяжного типа.

Прислонные двери (распашные) ручные, откатные — механические. Каркас дверей выполняют из дерева, теплоизоляция имеет толщину до 150 мм. С двух сторон двери обивают оцинкованным стальным листом. Для предотвращения примерзания дверей к дверной коробке устанавливают электрообогрев. Для уменьшения притока теплого воздуха в охлаждаемые помещения при открывании дверей их оснащают воздушными завесами или брезентовыми шторами.

Теплоизоляционные материалы. Коэффициент теплопроводности основных конструкций 0,03 — 0,05 Вт/(м • К), а объемная масса 30 — 250 кг/м3. Материалы должны иметь микропористую структуру с объемом пор 90 — 98 %, обладать свойством гидрофобности (плохо увлажняться при соприкосновении с водой), достаточной прочностью на изгиб (не менее 150 кПа) и сжатие (до 40 кПа), морозостойкостью, не поражаться грызунами и микроорганизмами, не иметь запаха и не выделять вредных летучих компонентов. Они должны быть трудносгораемыми или самозатухающими (не гореть при удалении огня).

Ранее применялись минераловатные плиты на битумном связующем (минеральная пробка), блоки и плиты пенобетона и пеностекла, а также органические материалы синтетического происхождения — пенопласты и пороплатасты, пенополистирол ПС-1, ПС-4, ПСБ и ПСБ-С, пенополиуретан ППУ-3Н, ППУ-3С, фенольно-резольный пенопласт ФРП-1 и ФРП-2, пенополивинилхлорид ПВХ-1 и др. Перспективен пенополиуретан. Его объемная масса 20 — 80 кг/м3, коэффициент теплопроводности 0,025 — 0,04 Вт / (м · К), предел прочности при изгибе 70—190 кПа.

Пенополиуретан позволяет создавать изоляционные конструкции из готовых плит и выполнять эти конструкции на месте производства работ путем заливки жидких компонентов материала в изолируемую полость, например между наружным и внутренним ограждениями стен.

Его применяют для производства облегченных панелей типа «сэндвич».

Из пароизоляционных наиболее распространены материалы, изготавливаемые на основе нефтяного битума: мастики и эмульсии различного состава, а также рулонные (рубероид, изол, фольгоизол).

8.5. Механизация погрузочно-разгрузочных работ и

транспортно-складских операций

На холодильниках выполняют следующие виды работ с грузами:

погрузочно-разгрузочные — загрузка транспортных средств (железнодорожных вагонов, автомобилей и судов) и их разгрузка;

транспортные внутрискладские — перемещение от места разгрузки транспортных средств (платформа, эстакада) до места складирования (холодильная камера) и от места складирования до места загрузки транспортных средств или в пределах здания холодильника — в одноэтажных холодильниках по горизонтали, в многоэтажных также и по вертикали;

складские — укладка в штабель и его разборка.

Для сокращения качественных и количественных потерь продуктов при транспортировке и хранении, обеспечения наиболее рациональной организации грузовых работ по всей холодильной цепи, включая холодильник, продукты должны быть затарены. Тара может быть деревянная, картонная, металлическая, стеклянная, полимерная или комбинированная. Поскольку при перемещениях пищевых продуктов в пределах холодильной цепи не везде на грузовых операциях применяют механизмы, часть операций выполняют вручную, масса одного грузового места должна составлять в среднем 20 — 70 кг.

Для повышения эффективности механизации грузовых операций прибегают к пакетированию, т.е. к объединению отдельных мест в укрупненную грузовую единицу на период хранения и транспортировки. Универсальным средством пакетирования являются поддоны — плоские, стоечные и ящичные.

В соответствии с видами грузовых работ на холодильниках применяют следующие подъемно-транспортные машины и устройства: электропогрузчики, электротележки с низким подъемом вил, ленточные конвейеры, электротельферы, роликовые дорожки, автомобили-самопогрузчики. Для перемещения по вертикали в многоэтажных холодильниках используют грузовые лифты, наклонные конвейеры, для укладки и разборки штабелей — электропогрузчики и электроштабелеры, передвижные столы, ленточные конвейеры.

В последнее время на холодильниках разработаны схемы, предусматривающие комплексную механизацию всех грузовых работ с их частичной или полной автоматизацией и использованием ЭВМ. Такие схемы предполагают применение металлических стеллажей. Складирование грузов на основе стеллажей позволяет напольным электроштабелерам загружать или разгружать ячейки любого рода независимо от находящегося сверху или снизу груза. Комплексная механизация и высокая степень автоматизации грузовых работ на холодильниках достигается при использовании систем, включающих стеллажи, стеллажные краны-штабелеры, механизированные роликовые конвейеры-накопители и перегрузочные механизмы. Оборудование холодильников подобными стеллажными системами позволяет увеличить их высоту до 30 м.

Схема механизации грузовых работ зависит от вида груза, возможности его пакетирования, применяемых транспортных средств, способов реализации в сфере потребления.

Существуют схемы механизации, предусматривающие использование тары-оборудования и изотермических контейнеров, загружаемых продуктами на предприятиях-изготовителях. Перевозят грузы автомобилями-самопогрузчиками. На предприятиях торговли продукты в таре-оборудовании поступают непосредственно в торговый зал, изотермические контейнеры предварительно разгружают.

8.6. Тепловой баланс охлаждаемых помещений,

системы охлаждения холодильных камер, способы

отвода теплоты от потребителя холода

Тепловой баланс охлаждаемого помещения. Тепловой баланс достигается при равенстве теплопритока в охлаждаемое помещение QT и теплоотвода Qo, т.е. при QT = Qo.

При этом в помещении устанавливается определенная температура tp, называемая равновесной.

Уравнение теплового баланса можно записать так, Вт:

Q1 + Q2 + Q3 + Q4 + Q5 = Q0,

где Q1 — теплоприток через ограждения помещения, возникающий в результате разности температур с обеих сторон ограждения и под воздействием солнечной радиации; Q2 — теплоприток от грузов при их охлаждении и замораживании; Q3 — теплоприток с наружным воздухом при вентиляции помещения; Q4 — теплоприток, обусловленный эксплуатацией помещения; Q5 — теплоприток от продуктов растительного происхождения, возникающий в результате их дыхания.

Теплопритоки непостоянны во времени. Наибольшую долю в тепловом балансе составляют теплопритоки Q1 и Q2. Теплопритоки Q1 и Q3 повторяют динамику изменения температуры наружного воздуха, и их максимум приходится на самый жаркий период года. Изменение Q2 зависит от графика поступления грузов на холодильник. При значительных колебаниях тепловой нагрузки в течение суток иногда приходится строить графики теплопритоков за сутки и также выбирать расчетный период.

Различают расчетные нагрузки на компрессор и на камерное оборудование.

Производительность компрессора следует выбирать равной максимуму суммы теплопритоков в обслуживаемые помещения, хотя максимальная нагрузка каждой из обслуживаемых холодильных камер может быть разной, т.е. может не совпадать со временем максимальной нагрузки других камер.

Теплоприток Q4, обусловленный эксплуатацией помещений, — это суммарные теплопритоки от электрического освещения, работающих электродвигателей, людей, а также открывания дверей.

Теплоприток от продуктов растительного происхождения Q5 определяют с учетом теплоты дыхания плодов и овощей во время охлаждения и хранения.

По суммарным теплопритокам для каждого отдельного помещения определяют нагрузку на камерное оборудование (Qоб, необходимую площадь поверхности приборов охлаждения (тепловую нагрузку испарителей), систему воздухораспределения в каждой камере.

Системы охлаждения холодильных камер. Системы подразделяют по следующим признакам:

виду охлаждающей среды и способу распределения рабочего вещества по объектам охлаждения — на системы непосредственного охлаждения (безнасосные и насосно-циркуляционные) и системы охлаждения с промежуточным хладоносителем (открытого и закрытого типов);

способу размещения основного оборудования — на системы централизованного или децентрализованного охлаждения.

В зависимости от условий отвода теплоты от охлаждаемых объектов и продуктов эти системы подразделяют на системы с контактным и бесконтактным охлаждением.

В системах непосредственного охлаждения теплота от объектов отводится непосредственно холодильным агентом, протекающим в приборах охлаждения, которые одновременно выполняют роль испарителя холодильной машины и располагаются в охлаждаемых помещениях. При этом агрегатное состояние холодильного агента в таких приборах изменяется (он кипит).

Безнасосные системы охлаждений подразделяют на прямоточные и с отделителем жидкости. В прямоточных системах жидкий холодильный агент подается под действием разности давлений конденсации и кипения. Для обеспечения безопасной и устойчивой работы компрессора необходимо, чтобы в него поступал перегретый пар. Для этого количество холодильного агента, подаваемое в приборы охлаждения, должно соответствовать тепловой нагрузке Qo.

Прямоточные системы используют лишь на малых холодильных установках, преимущественно на хладоновых.

Насосно-циркуляционные системы применяют преимущественно на крупных холодильных установках. В этих системах жидкий холодильный агент в приборы охлаждения подается под давлением, создаваемым насосом.

В прямоточной системе с нижней подачей жидкого холодильного агента в приборы охлаждения используют вертикальные циркуляционные ресиверы, выполняющие одновременно функции отделителя жидкости.

Применяют также системы с верхней подачей жидкости в приборы охлаждения. Такая система наряду с определенными преимуществами (меньшая вместимость холодильного агента, отсутствие влияния гидростатического столба жидкости на температуру кипения и т.д.) обладает меньшей интенсивностью теплообмена в приборах охлаждения из-за худшей смачиваемости охлаждающей поверхности.

В системах охлаждения с промежуточным хладоносителем теплота от объектов отводится промежуточным жидким хладоносителем, протекающим в приборах охлаждения. Циркуляция хладоносителя осуществляется в приборах охлаждения центробежными насосами, при этом в приборах охлаждения хладоноситель несколько нагревается (на 2 —3°С) без изменения агрегатного состояния, а в испарителе при температуре кипения холодильного агента охлаждается.

Различают закрытые и открытые системы охлаждения хладоносителями. В закрытой системе применяют оборудование закрытого типа (кожухотрубный или кожухозмеевиковый испаритель, трубные приборы охлаждения — батареи). В открытой системе используют испарители открытого типа, что приводит к повышенной коррозии металла. Закрытые системы охлаждения получили более широкое распространение.

В системах охлаждения с промежуточным хладоносителем исключается проникновение холодильного агента в охлаждаемые помещения, так как испаритель и все его трубопроводы находятся в машинном отделении.

Оттаивание снеговой шубы. Приборы охлаждения в камерах работают в условиях, когда температура их поверхности ниже точки росы. Влага, имеющаяся в воздухе охлаждаемого помещения, осаждается на наружной поверхности приборов охлаждения в виде инея, который образует так называемую снеговую шубу, затрудняющую теплопередачу, поэтому снеговую шубу необходимо регулярно удалять.

Для очистки наружной поверхности приборов охлаждения от снеговой шубы применяют механический и тепловой способы. При механическом способе снеговую шубу сметают, сдувают воздухом, удаляют скребками. При тепловом способе снег расплавляют, а воду или подтаявший снег удаляют. Оттаивание осуществляют теплой водой, теплым воздухом, горячим паром холодильного агента (в системах непосредственного охлаждения), с помощью обогрева поверхности изнутри трубы. В последнем случае из оттаиваемой батареи предварительно удаляют жидкий холодильный агент, а затем в нее по специальному трубопроводу после маслоотделителя направляют горячие пары холодильного агента, которые, конденсируясь, нагревают стенки батареи, благодаря чему на ее наружной поверхности слой инея начинает плавиться, после чего его легко удалить.

Способы отвода теплоты от потребителя холода. Отвод теплоты от охлаждаемых (замораживаемых) объектов осуществляют путем их контакта непосредственно с рабочей средой (холодильным агентом, хладоносителем) или со средой через разделяющую их стенку либо через подвижную промежуточную среду. В качестве промежуточной среды чаще всего используют воздух или специальную газовую среду.

При контактном способе отвода теплоты объект погружают в охлаждающую среду или орошают ею. При этом агрегатное состояние жидкого азота и хладонов может изменяться (могут кипеть). Теплообмен происходит конвективным путем и характеризуется высокой интенсивностью, небольшой продолжительностью, незначительной потерей массы продукта. Недостаток — возможное ухудшение качества продуктов при непосредственном контакте с некоторыми средами.

По бесконтактному способу охлаждения работают система батарейного охлаждения, воздушная и смешанная системы охлаждения.

При батарейном охлаждении теплота отводится батареями (пристенными, потолочными) при естественной скорости движения воздуха у батарей. При воздушном охлаждении теплота отводится воздухоохладителем при принудительной циркуляции воздуха.

Различают системы охлаждения с внутрикамерным отводом теплоты и внекамерным отводом внешних теплопритоков. В первом случае приборы охлаждения устанавливают в камере, во втором в ней размещают только внутрикамерные приборы, а приборы для отвода внешних теплопритоков устанавливают вне камеры — в продухе, воздухонепроницаемо отделенном от камеры.

При воздушном охлаждении воздух перемещается вентилятором, скорость его может достигать 10 м/с и более.

При смешанной системе охлаждения камеру оборудуют батареями и воздухоохладителями.

Батарейную систему охлаждения применяют в камерах хранения неупакованных мороженых продуктов, так как при использовании воздушных систем наблюдаются повышенные потери массы.

Однако батарейная система имеет существенные недостатки — большую неравномерность полей влажности и температуры воздуха в помещении, недостаточную интенсивность теплообмена между воздухом и продуктом, воздухом и поверхностью приборов охлаждения и т.д., поэтому ее заменяют воздушной системой.

В воздушных системах различают системы канального и бесканалыюго распределения воздуха. В первом случае в помещении располагают два или один канал. В настоящее время двухканальную систему используют редко. При одноканальной системе отепленный воздух всасывается через входной патрубок вентилятора. Одноканальную систему применяют для камер охлаждения и замораживания и для камер хранения.

В бесканальной системе при подаче воздуха в помещение через насадки применяют различные сопла, скорость выходящего из них воздуха 10—15 м/с. В результате смешивания с воздухом камеры скорость потока быстро гасится.

В камерах хранения широко применяют компактные подвесные воздухоохладители. Их можно устанавливать также около стен или на антресолях либо подвешивать к потолку.

8.7. Холодильное технологическое оборудование

Для холодильной обработки пищевых продуктов небольшой толщины предназначены холодильные аппараты, которые в наибольшей степени отвечают современным производственным и технологическим требованиям. Холодильные аппараты применяют в основном для замораживания продуктов, поэтому их принято называть морозильными.

Аппараты различаются в зависимости от среды, непосредственно воспринимающей теплоту от продукта (воздух, диоксид углерода, кипящие и некипящие жидкости), устройств для транспортирования продукта в процессе холодильной обработки и др.

Аппараты, поддерживающие в заданных пределах несколько параметров воздуха (температура, влажность, скорость движения и т.д.) при холодильной обработке и хранении пищевых продуктов, относят к технологическим кондиционерам. Консервирование пищевых продуктов сублимационным методом производят в сублимационных установках.

Воздушные морозильные аппараты. Воздух можно использовать для холодильной обработки всех пищевых продуктов. Недостатком воздушных аппаратов является относительно низкая способность аккумулировать теплоту и влажность.

Воздушный морозильный аппарат представляет собой устройство, имеющее теплоизоляционное ограждение, внутри которого располагаются испарители (воздухоохладители), системы подачи воздуха, транспортирования продукта, автоматического управления и регулирования.

Испаритель выполняют из оребренных труб с переменным расстоянием между пластинами оребрения, уменьшающимся по ходу движения воздуха от 20 —30 до 10—15 мм. Переменное расстояние между пластинами оребрения обеспечивает сохранение номинальной площади живого сечения воздухоохладителя по длине, так как иней, осаждающийся на поверхности испарителя при отборе влаги из продукта, оказывается в основном на первых по ходу движения воздухорядах труб.

Система подачи воздуха включает вентиляторы (осевой, центробежный) и воздухораспределители (канал, жалюзи, отражатели).

В систему транспортирования продукта входят тележки (этажерки), конвейер непрерывного и периодического действия, поток воздуха (флюидизационный слой).

К воздушным морозильным аппаратам относятся тележечные и флюидизационные аппараты.

Внутри теплоизоляционных ограждений тележечных аппаратов находятся воздухоохладители, тележки, канал в верхней части аппарата для поперечного движения воздуха. Воздух из канала всасывается вентиляторами, проходит через воздухоохладители, обдувает продукты и вновь поступает в канал.

Во флюидизационных аппаратах продукты замораживаются в восходящем потоке воздуха, находясь во взвешенном состоянии (псевдокипящий слой). Для получения флюидизационного слоя продукты должны иметь небольшие размеры: толщину до 40 мм и длину до 125 мм, а их форма должна приближаться к сферической. Продукты в аппарате могут располагаться и транспортироваться только в потоке воздуха в лотках с перфорированным дном и на сетчатой ленте конвейера.

Флюидизационные аппараты используют для замораживания овощей (зеленый горошек, кубики моркови), фруктов (ломтики яблок), ягод (клубника, смородина) и других продуктов.

Продукты моют и подают в загрузочный механизм, имеющий вибрирующую решетку для удаления воды. Здесь их подсушивают, что предотвращает смерзание, и они попадают в первую зону аппарата, где подмораживаются во флюидизационном слое. Имея достаточную механическую прочность, продукты поступают во вторую зону, в которой домораживаются на сетчатой ленте конвейера, после чего покидают аппарат.

Каждая зона имеет автономную систему подачи воздуха. В зоне подмораживания осевые вентиляторы подают воздух через секции испарителя снизу под продукт.

Контактные морозильные аппараты. В этих аппаратах продукты замораживаются, находясь в непосредственном контакте с охлаждаемой металлической поверхностью или жидкостью (хладоносителем, холодильным агентом). При этом продукт омывается практически неподвижным воздухом только с одной стороны, что уменьшает его усушку. Площадь прикосновения охлаждающей поверхности к продукту должна быть максимальной, а термическое сопротивление зоны их контакта — минимальным. Поэтому продукт должен иметь правильную геометрическую форму и быть подпрессован давлением 15 - 70 кПа. Для интенсификации теплоотдачи от стенки к холодильному агенту предпочтительно использовать непосредственное охлаждение кипящим холодильным агентом, а не рассольное. Продукт может примерзать к поверхности металла, поэтому приходится нагревать металлическую поверхность до положительной температуры для его извлечения. Для уменьшения сил сцепления продукта с металлом можно использовать антиадгезионное покрытие поверхности металла (полиэтилен, фторопласт) или упаковку продукта.

К контактным морозильным аппаратам относятся плиточные, роторные, барабанные, ленточные, погружные и азотные аппараты.

В плиточных аппаратах в теплообмене участвуют по две стороны продукта и плиты. Плиты при этом можно располагать горизонтально, вертикально и радиально на вращающемся валу.

Плиточный аппарат с горизонтальными плитами периодического действия предназначен для замораживания продукта, в том числе и упакованного в коробки высотой 15 — 75 мм. Он имеет несущий металлический каркас, теплоизоляционное ограждение с двумя створками. Внутри расположены плиты из алюминиевого сплава, ограниченно перемещающиеся с помощью гидравлического привода. Продукт в блоках и коробках помещают между плитами, которые сближают, несколько уменьшая первоначальную высоту продукта. Величину зазора между плитами можно регулировать.

Дверные створки аппарата закрывают, после чего включается система охлаждения. После окончания процесса замораживания система охлаждения отключается, открываются дверные створки, раздвигаются плиты и продукт удаляется. Такие аппараты применяют в основном в мясной и молочной промышленности.

Для замораживания блоков рыбы применяют аппараты с вертикальными плитами.

В роторных аппаратах продукт замораживается практически непрерывно, что повышает производительность и обеспечивает постоянство тепловой нагрузки на холодильную установку.

Роторный аппарат имеет теплоизоляционное ограждение, внутри которого находятся ротор с морозильными секциями, системы охлаждения, дозирования, загрузки и разгрузки, автоматическое управление. Секция имеет три плиты из алюминиевого сплава с прямоугольными каналами для циркуляции холодильного агента.

Холодильный агент из циркуляционного ресивера подается насосом через торец полого вала ротора, распределяется по плитам, отводится через другой торец и поступает в циркуляционный ресивер. Две окантовки с продуктом размещаются в ячейках между средней (неподвижной) и боковыми (подпрессовывающими) плитами. Окантовка представляет собой рамку из алюминиевого профиля, в которую укладывают упаковочный материал, загружают продукты, формируют их и упаковывают; в ней четыре блока продукта. Окантовка одновременно является боковой гранью плиты. Плиты в секции соединены пружинами, которые обеспечивают подпрессовку продукта. После замораживания секция Устанавливается в положение для разгрузки, раскрывается, окантовка с продуктом удаляется. Окантовка с продуктом, подготовленная для замораживания, поступает в секцию, которая закрывается. Механизм поворота переводит ротор в положение для разгрузки (загрузки) следующей ячейки. Таким образом, каждая секция последовательно — сначала верхняя ячейка, а затем нижняя — загружается и разгружается за один оборот ротора. В промежутке между этими процессами осуществляется непосредственно замораживание продукта в виде блока.

Барабанные аппараты применяют для замораживания полуфабрикатов с влажной поверхностью и пастообразных продуктов. Такие продукты замораживают на поверхности вращающегося барабана.

Барабанный аппарат имеет теплоизоляционное ограждение, полый барабан из нержавеющей стали с каналами для циркуляции холодильного агента, расположенными по цилиндрической образующей, нож для скалывания продукта, электрический привод, загрузочный и разгрузочный конвейеры.

Продукт подается в аппарат загрузочным конвейером. Там он падает на поверхность вращающегося барабана, прижимается к ней лентой конвейера и примораживается. За оборот барабана продукт замораживается, скалывается ножом в верхней точке и поступает на разгрузочный конвейер.

В ленточных аппаратах продукт замораживается на конвейерной гладкой ленте из нержавеющей стали во время прохождения через теплоизолированную охлаждаемую часть аппарата.

В охлаждаемой части под лентой располагаются емкости, заполненные хладоносителем настолько, что движущаяся лента конвейера «плавает» на его поверхности. Заполнение емкостей обеспечивается непрерывной подачей охлажденного в испарителе хладоносителя. Охлажденный хладоноситель подается в емкости форсунками, расположенными ниже его уровня, благодаря чему достигается постоянство его температуры. Избыток хладоносителя отводится в испаритель.

В погружных (иммерсионных) аппаратах замораживаемые продукты находятся в жидкости (хладоносителе). Обычно это продукты большой толщины и неправильной формы (крупнокусковое мясо, тушки птицы), упакованные в термоусадочную полимерную пленку, плотно прилегающую к поверхности продукта и непроницаемую для хладоносителей. В качестве хладоносителей используют вещества, разрешенные к применению органами здравоохранения. Они должны быть нетоксичны и инертны, иметь температуру замерзания не менее чем на 10 К ниже рабочей температуры, так как вблизи температуры замерзания резко увеличивается вязкость вещества. Таким требованиям соответствуют водные растворы хлорида натрия, пропиленгликоля и хлорида кальция, нижним пределом использования которых является температура соответственно -15, -40 и -45 °С.

Конструктивно погружные аппараты представляют собой теплоизолированный корпус, внутри которого находится емкость, заполненная хладоносителем. В емкости размещается испаритель холодильной машины с мешалкой. Над испарителем ниже уровня хладоносителя находятся две сетчатые перегородки, образующие канал, по которому движется замораживаемый продукт. В верхней части аппарата, над емкостью, монтируется конвейер, тяговые цепи которого оборудованы поперечно расположенными вертикальными решетчатыми пластинами, которые, перемещаясь между сетчатыми перегородками, транспортируют продукт через емкость с хладоносителем.

Замораживают продукт в определенной последовательности. Упакованный в пленку под вакуумом, он подается из упаковочного автомата к загрузочному окну и сбрасывается в аппарат. Продукт падает в канал, образованный двумя сетчатыми перегородками, захватывается пластинами конвейера и транспортируется под уровнем хладоносителя, так как верхняя перегородка препятствует его всплытию. Не доходя до края емкости, он выводится из хладоносителя для удаления. Далее продукт поступает на моечный конвейер, где орошается водой.

Недостаток этих скороморозильных аппаратов — вероятность перекрестного заражения продукта, что исключается при оросительном или комбинированном способе охлаждения.

Особый интерес представляют аппараты, в которых замораживание продуктов осуществляется в веществах, изменяющих фазовое состояние (кипение, сублимация), так как интенсивность теплоотвода от продукта при этом резко возрастает. В этих аппаратах в качестве охлаждающих веществ обычно применяют жидкости: азот, углекислоту и хладоны. Преимущественно используют азот как наиболее дешевый и доступный. В условиях атмосферного давления он кипит при температуре -195,8 °С и имеет скрытую теплоту парообразования 199,8 кДж/кг. Азот инертен по отношению к продуктам и конструкционным материалам.

Азотные аппараты имеют легкий несущий каркас, теплоизоляционное ограждение, системы транспортирования продукта, подачи и удаления газа, охлаждения, автоматического управления и регулирования. Система охлаждения состоит из емкостей для хранения жидкого азота, распределительных форсунок, емкости для сбора неиспарившегося жидкого азота, насоса, контрольно-измерительных и регулирующих приборов. Продукт в аппарате может замораживаться погружением в жидкий азот, орошением им и в потоке газообразного азота либо при комбинации этих способов.

Замораживать продукт с положительной температурой в жидком азоте нецелесообразно из-за большой разности температур, так как в зоне контакта образуется газовая прослойка, в результате чего коэффициент теплоотдачи резко уменьшается. Кроме того, велика вероятность растрескивания и деформации продукта вследствие внутренних напряжений, возникающих из-за неравномерного по объему льдообразования.

Экономичнее замораживать продукт в аппарате с двумя зонами: предварительного замораживания газообразным азотом и домораживания в жидком азоте.

Продукт конвейером подается в первую зону, в которой 30 — 40 % теплоты отводится потоком газообразного азота. Пройдя через емкость с жидким азотом, он домораживается и выводится из аппарата. Газообразный азот удаляется из аппарата с помощью вентилятора и нагнетается в область загрузочного окна аппарата, создавая завесу на пути теплого воздуха.

Аппараты, в которых продукт орошается жидким азотом, имеют три-четыре зоны, что обеспечивает эффективный теплоотвод и снижение расхода жидкого азота на замораживание.

Сублимационные сушильные установки. В этих установках консервирование пищевых продуктов осуществляется методом сублимационной сушки, которая заключается в замораживании продукта, а затем обезвоживании в результате сублимации образующихся в нем кристаллов льда. Продукт сублимационной сушки можно хранить длительный срок (год и более в герметичной упаковке) при обычной температуре без охлаждения. При увлажнении перед употреблением продукт легко поглощает воду и его пищевые свойства, внешний вид и объем практически полностью восстанавливаются.

Технологический процесс производства продуктов сублимационной сушки проводится в несколько этапов. Продукты подготавливают к сушке: сортируют, моют, подсушивают, обрабатывают теплом, холодом, измельчают и укладывают в противни. Тепловой обработке (варке, жарке, бланшированию) подвергают значительную часть продуктов животного и растительного происхождения. Продукты, имеющие жидкую консистенцию, разливают в сплошные, а кусковые помещают в сетчатые противни, которые устанавливают на консольно расположенные полки тележек. Перед сушкой продукты замораживают или предварительно в морозильных аппаратах, или непосредственно в сублиматоре. При этом скорость замораживания должна быть такой, чтобы образующиеся кристаллы льда были не крупными, поскольку они нарушают структуру продукта, но и не мелкими, так как в этом случае затрудняется сублимация льда из ткани и увеличивается продолжительность сушки. Оптимальная кристаллическая структура льда образуется при замораживании в воздушном морозильном аппарате при температуре воздуха -30...-35 °С.

Если замораживание происходит в сублиматоре, то он сначала работает как морозильный аппарат с отводом теплоты от продукта конвекцией при атмосферном давлении, а затем как сушилка. Можно замораживать продукт в сублиматоре путем испарения влаги в вакууме, но в этом случае значительно изменяются его физико-химические и структурные свойства. Сублиматор представляет собой камеру цилиндрической или прямоугольной формы, выполненную из нержавеющей стали. В ее центре размещаются тележки с продуктом, а в непосредственной близости от продукта находятся нагревательные элементы системы теплоотвода, в которых циркулирует жидкий теплоноситель температурой -120...-170 °С. Теплота должна подводиться к продукту в количестве, достаточном для компенсации отнимаемой от него теплоты сублимации, что обеспечивает поддержание его температуры на определенном уровне.

Внутри камеры располагаются секции десублиматора, являющиеся испарителем холодильной машины, предназначенные либо только для отвода влаги, либо для замораживания продукта и последующего отвода водяного пара. Температура кипения холодильного агента в секции десублиматора составляет -40...-60 °С. Для уменьшения сопротивления переносу влаги от продукта к десублиматору давление в сублимационной установке поддерживают ниже атмосферного (от 300 до 1 Па). Вакуумная система аппаратов удаляет неконденсирующиеся газы и частично водяной пар посредством механических вакуумных насосов: пусковых и рабочих.

После окончания сушки (через 2 —9 ч при сушке фарша и ломтиков мяса) тележки с продуктом выкатывают в отделение разгрузки, продукт упаковывают. Противни и тележки перед очередной загрузкой проходят санитарную обработку.

Технологические кондиционеры. При производстве, холодильной обработке и холодильном хранении некоторых мясных, молочных и растительных продуктов, например сыров, необходимо поддерживать с большой точностью параметры воздуха: температуру, влажность, скорость движения и чистоту.

Обработка воздуха, связанная с охлаждением, осушением, нагреванием, увлажнением, а иногда и очищением от пыли и плесени, производится кондиционерами, которые представляют собой тепломассообменные аппараты. Охлаждение и осушение воздуха осуществляют в теплообменнике кондиционера (воздухоохладителе), в который подается холодильный агент или хладоноситель из автономной или централизованной системы хладоснабжения.

Нагревается воздух в другом теплообменнике (калорифере), в который подается пар из системы пароснабжения предприятия. Иногда для нагревания воздуха используют электронагреватели (ТЭНы). Воздухоохладители и калориферы выполняют из ребристо-трубных элементов с шагом оребрения 3 — 6 мм.

Увлажняет воздух пар, подаваемый через форсунки в нагнетательный воздуховод кондиционера. Кондиционеры могут иметь фильтрующее устройство, состоящее из нескольких слоев специальной фильтрующей ткани.

Кондиционеры располагают в самом кондиционируемом помещении или вне его. Они могут быть напольные и подвесные и, как правило, способны работать в режиме рециркуляции.

8.8. Холодильное торговое оборудование

На предприятиях торговли и общественного питания холод используют в целях кратковременного хранения небольших запасов пищевых продуктов, необходимых для бесперебойной работы предприятий в течение 3 — 4 дней, при производстве мороженого, для сохранения охлажденных и замороженных продуктов, полуфабрикатов и готовых блюд при их демонстрации и реализации непосредственно в торговом зале.

Для хранения запасов пищевых продуктов в зданиях этих предприятий сооружают небольшие холодильники с общим объемом камер до 300 м3 и числом камер до пяти. Назначение их различно — для хранения мяса, рыбы, овощей, фруктов. Продукты поступают в камеры с распределительных или производственных холодильников в охлажденном или замороженном состоянии. Поскольку продукты хранят непродолжительное время, температуру в камерах поддерживают более высокую, чем в распределительных холодильниках, например, в камерах для хранения мяса 0°С, рыбы -2°С, жиров, молока, молочных продуктов, яиц 1 — 3 °С, фруктов, ягод и овощей 4 — 6°С, замороженных продуктов -15°С.

Относительная влажность воздуха в камерах не регулируется и обычно составляет 80 —90 %.

Стационарные холодильники предприятий торговли и общественного питания располагают в подвале или на первом этаже вблизи торгового зала либо цехов. Для охлаждения холодильных камер применяют малые хладоновые холодильные установки непосредственного охлаждения производительностью до 15 кВт, а в отдельных случаях — средние установки. Холодильные агрегаты устанавливают в машинном отделении.

Продукты можно хранить и в сборных холодильных камерах вместимостью 5—8 м3, устанавливаемых в помещениях предприятий в дополнение к стационарным холодильникам.

Дневной запас продуктов хранится в холодильных шкафах, размещаемых в торговом зале магазинов и предприятий общественного питания. Вместимость таких шкафов не более 1 м3.

Классификация оборудования. Классифицируют торговое холодильное оборудование по ряду признаков.

В зависимости от температуры воздуха в охлаждаемом объеме различают оборудование: высокотемпературное — с температуря рой 4 — 12°С, рассчитанное на хранение, демонстрацию и продажу напитков и продуктов из тары-оборудования; среднетемпературное — предназначенное для хранения, демонстрации и продажи охлажденных продуктов при 0...-8°С; низкотемпературное — используемое для хранения, демонстрации и продажи замороженных продуктов при температуре не выше -18°С; комбинированное — со средне- и низкотемпературными отделениями.

По конструктивному решению торговое холодильное оборудование может быть выполнено как закрытое — доступ к продукту осуществляется через дверки или раздвижные створки; открытое — с доступом к продукту через открытый проем; специализированное — с контейнерной загрузкой.

Некоторые виды торгового холодильного оборудования выпускают в двух исполнениях: для районов с умеренным климатом и для южных районов. Оборудование для районов с умеренным климатом рассчитано на работу при максимальной температуре воздуха 32 °С, а для южных районов 40 0С.

По расположению холодильного агрегата различают оборудование со встроенным в корпус или с вынесенным агрегатом.

Встраивают в корпус оборудования герметичные холодильные агрегаты с поршневыми и ротационными компрессорами и воздушным конденсатором. В сборных камерах и шкафах холодильный агрегат может располагаться в верхней или нижней части корпуса.

Торговое холодильное оборудование больших объемов и комплекты, составленные из нескольких единиц оборудования, охлаждаются вынесенными холодильными агрегатами с сальниковыми и бессальниковыми компрессорами, конденсаторами, охлаждаемыми воздухом или водой.

Холодильные установки для торгового оборудования полностью автоматизируются, т. е. снабжаются устройствами для защиты от опасных режимов работы, оттаивания инея с поверхности испарителя.

Коэффициент рабочего времени агрегатов должен быть не более 0,75, уровень звуковой мощности — не более 69 дБ.

Показателями надежности являются наработка на отказ (5000 ч для встроенного агрегата и 2500 ч для вынесенного), среднее время восстановления (не более 4,5 ч), срок службы до списания (не менее 12 лет).

Различные виды и типы торгового холодильного оборудования обозначаются начальными буквами их наименования: К — камера, Ш — шкаф, П — прилавок, В — витрина, ПВ — прилавок-витрина, С — стол, X — холодильное оборудование; последняя буква обозначает тип оборудования по температурному режиму работы: В — высокотемпературное, С — среднетемпературное и Н — низкотемпературное.

Цифра после первого дефиса указывает на расположение холодильного агрегата: 1 — агрегат встроен, 2 — вынесен. Цифры после второго дефиса обозначают номинальный внутренний объем оборудования в квадратных метрах, строчная буква указывает на особенность: м — модернизированное, к — контейнерная загрузка.

Виды оборудования. Холодильные сборные камеры используют для хранения охлажденных (среднетемпературные камеры КХС) и замороженных (низкотемпературные камеры КХН) продуктов.

Холодильные сборные камеры изготавливают заводским способом в разобранном виде и собирают с помощью болтов и угольников из щитов или панелей типа «сэндвич» в единое охлаждаемое устройство на месте установки. В случае необходимости переноса камера может быть разобрана и смонтирована в другом месте. Для герметизации в стыках щитов ставят резиновую прокладку. Спереди камеры имеются запирающиеся двери, число которых зависит от числа ее отделений.

Камеры могут быть со встроенным или с вынесенным холодильным агрегатом, но в основном выпускают камеры с вынесенным агрегатом. Охлаждаемый объем камер оборудован крюками, стеллажом, напольным деревянным настилом для размещения продуктов. Испарители (в основном воздухоохладители) монтируют под потолком над стеллажами. Для освещения камеры снабжают светильниками с выключателями, расположенными снаружи.

Типоразмерный ряд камер принят на основе внутреннего объема, кратного 6 м3, например КХС-2-6, КХС-2-12, КХС-2-18.

Оттаивание воздухоохладителя осуществляется автоматически. Измерение температуры в камере — дистанционное.

Низкотемпературная камера КХН-2-6м несколько отличается от среднетемпературной. У нее каркасная конструкция, более мощная холодильная установка, в которой два холодильных агрегата, двухсекционный воздухоохладитель с двумя терморегулирующими вентилями, отделитель жидкости. Оттаивание инея осуществляется горячим паром холодильного агента.

Холодильные шкафы используют для хранения охлажденных (среднетемпературные шкафы ШХС) и замороженных (низкотемпературные шкафы ШХН) продуктов как в торговом зале, так и в производственных цехах предприятий, выпускающих полуфабрикаты и готовые блюда. Конструкция шкафов может быть бескаркасной или каркасной. Холодильный агрегат расположен в нижней или верхней части корпуса. Испаритель в виде воздухоохладителя или батареи с поддоном для сбора талой воды имеет терморегулирующий вентиль.

Холодильные прилавки служат для кратковременного хранения замороженных или охлажденных продуктов во время реализации. Конструкция прилавков может быть каркасной или бескаркасной, открытой или закрытой. В прилавках закрытого типа охлаждаемая камера имеет створки, открытого — проем во избежание утечки холодного и инфильтрации теплого воздуха из помещения.

Открытые прилавки могут быть островными — доступ к продуктам возможен с обеих сторон и пристенными — доступ к продуктам с одной стороны.

Прилавки для небольших магазинов и буфетов изготавливают со встроенными холодильными агрегатами. При большом числе работающих холодильных агрегатов температура воздуха в торговом зале и уровень шума значительно повышаются, техническое обслуживание и ремонт агрегатов на месте затруднены. Поэтому для крупных магазинов самообслуживания прилавки выполняют с вынесенными холодильными агрегатами, которые размещают в отдельном помещении — машинном отделении. В этом случае можно уменьшить число холодильных агрегатов и улучшить условия в торговом зале, но увеличиваются затраты, связанные с монтажом трубопроводов.

Для крупных магазинов самообслуживания прилавки имеют модульное (или секционное) исполнение.

Холодильные столы используются в цехах предприятий общественного питания для хранения готовых блюд, полуфабрикатов и зелени. В отличие от прилавка холодильные столы имеют верхнее ограждение.

На столе размещают горку с емкостями, охлаждаемыми змеевиковым испарителем, весы и другой торговый инвентарь. Холодильный стол имеет теплоизолированную камеру с дверкой и машинное отделение, закрытое съемными панелями. Камера охлаждается оребренной батареей.

Холодильные витрины предназначены для демонстрации и продажи охлажденных и замороженных продуктов на предприятиях торговли и общественного питания. По конструкции они могут быть каркасными и бескаркасными, со встроенным холодильным агрегатом или с вынесенным, открытыми и закрытыми, модульного (секционного) исполнения.

Холодильные прилавки-витрины выполняют две функции: демонстрации и продажи (витрина), хранения рабочего запаса (прилавок). Прилавок выполняют закрытым, оборудуют столом для весов. Для доступа в камеру прилавка имеются две изотермические дверцы.

Торговые холодильные автоматы предназначены для продажи охлажденных напитков и охлажденных или замороженных фасованных продуктов. Их выполняют в виде бескаркасного металлического шкафа с дверью, внутри которого располагаются устройства, обеспечивающие его функционирование, в том числе элементы холодильной установки: герметичный холодильный агрегат, теплоизоляционное ограждение и испаритель. В автоматах для газированной воды водоохладитель выполнен в виде толстостенного алюминиевого цилиндра, в стенке которого находятся два змеевика: в одном кипит холодильный агент, в другом протекает вода.

В автоматах для продажи соков продукт, находясь во флягах, охлаждается в теплоизолированной камере. Испаритель из гладкотрубных секций закреплен на трех стенках камеры.

Автоматы для продажи штучных продуктов имеют охлаждаемый теплоизолированный объем в верхней части шкафа. Здесь размещаются устройство для закладки и выдачи продуктов и змеевиковые оребренные батареи испарителя. В нижней части расположено машинное отделение.

8.9. Способы и оборудование безмашинного охлаждения

Охлаждение водным льдом. Этот способ охлаждения наиболее простой. Используют как естественный лед, получаемый при низкой температуре воздуха, так и искусственный водный лед, изготавливаемый с помощью холодильных машин. Достоинствами устройств ледяного охлаждения являются простота конструкции, низкая стоимость и отсутствие затрат на электроэнергию.

При температуре таяния льда 0°С температура воздуха в охлаждаемых устройствах поддерживается обычно около 6°С. Такая температура достаточна для охлаждения и кратковременного хранения пива, вод, соков и прочих напитков, хранения некоторых овощей и зелени.

Охлаждение водным льдом осуществляется тремя способами: непосредственное охлаждение, с использованием воды в качестве промежуточного теплоносителя и с использованием воздуха в качестве промежуточного теплоносителя.

При непосредственном охлаждении водным льдом охлаждаемый объект находится с ним в прямом контакте. Используют обычно дробленый мелкокусковой лед, который помещают вокруг охлаждаемого объекта. Можно также пересыпать объект льдом (при хранении некоторых овощей и зелени).

При охлаждении с использованием воды в качестве промежуточного теплоносителя лед служит для получения ледяной воды, которая подается в теплообменник для охлаждения объекта. Вода, циркулируя от охлаждаемого объекта ко льду и обратно, может непосредственно контактировать со льдом или через стенки теплообменника змеевикового либо пластинчатого типа. Последний способ охлаждения применяют в молочной промыш ленности.

Охлаждение с использованием воздуха в качестве промежуточного теплоносителя может осуществляться с естественным и механическим перемещением воздуха. В этом случае теплота от охлаждаемого объекта отводится воздухом, который передает ее при контакте со льдом. При естественной циркуляции воздуха лед может располагаться в емкостях-карманах, имеющих щели или гофрированные ограждения для увеличения поверхности теплообмена. При механической циркуляции воздуха, создаваемой вентилятором, воздух прогоняется через слой дробленого льда, что увеличивает коэффициент теплоотдачи по сравнению с естественной циркуляцией. Этот способ используют, когда при высокой относительной влажности воздуха (95 %) необходимо получить температуру от 5 °С и выше.

Естественный лед получают из водоемов, где он намерзает в зимний период, а также путем послойного намораживания на горизонтальных площадках во время морозов, используя для этого специальные установки с форсунками для мелкокапельного разбрызгивания воды.

Искусственный водный лед получают с помощью льдогенераторов трубчатого типа, где лед образуется внутри труб вертикального кожухотрубного испарителя, в межтрубном пространстве которого кипит жидкий аммиак. Вода поступает в трубы испарителя сверху через водораспределительное устройство, в которое она подается насосом из бака, смонтированного под кожухом аппарата. В отверстия труб вставляют насадки, благодаря которым вода, поступающая в трубы, закручивается и пленкой стекает по их внутренней поверхности, частично замерзая. Незамерзшая вода собирается в бак, откуда опять подается в водораспределительное устройство. Благодаря непрерывной циркуляции из воды удаляется воздух, поэтому лед получается прозрачным. Когда стенки ледяных цилиндриков достигают толщины 4 — 5 мм, намораживание прекращают, насос останавливают, испаритель отключают от всасывающей стороны машины и соединяют с ее нагнетательной стороной, в результате чего в испаритель поступают горячие пары аммиака при давлении конденсации. Эти пары вытесняют из испарителя жидкий аммиак в ресивер (сборник аммиака), прогревают стенки труб, намороженный лед отделяется от стенок и под действием силы тяжести сползает вниз. При выходе из труб ледяные цилиндрики попадают под вращающийся нож, который разрезает их на части определенной высоты. Готовый лед падает в бункер и дальше по льдоскату выводится из льдогенератора.

Существуют также льдогенераторы блочного, чешуйчатого и снежного льда. Лед в них намерзает в формочках, на поверхности барабанов или в полости, за стенками которых кипит аммиак.

Льдосоляное охлаждение. Льдосоляное охлаждение позволяет получить более низкие температуры по сравнению с охлаждением чистым льдом. Этот способ основан на использовании льда в смеси с солями. При этом одновременно происходят процессы растворения соли с образованием рассола и плавления льда с образованием воды и дальнейшим растворением соли. На плавление льда и растворение соли затрачивается теплота смеси, вследствие чего температура ее понижается.

Наиболее низкая температура смеси достигается в криогидратной точке, в которой находятся в термодинамическом равновесии все три фазы: рассол (раствор), соль и лед.

Криогидратной точке соответствует эвтектическая концентрация соли. Такая смесь называется эвтектикой. При льдосоляном охлаждении чаще всего используют смесь дробленого льда и хлорида натрия. Криогидратной точке такой смеси соответствует температура -21,2 0С при концентрации соли в растворе 23,1 %. При использовании хлорида кальция с содержанием соли в растворе 29,9 % можно получить температуру плавления -55 °С.

Льдосоляной смесью можно охлаждать путем непосредственного контакта и используя в качестве промежуточного теплоносителя воздух, как и при охлаждении водным льдом. Кроме того, применяют охлаждение рассолом, образующимся при таянии смеси и циркулирующим через охлаждающую батарею.

В установке рассольного охлаждения с насосной циркуляцией лед периодически загружают в генератор холода. Сверху лед орошают рассолом, прошедшим охлаждающую батарею, где его температура повысилась на 2 — 3°С. В нижнюю часть генератора холода стекает охлажденный рассол с более низкой из-за таяния льда концентрацией соли. Для поддержания необходимой концентрации часть теплого рассола после охлаждающей батареи подается в бачок с солью — концентратор, из которого более насыщенный рассол перетекает в генератор холода. Концентратор периодически пополняют солью.

В нижней части генератора холода расположен вентиль, через который удаляется использованный (теплый) раствор перед новой загрузкой установки льдом и солью.

Разность температур рассола в охлаждающей батарее и воздуха в охлаждаемом объеме составляет 6 —8°С.

Существуют и установки без насоса, где циркуляция возникает самопроизвольно из-за разности объемных масс рассола вследствие изменения его концентрации при таянии льда.

Охлаждение холодоаккумуляторами с эвтектикой. В качестве холодоаккумуляторов используют металлические емкости различной формы. Эти формы заполняют эвтектикой на 90 —94 % объема.

Эвтектика представляет собой однородную смесь льда и соли, обладающую достаточно большой теплотой плавления. В качестве соли используют хлориды калия, натрия, кальция или сульфаты натрия и цинка. Эвтектический лед получают также из водного раствора пропиленгликоля. Температура плавления такого льда зависит от концентрации пропиленгликоля и может составлять от -3 до-50°С.

Холодоаккумуляторы после замораживания раствора при температуре ниже температуры плавления эвтектики размещают в охлаждаемом объеме. Поглощая теплоту, отводимую от охлаждаемого объекта, эвтектика тает при постоянной температуре. Холодоаккумуляторы используют многократно. Для этого после отепления их снова замораживают.

Холодоаккумуляторы широко применяют для охлаждения теплоизолированных контейнеров, кузовов автомобилей, а также в сочетании с машинным охлаждением в качестве дополнительного источника холода в период максимальной нагрузки на холодильное оборудование.

Охлаждение сухим льдом. Сухой лед — это диоксид углерода в твердом состоянии. Если при атмосферном давлении к сухому льду подвести теплоту, то он переходит в газообразное состояние, минуя жидкую фазу. Охлаждение сухим льдом основано на теплоотдаче охлаждаемой среды сухому льду. Удельная холодопроизводительность сухого льда при 0 °С составляет 637 кДж/кг. По сравнению с водным льдом сухой лед при 0°С обладает почти вдвое большей массовой холодопроизводительностью. Еще эффективнее соотношение при сравнении не массовой, а объемной холодопроизводительности. Объемная холодопроизводительность сухого льда при 0°С больше, чем водного, почти в три раза. Обильно выделяющийся при сублимации сухого льда газообразный диоксид углерода оказывает на большинство скоропортящихся продуктов консервирующее действие. В смеси с эфиром можно получить температуру до -100°С.

Сухой лед широко применяют при перевозках и продаже мороженого и для охлаждения транспортных средств. Охлаждение сухим льдом происходит при непосредственном контакте с охлаждаемым объектом или с использованием промежуточного теплоносителя, чаще воздуха. В последнем случае сухой лед дробят и размещают в металлических емкостях — карманах, через которые циркулирует воздух. Циркуляция воздуха может быть усилена вентилятором.

Сухой лед производят в виде блоков на предприятиях, технологические процессы которых связаны с выделением диоксида углерода. На первой стадии обеспечивают получение чистого газообразного диоксида углерода, затем его сжижают и из жидкого диоксида углерода получают твердый.

Испарительное охлаждение. Испарительное охлаждение основано на явлении парообразования над поверхностью жидкости при температуре ниже ее температуры кипения и нормальном атмосферном давлении. На превращение жидкости в пар затрачивается определенное количество тепловой энергии — теплоты парообразования (испарения). Теплота парообразования воды при 20°С равна 2455 кДж/кг. Вода может испаряться в результате отвода теплоты от нее, а также подвода теплоты к ней извне, что зависит от соотношения температуры воды и окружающей среды.

В зависимости от внешних условий теплообмена теплоту парообразования можно использовать для снижения температуры влажной поверхности и устранения (уменьшения) влияния внешних теплопритоков, вызывающих повышение температуры объекта.

Для охлаждения продуктов и грузов холодильного транспорта можно использовать также эффект испарительного охлаждения, возникающий при распылении жидкостей с помощью форсунок (например, жидких диоксида углерода и азота), с температурами кипения более низкими, чем требуется для охлаждения продуктов или воздуха.

Термоэлектрическое охлаждение. Термоэлектрический эффект проявляется в большей степени в цепях, составленных из полупроводников с электронной и дырочной проводимостью.

Во время движения дырок и электронов в разные стороны от контакта между разнородными полупроводниками происходит поглощение теплоты. Электроны дырочного полупроводника переходят в свободную зону электронного проводника, образуя пары электрон — дырка, на что затрачивается определенное количество теплоты, отнимаемое от контакта.

При движении электронов и дырок навстречу друг другу происходит их рекомбинация в месте контакта, сопровождающаяся выделением теплоты. Следовательно, если направление тока от дырочного полупроводника к электронному, выделяется теплота; если направление обратное, тепловая энергия в спае поглощается.

Величина выделяемой или поглощаемой теплоты Q в единицу времени пропорциональна силе тока I:

Q = ПI, (29)

где П — коэффициент Пельтье.

Рассмотренное явление обратимо. Если в той же самой цепи создать в месте спаев различные температуры, то между контактами образуется разность потенциалов и возникает ток.

Величина термоэлектродвижущей силы (термоэдс) определяется формулой

Е = (Тг -Тх), (30)

где — коэффициент термоэдс, В/К; Тг, Тх — абсолютные температуры соответственно горячего и холодного спаев, К.

Исходным конструктивным модулем термоэлектрических охлаждающих устройств (ТОУ) служит термоэлемент (ТЭЛ).

В энергетическом отношении ТОУ существенно уступают компрессионным машинам, и только при малой холодопроизводительности (около 20 Вт) холодильный коэффициент ТОУ может быть выше.

Термоэлектрическое охлаждение используют в термостатах, охладителях жидкостей и газов, осушителях воздуха, бытовых и транспортных холодильниках, кондиционерах.

РАЗДЕЛ II

ХОЛОДИЛЬНАЯ ТЕХНОЛОГИЯ ПРОДУКТОВ ПИТАНИЯ

ГЛАВА 9

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХОЛОДИЛЬНОГО

КОНСЕРВИРОВАНИЯ ПИЩЕВЫХ ПРОДУКТОВ

9.1. Принципы сохранения пищевых продуктов

Сохранение пищевых продуктов основано на способности микроорганизмов реагировать на воздействие физических, химических и биологических факторов. Изменяя условия среды и оказывая то или иное воздействие на продукт, можно регулировать состав и активность его микрофлоры.

Способ консервирования холодом основан на том, что при понижении температуры значительно снижаются жизнедеятельность микроорганизмов и активность тканевых ферментов, что приводит к замедлению как естественно протекающих в продуктах реакций (автолиз мяса, дыхание и созревание плодов), так и реакций, вызываемых деятельностью микроорганизмов.

Известно, что некоторые пищевые продукты, например мука, крупы, сахар и т.д., не портятся в обычных условиях при длительном хранении. Для кратковременного и особенно длительного хранения других продуктов требуются специальные условия, так как качество их относительно быстро ухудшается — изменяются присущие свежим продуктам вкус, запах, консистенция и цвет. Такие продукты называются скоропортящимися. К ним относятся мясо и мясопродукты, рыба и морепродукты, молоко и молочные продукты, яйца и яичные продукты, масло животное и растительные жиры, свежие плоды и овощи, дрожжи хлебопекарные, фруктовые соки и минеральные воды, пиво, виноградные и плодово-ягодные вина, сиропы, мороженое и др. В скоропортящихся продуктах содержится в значительном количестве вода, а также органические соединения, что создает благоприятные условия для развития и жизнедеятельности различных микроорганизмов и ферментов.

Совокупность свойств, от которых зависит степень использования пищевых продуктов по назначению, определяет их качество. Важно, чтобы пищевые продукты были свежими, питательными и вкусными.

Способы консервирования. Все скоропортящиеся продукты во время хранения подвергаются значительным изменениям. Если по отношению к ним не применить своевременно те или иные способы консервирования, то они относительно быстро придут в негодность. Следовательно, консервирование пищевых продуктов заключается в специальной их обработке для предохранения от порчи при хранении.

Продукты могут портиться под влиянием различных факторов:

под действием кислорода воздуха и солнечных лучей;

вследствие чрезмерно низкой или очень высокой влажности воздуха;

вследствие биохимических процессов (деятельность тканевых ферментов);

под влиянием микробиологического фактора.

Способы консервирования подразделяют на физические, физико-химические, химические, биохимические и комбинированные.

Физические способы — использование высоких и низких температур, а также ионизирующих излучений, ультрафиолетовых лучей, ультразвука и фильтрации.

Физико-химические способы — сушка, соление и использование сахара.

Химические способы основаны на применении химических веществ, безвредных для человека и не изменяющих вкус, цвет и запах продукта. В России в качестве консервантов разрешены следующие химические препараты: этиловый спирт, уксусная, сернистая, бензойная, сорбиновая кислоты и некоторые их соли, борная кислота, уротропин, отдельные антибиотики, озон, углекислый газ и ряд других.

Биохимические способы консервирования основаны на подавляющем действии молочной кислоты, образующейся в результате сбраживания сахаров продукта молочнокислыми бактериями.

Комбинированные способы — дымное и бездымное копчение, а также некоторые другие, основанные на использовании нескольких видов консервантов одновременно.

Микроорганизмы и ферменты вызывают разложение белков, гидролиз жиров, глубокие превращения углеводов и другие изменения. Поэтому основная задача консервирования пищевых продуктов сводится к ограничению или устранению разрушительного действия микроорганизмов и тканевых ферментов.

При этом внешнее воздействие на биологические факторы порчи может иметь различные формы — биоз, анабиоз, ценоанабиоз и абиоз.

Биоз — поддержание жизненных процессов в продуктах, т. е использование их иммунитета. На этом принципе основано хранение плодов и овощей, живой рыбы, предубойное содержаний скота и птицы.

Анабиоз — замедление, подавление жизнедеятельности микроорганизмов и активности тканевых ферментов при помощи холодильной обработки и хранения, сушения и вяления, маринования, консервирования в сахарном сиропе и т.д.

Ценоанабиоз — подавление вредной микрофлоры за счет создания условий для жизнедеятельности полезной микрофлоры, способствующей сохранению продуктов (квашение, молочнокислое Л спиртовое брожение при производстве и хранении кисломолочных продуктов).

Абиоз — прекращение всякой жизнедеятельности, в том числе и микроорганизмов, в продуктах (высокотемпературная обработка, применение лучистой энергии, токов высокой и сверхвысокой частот, антибиотиков, антисептиков и др.).

При выборе способа консервирования стремятся добиться максимальной сохраняемости продукта, а также экономичности процесса. Поэтому в практической деятельности часто способы консервирования комбинируют.

Консервирование с помощью искусственного холода. Лучший способ консервирования — тот, который позволяет длительное время хранить продукт с наименьшими потерями им пищевой ценности и массы. Этим требованиям в наибольшей степени отвечает консервирование с помощью искусственного холода. Холод более экономичен по сравнению с тепловой обработкой по затратам энергии (кВт·ч/т):

Охлаждение............................................................. 15

Замораживание........................................................100 Пастеризация...........................................................130 Стерилизация...........................................................235

Сушка........................................................................660

В зависимости от решаемых задач продукты подвергаются разной глубине холодильной обработки (охлаждение, переохлаждение, подмораживание, замораживание, домораживание), а для восстановления натуральных свойств к ним подводят теплоту (отепление, размораживание).

Охлаждением продуктов называется процесс отвода теплоты от них с понижением их температуры не ниже криоскопической. На практике все более широко применяют предварительное охлаждение, предшествующее любому последующему этапу технологического цикла обработки холодом и существенно снижающее Потери при хранении.

Переохлаждение — это состояние продукта, вызванное понижением его температуры ниже криоскопической без возникновения кристаллов влаги. Оно бывает устойчивым или неустойчивым в зависимости от теплофизических свойств продукта и температурных режимов окружающей среды.

Подмораживание — процесс, сопровождающийся частичной кристаллизацией влаги в поверхностном слое, основная масса продукта находится в переохлажденном состоянии. Продолжительность хранения продуктов в подмороженном виде увеличивается в 2 — 2,5 раза по сравнению с охлажденными.

Замораживание — отвод теплоты от продуктов с понижением температуры ниже криоскопической при кристаллизации большей части воды, содержащейся в продуктах. Это предопределяет их сохранность при длительном холодильном хранении.

Домораживание — понижение температуры до заданного уровня при отводе теплоты от частично замороженного продукта.

Отепление — подвод теплоты к охлажденным продуктам с повышением их температуры до температуры окружающей среды или несколько ниже.

Размораживание — подвод теплоты к продуктам в целях декристаллизации содержащегося в них льда. В конце процесса температура в толще продукта составляет 0 °С и выше, кристаллы льда плавятся, ткани поглощают влагу. Цель размораживания — максимальное поглощение влаги тканями и полное восстановление первоначальных свойств продуктов.

Продолжительность холодильной обработки исчисляется минутами, часами, иногда сутками и влияет на качество и сохранность продуктов при последующем холодильном хранении.

Холодильное хранение — это хранение продуктов после холодильной обработки при заданном режиме в камере.

Под режимом холодильной обработки и хранения понимают совокупность параметров и условий, влияющих на качество продуктов (температура, относительная влажность, скорость движения воздуха, состав среды, укладка, продолжительность процесса).

Особое значение при холодильном хранении, в первую очередь длительном, имеет сокращение потерь массы продуктов, что достигается строгим соблюдением режима и применением дополнительных методов.

Эффективное использование холодильного консервирования требует создания единой непрерывной холодильной цепи на протяжении всего пути продукта от производителя к потребителю.

9.2. Влияние низких температур на рост

и размножение микроорганизмов

Различают три группы микроорганизмов по отношению к температурным условиям: термофилы, мезофилы и психрофилы.

Термофилы — микроорганизмы, развивающиеся при температурах 20 — 80 °С, оптимально 50 — 75 °С; мезофилы живут при 5 – 57 °С, а психрофилы способны расти при относительно низких температурах — от +10 до -10°С.

Нас интересуют именно психрофилы, развивающиеся в условиях холодильного хранения пищевых продуктов. Различают факультативные психрофилы, условия жизни которых приближаются к режиму мезофилов, и облигатные, т.е. строгие психрофилы, способные размножаться только при низких температурах.

Психрофильные бактерии активно размножаются на продуктах с небольшой кислотностью — мясе, рыбе, некислых молочных и овощных продуктах при -5... -8 °С. Большинство плесеней — психрофильные, они довольно активно развиваются на замороженных продуктах. Плесени, так же как и дрожжи, размножаются главным образом на кислых продуктах. Являясь аэробами, плесени растут вплоть до температуры -2...-3°С, при более низкой температуре их размножение прекращается. Но отдельные виды плесеней прекращают размножение лишь при -8...-10°С.

Рост и размножение могут происходить при разных температурах. Так, размножение бактерий Е. coli прекращается при 7,3 °С, в то время как их рост продолжается.

Рассмотрим восемь фаз роста микроорганизмов (рис. 17):

1) лаг-фаза (а) — стадия развития, которая характеризуется постоянством числа бактериальных клеток. Микроорганизмы привыкают к внешней среде, вследствие чего может произойти уменьшение их количества, особенно при пониженных температурах. Продолжительность лаг-фазы зависит от вида микроорганизмов, питательной среды и температуры;

Рис. 17. Кривая фаз роста бактерий

2) фаза ускорения роста (б), в которой происходит бурное размножение микроорганизмов;

3) логарифмическая фаза роста (в), в которой идет быстрое, с постоянной скоростью размножение бактериальных клеток;

4) фаза замедления роста (г);

5) фаза максимальной концентрации микроорганизмов, или максимальная стационарная фаза (д). На этой стадии концентрация микроорганизмов при определенных не меняющихся условиях внешней среды сравнительно постоянна. Их развитие и отмирание протекают с одинаковой интенсивностью. Опытные данные показывают, что в этой фазе максимальное число бактериальных клеток в 1 г продукта 109— 1010;

6) фаза ускорения гибели микроорганизмов (е), в которой создаются неблагоприятные условия для обмена веществ;

7) фаза гибели (ж), в течение которой микроорганизмы под влиянием собственных продуктов жизнедеятельности быстро отмирают;

8) конечная стационарная фаза (фаза адаптации) (з).

Изучение различных фаз роста микроорганизмов имеет большое практическое значение. Так, продолжительность фаз а и б сокращается, если количество исходных микроорганизмов велико, т.е. при большей начальной обсемененности пищевых продуктов скорее наступает логарифмическая фаза.

Наиболее существенно понижение температуры влияет на продолжительность лаг-фазы и характер логарифмической фазы. Чем ниже температура, тем продолжительнее лаг-фаза и более пологи участки логарифмической фазы, т.е. микроорганизмы размножаются медленнее.

Микроорганизмы бывают чувствительными, умеренно устойчивыми и нечувствительными к отрицательной температуре. Особенно чувствительны к низким температурам вегетативные клетки плесневых грибов и дрожжей. При отрицательных температурах легко погибают грамотрицательные бактерии, принадлежащие к группе Е. coli, бактерии группы Pseudomonas—Achromobacter и Salmonella. Более устойчивы к низким температурам грамположительные бактерии, в том числе S. aureus; наиболее устойчивы почвенные бактерии. Споры бацилл Clostridium нечувствительны к низким температурам, тогда как споры плесневых грибов проявляют умеренную устойчивость.

Устойчивость микроорганизмов к действию отрицательных температур зависит от трех факторов: температуры, скорости ее понижения и времени воздействия.

Действие отрицательных температур на микроорганизмы проявляется в изменении состояния воды в микробной клетке. Максимальное повреждающее действие оказывает внутриклеточное образование льда. Это приводит к повышению концентрации внутри- и внеклеточных растворов, что ведет к денатурации белков и нарушению барьеров проницаемости.

Однако повреждение микроорганизмов холодом может происходить и без образования льда. Гибель бактериальных клеток в результате холодового шока происходит при очень быстром охлаждении из-за низкого осмотического давления. При этом губительное действие низких температур связано с нарушением нуклеиновых кислот и целостности липидных мембран.

Устойчивость микроорганизмов к отрицательным температурам зависит и от продолжительности воздействия холода. В начале замораживания число бактериальных клеток быстро уменьшается, затем гибель микроорганизмов замедляется и, наконец, остаются устойчивые к низким температурам клетки, количество которых зависит от условий замораживания, индивидуальной устойчивости вида микробов.

Необходимо иметь в виду, что развитие микроорганизмов при температуре выше -10°С возможно и это может привести к снижению качества хранящегося продукта и даже к его порче. Так при длительном хранении мороженого мяса при температуре выше -8°С могут развиваться плесневые грибы. Они растут отдельными колониями, которые впоследствии увеличиваются и уплотняются. Мицелий гриба проникает в толщу мяса, начинается спороношение. На поверхности продукта появляются белые, серые или черные пятна, в толще накапливаются продукты жизнедеятельности плесеней, появляется затхлый запах. Аналогичные процессы протекают при хранении мороженой рыбы и других продуктов.

В замороженных ягодах или фруктово-ягодных соках, хранящихся при температуре выше -8 °С, образуется продукт жизнедеятельности дрожжей — спирт.

9.3. Воздействие низких температур на клетки,

ткани и организмы

Как правило, действие низких температур на клетки, ткани и организмы носит в большей или меньшей степени повреждающий характер. Это происходит, во-первых, вследствие глубокого нарушения обмена веществ при быстром понижении температуры, получившего название «температурный шок». Такое явление объясняется нарушением динамического равновесия биохимических процессов вследствие того, что активность разных ферментов при резком снижении температуры различна. В результате в клетках накапливаются промежуточные, зачастую токсичные продукты обмена веществ (метаболиты). Если процесс охлаждения проводится быстро, то может наступить гибель биологического объекта.

При постепенном снижении температуры организм может адаптироваться, т.е. приспособиться к изменяющимся условиям, и в этом случае выжить. Очень часто температурный шок сопровождается структурными изменениями в клетках. Внезапное охлаждение может привести к значительному увеличению вязкости протоплазмы — до гелеобразования с последующим отделением жидкой фазы.

При охлаждении биологических объектов ниже температур, при которых происходит превращение воды в лед, основную роль начинают играть повреждающие факторы процессов кристаллообразования — льдообразование.

Процесс льдообразования при постепенном понижении температуры начинается после более или менее глубокого переохлаждения. Сначала кристаллы льда возникают в межклеточной жидкости, концентрация растворенных веществ которой вследствие вымерзания воды начинает увеличиваться. Разность между концентрациями растворов в межклеточном пространстве и внутри клеток приводит к перемещению влаги из клеток к кристаллам в межклеточном пространстве. Таким образом, увеличиваются кристаллы снаружи клеток, а сами клетки обезвоживаются. В дальнейшем процесс кристаллизации может начаться и в самих клетках. При оттаивании рассмотренные явления развиваются в обратной последовательности.

В случае быстрого понижения температуры биологических объектов кристаллизация может происходить одновременно внутри клеток и в окружающей их межклеточной жидкости.

В процессе хранения наблюдается миграционная перекристаллизация — увеличение размеров крупных кристаллов вследствие исчезновения мелких.

Одна из причин повреждения клеток — механическое действие кристаллов льда, которое приводит к их разрыву, проколам и порезам. Кроме того, из-за разрастания кристаллов льда в межклеточном пространстве уменьшаются размеры клетки, что вызывает сжатие и образование складок в оболочке, в результате чего может произойти механическое повреждение протоплазмы. При поступлении воды в клетку во время размораживания тесно соприкасающиеся слои протоплазмы начинают расходиться, при этом протоплазма часто отрывается от оболочки, что приводит к повреждению структуры клетки.

Еще более сильным повреждающим фактором является денатурация протоплазматических белков, вызванная обезвоживанием клетки в результате вымораживания воды. Так, сближение молекул белка в результате обезвоживания приводит к тому, что сульфгидрильные группы (—SH—) отдельных белковых молекул вступают во взаимодействие и образуют дисульфидные связи. При оттаивании вода проникает в клетки и начинает раздвигать белковые молекулы. Однако вследствие того что энергия образовавшихся дисульфидных связей выше, чем энергия водородных связей в структуре самой молекулы, происходит разрыв не дисульфидных, а водородных связей, что вызывает развертывание макромолекул белка, т.е. их денатурацию.

В результате вымораживания воды обезвоживание клетки может достичь такой степени, что различные протоплазматические структуры придут в соприкосновение. При этом возможен перенос ряда активных структурных компонентов с одной поверхности на другую. Например, соприкосновение сложных мембран митохондрий, на которых расположены ферменты в строго установленной последовательности, может нарушить энергетические процессы и привести к гибели клетки.

Наконец, еще один фактор повреждающего действия — повышение концентрации минеральных солей (электролитов) в незамерзшей клеточной жидкости при обезвоживании в процессе кристаллообразования. Под действием образующихся концентрированных солевых растворов белки денатурируют, причем развитие процесса зависит не только от концентрации солей, но и от рН среды. К повышению концентрации солей особенно чувствительны липопротеиды, из которых в основном состоят мембраны клеток.

Поскольку с повышением концентрации солевых растворов возрастает осмотическое давление, весь комплекс явлений, развивающихся при замораживании, получил название «осмотический шок».

Установлено, что многие органические вещества и некоторые биологические объекты лучше сохраняются при быстром и сверхбыстром замораживании. Например, диски концентрированного желатинового геля, быстро замороженные в жидком воздухе, не изменяются в результате кристаллообразования, а также под действием повреждающих факторов. Яичный желток утрачивает биологическую активность после замораживания до -6 °С, но не повреждается при замораживании в жидком азоте и быстром оттаивании в теплой ртути.

В ряде случаев активность ферментов в значительной степени сохраняется при быстром и сверхбыстром замораживании. При быстром замораживании остается меньше времени для воздействия солевых растворов на структуру белков молекул живых клеток. Микроскопические исследования биологических объектов показали также, что их структура сохраняется тем лучше, чем быстрее происходит замораживание.

Сохранение жизнеспособности биологических объектов при сверхбыстром замораживании обусловлено витрификацией (стеклообразованием) воды в протоплазме клеток и последующей девитрификацией (расстеклованием) при быстром отеплении. В ходе этих процессов не происходит перегруппировки молекул воды, что способствует сохранению тонкой структуры протоплазмы клеток. Витрификация представляет собой глубокое переохлаждение жидкости, при котором в ней отсутствует кристаллическая решетка.

Исследования показали, что даже при охлаждении с максимальной скоростью биологические объекты всегда содержат наряду с аморфной стеклообразной массой затвердевшей жидкости мельчайшие кристаллы льда.

Степень повреждающего действия низких температур зависит от места образования кристаллов льда в клетках и тканях биологических объектов. Так, при внутриклеточной кристаллизации интенсивно разрушаются элементы протоплазмы. При замораживании растительных организмов образование льда внутри клеток всегда приводит к их гибели. Подавляющее большинство клеток Животного организма также не выдерживает внутриклеточного льдообразования.

Благодаря использованию защитных веществ (глицерин, сахарный сироп, полиэтиленоксид и др.) возможны очень высокие скорости замораживания.

9.4. Вспомогательные средства, применяемые

при холодильной обработке и хранении

Для сохранения качества, снижения потерь и увеличения продолжительности хранения продуктов кроме холодильной обработки применяют дополнительные средства: ультрафиолетовое и ионизирующие излучения, антисептики, регулируемую (РГС) и модифицированную (МГС) газовые среды и т.д.

Ультрафиолетовое излучение широко применяют на пищевых и торговых предприятиях для санации воздуха и поверхностного слоя продуктов. Оно охватывает область электромагнитных колебаний с длиной волны 136 — 4000 , обладает большой энергией и поэтому оказывает сильное химическое, физическое и биологическое воздействие. В зависимости от длины волны действие различных участков ультрафиолетового спектра неодинаково. Наибольшим воздействием на бактерии, подавляющим их жизнедеятельность, обладают лучи с длиной волны от 2000 до 2950 . Эта область называется бактерицидной. Максимум бактерицидного действия оказывают лучи с длиной волны около 2600 .

Бактерицидные ламповые источники ультрафиолетовых лучей, выпускаемые промышленностью, представляют собой газоразрядные лампы низкого давления с самонакаливающимися катодами. Они работают от электрической сети переменного тока напряжением 127 и 220 В.

Под воздействием УФ-лучей происходит отмирание микроорганизмов только в поверхностном слое продукта, так как проникающая способность лучей не превышает 0,1 мм. Стерилизующий эффект облучения зависит от микробиологической загрязненности продукта и стадии развития микроорганизмов. В сочетании с низкими положительными температурами он значительно увеличивает сроки хранения (в два раза и более) охлажденного мяса, яиц, полукопченых и копченых колбасных изделий, сыров, цитрусовых и других продуктов.

Под влиянием облучения рост микрофлоры резко замедляется, т.е. проявляется бактериостатический эффект, который зависит не только от дозы облучения, но и от состояния внешней среды. С понижением температуры среды продолжительность бактериостатического эффекта увеличивается.

Ионизирующие излучения вследствие высокой энергии способны вызвать ионизацию электрически нейтральных атомов и молекул и стимулировать в облученных материалах однотипные химические реакции.

Обработку продуктов проводят в специальных аппаратах (например, кобальтовых пушках), где происходит радиоактивный распад различных изотопов. При этом в продуктах возникают химические превращения, связанные в первую очередь с ионизацией воды, что вызывает образование свободных радикалов с высокой химической активностью, приводит к изменениям в клетках. При определенной дозировке лучи подавляют жизнедеятельность микроорганизмов. На практике радиационную обработку проводят в виде радаппертизации — до полной стерильности продукта; радуризации — до ограниченного подавления микрофлоры; радисидации — до выборочного подавления микроорганизмов какого-либо типа для увеличения продолжительности хранения продукта.

Применение антисептиков основано на их свойстве подавлять микроорганизмы, предохраняя продукты от порчи. Проникая в клетку микроорганизма, эти вещества вступают во взаимодействие с белками протоплазмы, что приводит к их гибели.

К антисептикам предъявляют ряд требований, важнейшими из которых являются безвредность и минимальные изменения потребительских свойств продуктов.

В качестве антисептиков применяют сорбиновую и бензойную кислоты, пероксид водорода, диоксид серы и др.

Регулируемая газовая среда как способ консервирования заключается в хранении плодов и овощей в атмосфере с пониженной концентрацией кислорода и более высокой, чем в воздухе, концентрацией диоксида углерода. Снижение концентрации кислорода и повышение концентрации диоксида углерода замедляют процесс газовыделения в два-три раза и уменьшают теплоту дыхания до 3 — 5 %.

Благодаря использованию РГС для хранения плодов и овощей в охлажденном состоянии увеличиваются сроки их созревания и хранения, уменьшаются потери. Применяют газовые среды разных типов, различающиеся содержанием кислорода и углекислого газа.

Состав газовой смеси зависит от вида сырья, сорта, условий выращивания и других факторов.

Модифицированная газовая среда — разновидность РГС. В этом случае газовый состав при хранении плодов и овощей создается в упаковке продукта и выдерживается с меньшей точностью.

Для поддержания стабильности газовой среды внутри упаковки при хранении плодов используют селективно-проницаемые мембраны из пленок с высокой газопроницаемостью, поглотители углекислого газа и паров воды, перфорированные пленочные материалы. Часто эти способы комбинируют, применяя дополнительную обработку плодов, поглотители этилена, альдегидов и других веществ, выделяемых плодами при хранении и влияющих на их качество.

Селективно-проницаемые мембраны обычно изготавливают из силиконового каучука — пленочного материала с хорошей газопроницаемостью. В таких упаковках создается модифицированная микроатмосфера, которую в определенной степени можно регулировать, подбирая пленки с различной селективной проницаемостью для газов, сорта и количество плодов, а также температурно-влажностный режим в хранилищах.

Хранение яблок в полиэтиленовых контейнерах с силоксановыми мембранами позволяет значительно увеличить выход товарных плодов и снизить потери, сократить их естественную убыль.

Для мелкой потребительской упаковки свежих фруктов, овощей и ягод используют различные пленочные материалы в зависимости от интенсивности дыхания объекта.

Модифицированную газовую атмосферу применяют также для консервирования сырья животного происхождения и продуктов его переработки. Повышенные концентрации углекислого газа подавляют жизненные функции микроорганизмов охлажденного мяса и мясопродуктов и процессы окисления жира.

При переработке мяса в качестве вспомогательного консервирующего средства применяют препарат «Бомаль», в состав которого входят ацетат, цитрат и L-аскорбат натрия, L-аскорбиновая кислота. Препарат стабилизирует количество микроорганизмов, способствует увеличению сроков хранения мясопродуктов, сохранению их свежести и улучшению органолептических свойств.

ГЛАВА 10

ВИДЫ ХОЛОДИЛЬНОЙ ОБРАБОТКИ

ПИЩЕВЫХ ПРОДУКТОВ

10.1. Охлаждение

Охлажденным считается продукт, в толще которого поддерживается температура от 0 до 4°С.

Основная задача охлаждения заключается в создании неблагоприятных условий для развития микробиальных и ферментативных процессов в пищевых продуктах. Цель охлаждения — сохранение первоначального качества продукта в течение определенного времени.

Для многих продуктов, особенно растительного происхождения, являющихся живыми организмами, выбор конечной температуры охлаждения, при которой они будут храниться, имеет большое значение. Повышение или понижение температуры хранения на несколько градусов по сравнению с оптимальной приводит к преждевременной порче продуктов. Каждый способ охлаждения оценивают по совокупности признаков, среди которых первостепенное значение имеют качество получаемого продукта и экономичность способа охлаждения.

Способы охлаждения пищевых продуктов можно подразделить на три основные группы: в контакте с воздухом, в контакте с жидкостью (или тающим льдом, снегом), в контакте с инертными газами. Эти способы различаются по величине коэффициентов теплоотдачи на поверхности охлаждаемого продукта.

Пищевые продукты чаще всего охлаждают в воздухе, несмотря на то, что коэффициент теплоотдачи в нем самый малый.

Когда указывают режимы охлаждения в воздухе, то называют обычно его температуру, среднюю скорость движения и относительную влажность.

Поле относительной влажности воздуха в камерах охлаждения, так же как и в камерах замораживания, очень неравномерно. Если поверхность охлаждаемого тела влажная, то воздух около нее находится в состоянии насыщения при температуре тела, а у поверхности охлаждающих приборов — при температуре их теплообменной поверхности. Поскольку эти две поверхности имеют разную температуру, неодинаково и влагосодержание воздуха около них. Все это приводит к испарению влаги с поверхности продукта и конденсации ее из воздуха на поверхности охлаждающих приборов. По мере увеличения скорости движения воздуха в камере уменьшается неравномерность поля относительной влажности и температуры.

Деление способов охлаждения пищевых продуктов на три основные группы не исключает многообразия вариантов режимов охлаждения в пределах каждой группы.

При охлаждении любым способом преследуют две цели:

охлаждение продукта сразу после производства;

интенсивное охлаждение.

На скорость охлаждения продукта влияет ряд факторов: его размеры; величина поверхности; масса; удельная теплоемкость; начальная и конечная температуры и многое другое.

Удельная теплоемкость с пищевых продуктов колеблется от 2,1 до 4,1 кДж/(кг • К). Чем больше влаги в продукте, тем выше теплоемкость. Например, теплоемкость растительного масла 2,1 кДж/ (кг • К), а овощей 4,1 кДж/(кг • К).

Пищевые продукты имеют в основном небольшую теплопроводность. Поэтому они охлаждаются относительно медленно. Теплопроводность свиного сала 0,14 Вт/(м · К), мяса животных около 0,47 Вт/(м · К).

Поскольку охлаждение пищевых продуктов в воздухе сопровождается испарением влаги с поверхности и выделением внутренней теплоты за счет биологических процессов, оно представляет собой комплексный процесс тепло- и массообмена.

10.2. Замораживание

К замораживанию пищевых продуктов прибегают для достижения следующих целей:

обеспечения сохранности во время длительного хранения;

отделения влаги при концентрировании жидких пищевых продуктов;

изменения физических свойств продуктов (твердость, хрупкость и др.) при подготовке к дальнейшим технологическим операциям;

при сублимационной сушке;

производства своеобразных пищевых продуктов и придания им специфических вкусовых и товарных качеств (мороженое, пельмени, другие быстрозамороженные продукты).

Основное отличие результатов замораживания от результатов охлаждения состоит в том, что замороженные продукты более стойки при хранении, чем охлажденные, поскольку вода в них превращается в лед. При этом прекращается диффузионное перемещение растворимых в воде веществ и, следовательно, питание микроорганизмов и протекание биохимических (ферментативных) реакций. Эффект замораживания достигается при температуре в центре продукта -6 °С и ниже.

Результативный эффект превращения воды в лед родственен эффекту обезвоживания. При этом уменьшается количество влаги, необходимой для жизнедеятельности микроорганизмов и осуществления биохимических реакций.

Различие между замораживанием и сушкой состоит в том, что при замораживании влага превращается в лед, не будучи удаленной из продукта, тогда как при сушке она удаляется.

Замороженный продукт отличается от охлажденного рядом внешних и физических признаков и свойств:

твердостью — результат превращения воды в лед;

яркостью окраски — результат оптических эффектов, вызываемых кристаллизацией льда;

уменьшением удельного веса — следствие расширения воды при замораживании;

изменением термодинамических характеристик (теплоемкость, теплопроводность, температуропроводность).

В технологическом отношении замораживание в отличие от охлаждения вызывает необратимые изменения в продукте, препятствующие полному восстановлению его первоначальных свойств. Поэтому в таком случае говорят о неполной обратимости пищевых продуктов.

При замораживании в отличие от охлаждения происходят частичное перераспределение влаги, травмирование тканей продукта кристаллами льда, а также иногда частичная денатурация белка.

В итоге вкусовые и питательные достоинства продукта могут снизиться, если замораживание осуществлено неправильно. Замораживая продукт, необходимо стремиться прежде всего к сохранению его питательных и вкусовых свойств. Для этого необходимо добиться максимальной обратимости явлений, происходящих в процессе замораживания.

Механизм вымерзания воды (теория кристаллообразования).

Процесс замораживания тканей — это прежде всего замерзание тканевой жидкости, т.е. раствора небольшой концентрации.

Поскольку в воде продукта растворены минеральные и органические вещества, фазовое превращение начинается при отводе теплоты в момент нарушения состояния переохлаждения. При этом понижение температуры сопровождается соответствующим изменением концентрации жидкого раствора.

Криоскопическая температура зависит от концентрации раствора, степени диссоциации растворенных веществ и свойств растворения. Для продуктов животного происхождения она ниже 0 0С: мясного сока -1 ...-1,5 °С, крови -0,55...-0,56 °С, яичного белка -0,45 °С, яичного желтка -0,65 °С.

При замораживании разбавленных растворов вначале вымерзает чистая вода.

Количество воды в мясе убойных животных составляет 53 — 75%, а в рыбе — 55 — 80%. По существующей классификации в пищевых продуктах различают связанную (гидратационную) и свободную воду. Содержание связанной воды почти постоянно и составляет около 10 % ее общего количества в продукте. Дипольные частицы воды посредством адсорбции прочно связаны с ионами и полимерными группами белков. При замораживании продуктов связанная вода не участвует в фазовых превращениях.

Свободная вода находится в межклеточном пространстве продукта и является растворителем минеральных веществ. При температуре ниже криоскопической она превращается в лед. По мере вымораживания свободной воды увеличивается концентрация солей в незамерзшем межклеточном растворе, что приводит к смещению криоскопической температуры в область более низких температур. При этом вымораживание воды происходит постепенно, с повышением концентрации оставшегося раствора. При достижении концентрации, определенной для данного раствора (тканевого сока), он застывает в сплошную твердую массу, называемую эвтектикой; температура ее образования называется эвтектической.

В холодильной технологии воду, перешедшую в твердое состояние, принято называть вымороженной. Количество вымороженной воды определяется отношением влаги, превращенной в лед, к общему ее количеству:

= Gл / (Gл + GВ), (31)

где Gл, GB — количество соответственно льда и влаги при данной температуре, доли единицы.

Экспериментально установлено, что примерно 3/4 воды, содержащейся в мясе, птице, рыбе и яйцах, и до половины в картофеле вымораживается при температуре до -4 0С. Считается, что полное вымораживание свободной воды продовольственных продуктов происходит при снижении их температуры до -30 0С.

На качество замороженных продуктов большое влияние оказывают размер, форма и распределение кристаллов льда, образующихся в продукте при замораживании. Характер кристаллообразования зависит от состояния клеточных оболочек, концентрации растворенных веществ в клетках, степени гидратации белков и других свойств продукта. Большое значение имеет также скорость замораживания.

Скорость замораживания определяется скоростью продвижения границы раздела между жидкой и отвердевшей фазами от поверхности замораживаемого продукта к его термическому центру. Следует различать среднюю и номинальную скорости замораживания.

Хорошие результаты обеспечивает скорость замораживания, при которой продолжительность действия критических температур не превышает 30 мин.

Существует несколько способов определения скорости замораживания.

Скорость замораживания V рассматривается как промежуток времени , необходимый для понижения температуры продукта в пределах некоторого интервала температур t, °С/мин:

V = t / . (32)

Иногда под скоростью замораживания понимают количество вымороженной воды в объекте за какой-то промежуток времени, % /мин:

V = / . (33)

Наиболее часто среднюю скорость рассматривают как отношение пути к продолжительности прохождения фронта кристаллообразования от поверхности продукта до геометрического центра и выражают.

Скорость замораживания зависит от температуры, толщины продукта и способа замораживания. По Планку, она выражается формулой

dx/d = (tкр - to) / q [(x / ) + (1 /)], (34)

где tкp, t0 — соответственно криоскопическая температура продукта и температура охлаждающей среды, °С; q — удельное количество теплоты, отводимой от продукта при замораживании, кДж/кг; — плотность продукта, кг/м3; х — определяющий размер продукта, м; — коэффициент теплопроводности продукта, Вт/(кг · К); — коэффициент теплоотдачи.

По скорости замораживание подразделяют на медленное (до 0,01 м/ч), ускоренное (от 0,01 до 0,05 м/ч), быстрое (от 0,05 до 0,1 м/ч) и сверхбыстрое (более 0,1 м/ч).

При медленном замораживании сначала образуются кристаллы-затравки льда из межклеточного (межволоконного) тканевого сока относительно невысокой концентрации. Повышенное давление пара над переохлажденной, но еще не затвердевшей жидкостью внутри клетки вызывает диффузию водяного пара через стенки клеток, что приводит к конденсации его на поверхности кристаллов-затравок и образованию крупных кристаллов льда вне клеток, травмирующих ткани. Медленное замораживание приводит к полной потере свободной воды внутри клеток (процесс криоосмоса, или криоконцентрации). В замороженной таким образом ткани внутри клеток, потерявших упругость, находится незамерзший раствор, а весь образовавшийся лед — вне клеток. При этом количество поврежденных клеток превышает 70 %.

При быстром замораживании образуются мелкие кристаллы льда, которые равномерно распределены по всей толще замораживаемого продукта. Вода почти без перемещения переходит в лед по месту ее нахождения до замораживания. При этом травмирующее действие кристаллов на клетки и ткани минимально.

При ультрабыстром замораживании 90 % всех кристаллов льда формируется внутри клеток при минимальном повреждении ткани.

Существует несколько теорий, объясняющих механизм повреждения клеток и тканей при замораживании различными факторами:

механическим — давление образующихся кристаллов льда на строение тканей;

осмотическим — чрезмерная дегидратация клеток;

химическим — гиперконцентрация солей как вне, так и внутри клеток.

Все эти факторы — результат кристаллизации воды и перехода ее в лед.

В последнее время наибольшее распространение получили две теории — механическая и солевой денатурации (химическая).

По механической теории травмирование клеток вызывает механическое действие кристаллов льда, особенно внеклеточных.

При медленном замораживании процесс кристаллообразования начинается при определенной температуре (ниже криоскопической) прежде всего в межклеточных и межволоконных пространствах, жидкость в которых имеет более высокую криоскопическую точку из-за меньшей концентрации солей и органических веществ и слабее связана с гидрофильными коллоидами продукта.

Появление кристаллов льда приводит к увеличению концентрации веществ в слое раствора, прилегающем к поверхности кристаллов. Вследствие разности концентраций раствора внутри и вне клеток возникают отток влаги из волокон и клеток и намораживание ее на поверхности кристаллов.

Расширение воды при превращении ее в лед 9приводит к сдавливанию волокон и клеток, что вызывает дополнительный отток воды из них. Этот процесс продолжается до тех пор, пока температура не станет достаточно низкой, чтобы началось кристаллообразование внутри волокон и клеток, где остается уже небольшое количество влаги в концентрированном растворе.

При быстром замораживании теплота отводится более интенсивно. Прежде чем успеет активно развиться миграционный процесс, температура внутри волокон и клеток становится достаточно низкой, чтобы в соответствии с концентрацией раствора началось кристаллообразование. Таким образом, быстрое замораживание приводит к затвердеванию влаги без значительного ее перераспределения.

Повышение скорости замораживания сокращает миграцию влаги, вызывает образование большого количества мельчайших кристаллов, равномерно размещенных как в межклеточном пространстве, так и в клетках.

Если температуру понижать очень быстро (v 100 °С/мин) до -120...-160 °С и ниже, кристаллизация почти не происходит. Вода переходит в стекловидное состояние. Температура, при которой скорость роста кристаллов уменьшается, равна приблизительно -90 °С.

Стекловидное состояние отличается от кристаллического тем, что молекулы вещества распределяются хаотически, а не по определенному стереометрическому плану, как это происходит при кристаллизации.

При стекловидном состоянии ткань приобретает некоторые свойства твердого тела. Это состояние менее устойчиво в термодинамическом смысле, поэтому со временем при небольшом повышении температуры наблюдается постепенный переход из стекловидного к кристаллическому состоянию, сопровождающийся небольшим выделением теплоты (девитрификация).

При витрификации помимо аморфного (стекловидного) льда образуется небольшое количество мельчайших его кристаллов, неуловимых при оптических методах исследования. Это явление получило название «аморфизация».

Стекловидную массу можно сохранить только при температуре ниже -130°С.

При быстром нагревании стекловидное состояние может перейти в жидкое, минуя кристаллическое. Таким образом, минуя структурный распад, который наступает после внутриклеточной кристаллизации, а также при внутренней миграционной перекристаллизации после первоначального процесса замораживания, можно с помощью сверхбыстрого охлаждения предотвратить травмы клеток и достиг обратимости процесса, от которого зависит максимальное сохранение качества продукта.

Теория солевой денатурации (химическая) основывается на том, что в процессе льдообразования происходит перераспределение влаги в ткани и увеличивается концентрация солей в клетках.

Под действием повышенной концентрации солей и ряда химических и коллоидных процессов происходят денатурационные Изменения белковых веществ.

При медленном замораживании концентрация солевых растворов в продукте выше и время их воздействия больше. А степень денатурации белков зависит от времени воздействия на них гипертонических растворов. При сверхбыстром замораживании это время сводится к минимуму. Денатурация белков происходит при температурах, близких к точке эвтектики растворов, и падении рН. Изменение величины рН в биологическом объекте при замораживании приводит к изменениям активности ферментов и скорости денатурации белка.

Факторы, влияющие на качество замораживаемых продуктов. Быстрое замораживание не всегда обеспечивает высокое качество продуктов. Так, замораживание некоторых видов пищевых продуктов (большого объема) в криогенных жидкостях протекает с большой скоростью, но одновременно в продуктах сильно повышается внутреннее давление замерзшего клеточного сока. Повышение давления внутри замораживаемого продукта тем больше, чем больше его размеры, быстрее проводится замораживание и больше разность температур между внешним и внутренним слоями продукта.

Особенно высокое внутреннее давление создается при замораживании сверхбыстрым способом. Результат — повреждения внешних перемороженных слоев продукта, причем они не связаны с повреждениями, обусловленными образованием крупных кристаллов при медленном замораживании. Эти повреждения происходят, когда температура на поверхности продукта становится намного ниже криоскопической, а в центральных слоях еще отмечается стадия льдообразования. Увеличение объема центральных замерзающих слоев приводит к возрастанию внутреннего давления в продукте, и когда плотный, неэластичный внешний первый слой не в состоянии выдержать внутреннее давление, происходит разрыв замораживаемого продукта.

Решающее влияние на скорость замораживания оказывают температура охлаждающей среды, толщина замораживаемого продукта и коэффициент теплоотдачи от его поверхности.

Скорость замораживания влияет и на процессы массообмена, приводящие к усушке продукта. Пока на поверхности продукта не началось льдообразование, с нее испаряется капельно-жидкая влага, а затем происходит сублимация льда, что и приводит к его Усушке.

Потери воды при замораживании могут колебаться в широких Пределах — от 0,3 до 2 % и более в зависимости от температуры охлаждающей среды, начальной и конечной температур продукта, вида среды, метода и скорости замораживания, а также специфических свойств отдельных продуктов.

Для представления массообмена используют различные математические модели, описывающие явление испарения влаги с поверхности продукта (основаны на законе Дальтона), однако они включают большое число величин, определение которых затруднено. Поэтому массообмен в холодильной камере можно определять не по величине массы влаги, отданной продуктом, а по массе влаги, усвоенной воздухом в зависимости от его температуры, давления и равновесной влажности.

Из термодинамики следует, что масса влаги g, усвоенная воздухом, зависит от количества теплоты, подведенной к нему, температуры и относительной влажности воздуха, кг:

g = Q (1/d) / r (t), (35)

где Q — количество теплоты, воспроизведенное за счет сухого и влажного теплообмена, кВт; 1/d — доля теплоты, затраченной на массообмен; d — коэффициент влагопереноса; r(t) — скрытая теплота испарения, зависящая от температуры, кВт/кг.

Усушка резко уменьшается, если на поверхности натурального продукта имеется влагонепроницаемый слой (корочка подсыхания, слой жировой ткани). При измельчении продуктов усушка резко возрастает. Потери при замораживании плодов и овощей зависят от их размера, свойств кожицы, а также техники замораживания.

При замораживании бесконтактным способом в паронепроницаемой упаковке исключаются потери водяного пара через слой упаковочного материала. Однако при наличии свободных пространств между продуктом и упаковкой на внутренней поверхности упаковочного материала образуется иней в результате конденсации и замерзания водяного пара (внутренняя усушка).

Изменения, происходящие в продукте при замораживании. При любом способе и скорости замораживания в клетке могут происходить сложные изменения, связанные с нарушением ее структуры. Так, понижение температуры продукта до -8...-10°С сопровождается интенсивным льдообразованием и, следовательно, резким увеличением концентрации химических соединений в жидкой фазе продукта, уменьшением ее объема, сближением молекул. При этом создаются условия для структурных перестроек белковых молекул, возникновения межмолекулярных реакций, агрегации.

Нарушения пространственной структуры макрочастиц белков идентифицируются с денатурацией, а ее внешним проявлением является выделение тканевого сока при размораживании. Развитие этих процессов стимулирует повышение концентрации электролитов в жидкой фазе. Зона максимального развития денатурационных изменений совпадает с температурной зоной максимальной кристаллизации тканевого раствора. Денатурация наблюдается прежде всего в белках фракции актомиозина при отсутствии изменений белков саркоплазмы.

Важным фактором, влияющим на сохранение нативной структуры белков, является связанная вода. Однако это касается только воды, связанной с белками тех групп, в которых энергия связей выше энергии, высвобождающейся при переходе в кристаллическую структуру льда. Белковые вещества с более низкой энергией связи теряют воду, которая вымораживается, а молекулы белка агрегируются. Стабильные белковые вещества удерживают воду, позволяющую им сохранить нативную структуру и после размораживания.

Процессы денатурации белков при замораживании в определенной степени замедляются физическими изменениями образовавшегося раствора, в частности вязкости, ионной силы, давления водяных паров, рН. При введении некоторых веществ (этиленгликоль, пропиленгликоль, сахар, глицерин) процесс денатурации замедляется. Предполагается, что эти вещества усиливают прочность водородных мостиков и связей воды. При их введении снижается количество вымораживаемой воды.

Разрабатываются пищевые системы, включающие замораживаемый продукт и структурирующие вещества, состоящие из натуральных пищевых компонентов. Использование таких пищевых систем позволяет получить сырье для замораживания, которое не теряет высокой биологической ценности при температуре замораживания -20 °С, длительном хранении в замороженном виде и исключает потери при размораживании.

Изменение белков продуктов происходит также в результате их гидролиза под действием тканевых ферментов, которые высвобождаются при повреждении клеток.

Изменения жиров при замораживании и хранении — результат ферментативных и окислительных процессов. С понижением температуры замораживания скорость химических реакций резко замедляется, соответственно замедляются и химические процессы порчи жиров. Скорость ферментативных процессов при понижении температуры в определенном интервале может и возрастать.

При замораживании снижаются количество и активность микроорганизмов, однако добиться их полного уничтожения невозможно. Устойчивость микробной клетки к замораживанию зависит от вида микроорганизма, стадии его развития, среды обитания, а также скорости и температуры замораживания.

Влияние качества исходного сырья на качество замороженных продуктов. Получение высококачественных замороженных мясных Продуктов возможно только при исходном высоком качестве сырья, которое определяется многими факторами: условиями роста, кормления, упитанностью, физиологическим состоянием животного перед убоем, совершенством операций по убою и разделке туш. Критерием качества мясного сырья принято также считать степень развития в сырье послеубойных процессов.

Мясо, замороженное в стадии окоченения, более низкого качества, так как белки такого мяса обладают наименьшей растворимостью, набухаемостью и влагоудерживающей способностью.

Замороженное парное мясо обладает высокой степенью обратимости, а белки имеют хорошую набухаемость и влагоудерживающую способность, так как резко тормозятся автолитические процессы, не наблюдается также изменений гистологической структуры тканей. Такое мясо имеет наилучшие потребительские свойства.

Существенным фактором, определяющим качество сырья и его стойкость при последующем хранении, является конечная температура продукта. При ее снижении уменьшаются потери белковых и экстрактивных веществ с мясным соком. Так, мясо животных или рыбы, замороженное до -50...-70 °С, а затем размороженное, незначительно отличается по показателям качества от мяса, не подвергавшегося замораживанию.

В то же время различия в качестве продуктов, замороженных разными методами, после нескольких месяцев хранения при температуре -20 °С практически исчезают вследствие рекристаллизации. Движущей силой этого процесса может быть колебание температуры во время хранения, а также разность давлений водяных паров на поверхности мелких и крупных кристаллов. На поверхности мелких кристаллов давление водяных паров всегда выше, вследствие чего происходит миграция влаги от более мелких кристаллов к крупным. При низких температурах процесс рекристаллизации протекает медленно, но по мере повышения температуры рекристаллизация заметно ускоряется.

К каждому продукту требуется индивидуальный подход при определении метода и технического средства замораживания.

10.3. Подмораживание

Подмораживание заключается в понижении температуры продуктов немного ниже криоскопической для улучшения условий хранения. Поскольку понижение температуры продуктов сопровождается некоторым льдообразованием, термин «переохлаждение» неточен, более правильный — «подмораживание».

Наиболее широко подмораживанием пользуются для сохранения рыбы, мяса птицы и плодов.

Существуют два основных способа подмораживания продуктов:

продукт помещают в камеру, где поддерживается температура до -3 °С; температура его постепенно понижается, приближаясь к температуре воздуха камеры; так подмораживают рыбу, птицу, мясо, зимние сорта яблок;

продукт помещают в морозильную камеру, где замораживается его периферийный слой ограниченной толщины; после перемещения продукта в камеру хранения с температурой -2...-З 0С вследствие внутреннего теплообмена во всем объеме продукта устанавливается температура, одинаковая с температурой хранения. Этот способ рекомендуется для подмораживания мяса и рыбы, причем подмораживать рыбу можно контактным способом в рассоле.

Исследования показали, что в подмороженных продуктах при хранении происходят те же изменения, что и при охлаждении, но протекают они медленнее, поэтому продолжительность хранения в подмороженном состоянии может быть больше, чем в охлажденном. Отмечено, что усушка при этом меньше, а качество существенно не отличается от качества охлажденных продуктов.

При подмораживании в морозильных камерах с последующим внутренним теплообменом до выравнивания температур в объеме продукта происходят теплофизические процессы, существенно отличные от происходящих при медленном подмораживании. Такой процесс делится на два взаимосвязанных этапа. На первом этапе при интенсивном отводе теплоты замораживается слой некоторой толщины и в продукте создается резко неравномерное температурное поле. На втором этапе происходит внутренний теплообмен в продукте при очень слабом теплообмене с воздухом камеры хранения. Это приводит к приблизительному равенству температуры продукта и камеры. Внутренний теплообмен в продукте можно рассчитывать как адиабатный.

Интенсивный отвод теплоты от продукта на первом этапе приводит к быстрому замораживанию периферийного слоя, что благоприятно в технологическом отношении и удобно организационно, так как время, необходимое для пребывания продукта в морозильной камере, невелико. Последнее обстоятельство позволяет выполнить в непрерывном потоке подмораживание таких продуктов, как мясные полутуши и четвертины. Нет необходимости ограничивать на первом уровне понижение температуры поверхности мяса из-за опасения уменьшить обратимость процесса.

Температура поверхности должна быть такой, чтобы после выравнивания температура в толще была -1 ...-2 °С.

Таким образом, чем интенсивнее процесс теплообмена на первом этапе, тем совершеннее он в технологическом и организационном отношении.

ГЛАВА 11

ТЕПЛОФИЗИЧЕСКИЕ ПАРАМЕТРЫ ПИЩЕВЫХ ПРОДУКТОВ

И ИХ ИЗМЕНЕНИЯ ПРИ ХОЛОДИЛЬНОЙ ОБРАБОТКЕ

11.1. Теплофизические параметры пищевых продуктов

К наиболее важным теплофизическим параметрам пищевых продуктов относят удельную теплоемкость, теплопроводность, температуропроводность, энтальпию, криоскопическую температуру, плотность, равновесное давление пара.

Удельной теплоемкостью называется величина, равная количеству теплоты, необходимому для нагревания или охлаждения 1 кг вещества на 1 К.

Если известны состав продуктов питания и удельная теплоемкость отдельных компонентов, то удельную теплоемкость продукта с рассчитывают по закону аддитивности:

c = g1c1 + g2c2 + … + gncn, (36)

где g1, g2, ..., gn — массовые доли компонентов; с1, с2, ..., сn — удельные теплоемкости компонентов, Дж/(кг • К).

Продукты условно считаются двухкомпонентными системами, состоящими из воды и сухих веществ, тогда удельную теплоемкость определяют по формуле, Дж/(кг · К),

с = cBW+ cc (1 - W), (37)

где св, сс — удельные теплоемкости соответственно воды и сухих веществ, Дж/(кг • К); W, (1 - W) — массовые доли соответственно воды и сухих веществ.

Теплоемкость сухих веществ большинства продуктов животного происхождения колеблется от 1,34 до 1,68 кДж/(кг • К), растительных составляет около 0,91 кДж/(кг • К). При отсутствии экспериментальных данных эти значения можно применять для оценки теплоемкости продуктов.

Изменение удельной теплоемкости продуктов в интервале температур замораживания определяется в основном начальным их влагосодержанием и количеством вымороженной воды. Теплоемкость убывает с понижением температуры, стремясь к нулю при абсолютном нуле температуры (третий закон термодинамики).

Теплопроводность — один из видов теплопередачи, при котором перенос теплоты имеет атомно-молекулярный характер. Явления теплопроводности возникают при разности температур между отдельными участками тела (продукта). Количественно теплопроводность характеризуется коэффициентом теплопроводности и измеряется в Вт/(м · К).

Коэффициент теплопроводности численно равен количеству теплоты, переносимому через единицу площади поверхности в единицу времени, при градиенте температуры, равном 1:

= B W + C (1 – W), (38)

где B — коэффициент теплопроводности воды, равный 0,6 Вт/(м · К); C — коэффициент теплопроводности сухих веществ, равный 0,26 Вт/(м • К).

Теплопроводность продуктов с понижением температуры остается практически постоянной до начала замерзания и зависит только от влагосодержания, а затем увеличивается, так как коэффициент теплопроводности льда в четыре раза больше, чем воды.

Значения коэффициента теплопроводности, рассчитанные по формулам, являются приближенными, поэтому ими пользуются только при отсутствии экспериментальных данных.

При охлаждении и замораживаний продуктов, как и при их нагревании, действуют механизмы переноса продуктом тепловой энергии — температуропроводность. В результате в продукте перемещается температурный фронт. Скорость этого перемещения характеризуется коэффициентом температуропроводности

а = /с, (39)

где а — коэффициент температуропроводности продукта, м2/с; — коэффициент теплопроводности продукта, Вт/(м • К); с — удельная теплоемкость продукта, Дж/(кг • К); — плотность продукта, кг/м3.

При положительных температурах температуропроводность продукта практически неизменна, но с началом льдообразования она резко уменьшается. Это вызвано выделением теплоты кристаллизации. При дальнейшем понижении температуры вследствие роста теплопроводности и уменьшения теплоемкости температуропроводность увеличивается и достигает постоянного значения, когда вода полностью переходит в лед.

Энтальпия — однозначная функция состояния термодинамической системы, часто называемая тепловой функцией или теплосодержанием, измеряется в Дж/кг. Данными об изменении энтальпии продовольственных продуктов в холодильной технологии пользуются обычно для определения отведенной или подведенной теплоты при холодильной обработке продуктов. Энтальпию отсчитывают при какой-либо начальной температуре (обычно -20 °С), при которой ее значение принимается за 0.

Криоскопической температурой называют температуру начала замерзания жидкой фазы продуктов. Тканевый сок продовольственных продуктов представляет собой диссоциированный коллоидный раствор сложного состава, которому соответствует криоскопическая температура -0,5...-5°С.

Плотность — отношение массы продукта к его объему. При замораживании плотность продукта уменьшается (на 5 — 8 %), поскольку вода в тканях, превратившись в лед, увеличивается в объеме при неизменной массе. Плотность большинства скоропортящихся продуктов составляет около 1000 кг/м3.

Равновесное давление пара над поверхностью продукта Рп из-за содержания во влаге продуктов растворенных веществ (сахара, соли и др.) несколько ниже давления насыщенного пара Рн при той же температуре даже при полном насыщении.

Отношение давления пара воды, содержащейся в продукте, к давлению пара чистой воды (или льда) при той же температуре называется относительным понижением давления водяного пара:

aW =PП / PH, (40)

где aW — коэффициент термодинамической активности воды, называемый иногда величиной водной активности.

Эта величина, выраженная в процентах (aW = 100%), определяет равновесную относительную влажность, т.е. относительную влажность воздуха, при которой продукт не теряет и не получает влаги. Величина равновесной относительной влажности зависит от природы продукта и является функцией его температуры, т.е. гигротермической характеристикой продукта.

11.2. Изменение теплофизических параметров пищевых

продуктов и температурные графики

Вымораживание воды в биологических системах при понижении их температуры ниже криоскопической существенно изменяет теплофизические свойства продуктов. Основной причиной изменения теплофизических свойств продуктов при замораживании является превращение воды в лед, так как свойства сухих веществ практически постоянны.

Полная удельная теплоемкость продуктов при замораживании включает скрытую теплоту фазового превращения (льдообразования) воды. Ее значение максимально при начальной криоскопической температуре продукта и уменьшается с понижением температуры.

В тепловых расчетах процесса замораживания пользуются условной теплоемкостью замороженных продуктов, в которую не включают скрытую теплоту льдообразования.

Условная удельная теплоемкость, Дж/(кг • К)

cм = сс (1 - W) + сЛW + cB W (1- ), (41)

где cc — удельная теплоемкость сухих веществ, Дж/(кг • К); ДЛЯ продуктов животного происхождения она составляет 1,34—1,68 кДж/(кг • К), растительных — не более 0,9 кДж/(кг · К); сл — удельная теплоемкость льда — 2,12 кДж/(кг • К); св — удельная теплоемкость воды — 4,24 кДж/(кг • К); W— массовая доля воды в продуктах; — относительное количество вымороженной воды (определяется при температуре вычисляемой удельной теплоемкости).

Преобразовав выражение и подставив в него значения сл и св, получаем

см = с0 - 2,12 W, (42)

где с0 — удельная теплоемкость незамороженного продукта (при начальной температуре), кДж/(кг • К).

Теплоту льдообразования для единицы массы продукта при изменении температуры на один градус находят по формуле

q = (2 – 1) W rл, (43)

где (2 – 1) - разность относительных количеств вымороженной воды при изменении температуры на один градус; W — массовая доля воды в продуктах; rл — удельная скрытая теплота льдообразования, кДж/(кг • К); rл = 335 кДж/(кг · К) при 0°С.

Удельную теплоту льдообразования при различных температурах приближенно вычисляют по формуле, кДж/(кг · К),

rл = 335 + 2,12 t, (44)

где t— температура замороженного продукта, °С, взятая по абсолютной величине.

Полная удельная теплоемкость замороженного продукта составит

с = см + q, (45)

где см — условная удельная теплоемкость замороженного продукта, кДж/(кг · К); q — теплота льдообразования единицы массы продукта при изменении температуры на один градус, кДж/(кг · К).

Разница между значениями с и см максимальна при начальной криоскопической температуре, когда см = с0, a q имеет наибольшее числовое значение. После окончания вымерзания воды q и с равны см.

Для вычисления полной удельной теплоемкости некоторых продуктов при температурах ниже криоскопической пользуются приближенной эмпирической формулой

с = n - m/t, (46)

где п и т — постоянные теплоемкости продуктов, их значения приведены в табл. 2; t — температура, при которой определяется полная теплоемкость мороженого продукта, °С.

Таблица 2

Значения постоянных п и т теплоемкости продуктов

Продукт

п

т

Говядина

0,670

39,40

Свинина:

при W=52 %

0,545

29,20

при W=77 %

2,810

11,53

среднее значение

1,885

17,35

Пикша, треска

0,755

37,50

Для расчета коэффициента теплопроводности некоторых продуктов при замораживании можно воспользоваться приближенной эмпирической формулой

= n1 + m1/t, (47)

где n1 и m1 - постоянные теплопроводимости продуктов, их значения приведены в табл. 3.

Таблица 3

Значения постоянных n1 и т2 теплопроводности продуктов

Продукт

n1

m2

Говядина

1,50

1,08

Свинина

3,36

1,55

Пикша, треска

1,23

0,58

Судак

1,19

0,77

Увеличение теплопроводности продукта при понижении температуры практически завершается с окончанием льдообразования.

Плотность продуктов при замораживании уменьшается тем дольше, чем больше воды они содержат и чем ниже температура, которая достигается при замораживании. Это объясняется расширением воды при превращении ее в лед. Учитывая, что изменение плотности при замораживании, как правило, не превышает 5 —8 %, при расчетах ее условно можно считать постоянной.

Температуропроводность продуктов при понижении температуры увеличивается и достигает максимальной величины с завершением льдообразования. Коэффициент температуропроводности рассчитывается по формуле

ам = м /(см м), (48)

где м — коэффициент теплопроводности замороженных продуктов; см — удельная расчетная теплоемкость замороженных продуктов, кДж/(кг • К); м — плотность замороженного продукта, кг/м3.

Для большинства продуктов питания коэффициент температуропроводности можно вычислить по формуле

ам = а0 + (2,08 • 10-6) , (49)

где а0 — коэффициент температуропроводности продуктов при температуре выше криоскопической, м2/с; — относительное количество воды, вымороженной из продуктов при данной температуре.

При повышении содержания воды в продукте числовой коэффициент тоже увеличивается.

Температурные графики замораживания характеризуют изменения температуры в различных точках продукта во времени и различаются в зависимости от размеров и теплофизических свойств замораживаемых продуктов, а также интенсивности теплоотвода (рис. 18).

По внешнему виду и с точки зрения процессов, протекающих в продуктах, каждый такой график можно разделить на три участка.

Первый участок будет соответствовать охлаждению продукта (различных его частей) до криоскопической температуры. Причем крутизна этого участка определяется быстротой отвода теплоты от продукта.

На втором участке снижение температуры замедляется вследствие выделения скрытой теплоты льдообразования и наклонная кривей может переходить в пологую или даже горизонтальную линию. Замедление снижения температуры для большинства продуктов характерно в диапазоне от -1 до -5 0С, который называют критическим, так как именно в этот период в продуктах происходят наиболее существенные изменения в результате вымораживания воды и увеличения концентрации солевых растворов. Одна из основных целей интенсификации процесса замораживания – быстрое прохождение именно этого участка, что достигается применением быстрых и сверхбыстрых способов замораживания (см. рис. 18, б).

Рис. 18. Температурные графики замораживания рыбы:

а — на воздухе при температуре -35 °С и скорости циркуляции воздуха 5 м/с;

б— в растворе хлорида натрия при температуре -20°С

Третий участок графика показывает изменение температуры после перехода основной части воды в твердокристаллическое состояние.

Изменение теплофизических свойств продуктов (увеличение теплопроводности и температуропроводности) стимулирует процесс отвода теплоты от их внутренних слоев, что отражается на графике увеличением наклона кривой.

ГЛАВА 12

ТЕПЛО- И МАССООБМЕННЫЕ ПРОЦЕССЫ

В ХОЛОДИЛЬНОЙ ТЕХНОЛОГИИ

12.1. Тепловой расчет процесса охлаждения

В задачу теплового расчета входит определение продолжительности охлаждения продуктов и количества теплоты, отводимого от них в процессе охлаждения.

Продолжительность охлаждения — основа расчета количества теплоты, отводимой от продуктов в процессе охлаждения, оценки эффективности работы холодильной камеры, оборудования и др. Она зависит от вида и параметров охлаждающей среды, размеров и теплофизических характеристик охлаждаемых продуктов. Наибольшей продолжительностью характеризуются процессы охлаждения продуктов в воздушной среде, наименьшей — в вакууме.

Продолжительность охлаждения продуктов, имеющих правильную геометрическую форму или близкую к ней, определяют, пользуясь номограммами, выражающими графическую зависимость безразмерной температуры от критериев Фурье и Био для середины пластины, оси цилиндра и центра шара.

Безразмерная температура

= (t – t0) / (tH – t0), (50)

где t, tH — соответственно текущая и начальная температуры продукта, °С; t0 — температура охлаждающей среды, 0С;

t= f (х, ). (51)

Критерий Био, характеризующий эффективность теплообмена поверхности продукта с охлаждающей средой, рассчитывается по уравнению

Bi = l / , (52)

где — коэффициент теплоотдачи от наружной поверхности продукта охлаждающей среде, Вт/(м2 • К); l— половина толщины продукта, м; — коэффициент теплопроводности продукта, Вт/(м · К).

Коэффициент теплопроводности продукта определяют по таблице (см. табл. 3), а коэффициент теплоотдачи — из критериальных зависимостей теплообмена при вынужденном и естественном движении охлаждающей среды у поверхности продукта.

Приближенно коэффициент теплоотдачи от продукта к воздуху находят из зависимости Юргенса:

= 1,16 (5,3 + 3,6 v), (53)

где v — скорость движения воздуха у поверхности продукта, м/с.

Для приближенных расчетов коэффициент теплоотдачи от продукта к жидкой среде при естественной конвекции можно принять равным 200 — 230 Вт/(м2 · К), при скорости движения жидкости 0,5 м/с - 1000 Вт/(м2 · К).

По полученным значениям безразмерной температуры и критерия Bi из номограммы для пластины, цилиндра или шара (см. приложение 2) определяют точку пересечения соответствующих прямых. Из полученной точки опускают перпендикуляр на ось абсцисс и находят значение критерия Фурье Fo, или безразмерное время

Fo = а / l2, (54)

где а — коэффициент температуропроводности продукта, м2/с; — продолжительность охлаждения, с; l — половина толщины продукта, м.

Отсюда продолжительность охлаждения

= Fo l2/a. (55)

Коэффициент температуропроводности продукта а в формуле находят по таблицам теплофизических характеристик. В приближенных расчетах его можно принять равным 1,25 · 10-7 м2/с.

Количество теплоты, отводимой при охлаждении, можно определить, пользуясь выражением

Q = G co (tH – tK) (56)

Или

Q = G (iH – iK), (57)

где G — масса продукта, кг; с0 — удельная теплоемкость продув та, кДж/(кг • К); iн - iк — разность удельных энтальпий продукта при его начальной и конечной температурах, кДж/кг.

При охлаждении продуктов воздухом необходимо учитывать, что часть теплоты отводится вследствие испарения влаги с их поверхности, т.е. конвективный теплообмен сочетается с испарительным. Причем теплота, отводимая вследствие испарения влаги, может составлять до 50 % общего количества теплоты в зависимости от температуры воздуха и свойств охлаждаемых продуктов.

Испарение влаги с поверхности продуктов значительно уменьшается при наличии естественного защитного слоя или упаковки.

При медленном охлаждении продуктов количество теплоты, отводимой от мяса, птицы, рыбы и др., увеличивается за счет биохимических процессов, происходящих в продукте на начальной стадии созревания. В этом случае общая формула количества теплоты, отводимой от продукта, с учетом его внутренних тепловыделений и теплового эффекта испарения имеет следующий вид:

Q = G [co (tH – tK) + qBH + g(LK - LИ)]; (58)

где G — масса продукта, кг; tH- tK — разность начальной и конечной температур продукта; qВН — внутреннее тепловыделение единицы массы продукта в процессе всего охлаждения, Дж/кг; g — удельное количество испарившейся воды; LK - LИ — удельная теплота конденсации и испарения с единицы массы продукта, Дж/кг.

12.2. Тепловой расчет процесса замораживания

При тепловых расчетах процесса замораживания задаются начальная и конечная температуры продуктов. Конечная температура замораживания практически никогда не бывает одинаковой во всех точках продукта. Однако при расчетах используют числовые значения теплофизических свойств продуктов, относящиеся ко всему процессу, которые берутся при средней их температуре за процесс.

Среднюю температуру продукта (в интервале от t1 до t2) при условии, что оба эти значения лежат в области от криоскопической температуры до температуры окончания льдообразования, можно определить по уравнению

tср = (t2 – t1)/ ln (t2/t1). (59)

При замораживании температурное поле продукта остается равномерным до конца процесса, в связи с чем возникает необходимость введения понятия средней конечной температуры замораживания.

Средней конечной температурой замораживания называют температуру, характеризующую состояние замороженного продукта, помещенного в камеру хранения, когда наружный теплообмен практически отсутствует (температура на поверхности близка к температуре воздуха в камере), а внутренний происходит путем выравнивания температуры по всему объему продукта. Конечная температура продукта зависит от его размеров и теплофизических свойств, а также температуры теплоотводящей среды, коэффициента теплоотдачи. Она может быть рассчитана по формулам, полученным И.Г. Алямовским для тел различной геометрической формы:

для пластины tск = (2tц + tп) / 2; (60)

для цилиндра tск = (tц + tп) / 2; (61)

для шара tск = (2tц + 3tп) / 2; (62)

где tц и tп — температура соответственно в центре и на поверхности продукта, °С.

Принимая во внимание то, что при замораживании большинства продуктов ниже -6°С (в центре) распределение температуры по их толщине становится близким к линейному, за среднюю конечную температуру замораживаемого продукта в приближенных расчетах можно принимать среднюю арифметическую между конечной температурой в центре и конечной температурой поверхности (31).

Для соблюдения постоянного температурного режима в камере хранения при внесении в нее продуктов сразу после замораживания необходимо, чтобы средняя конечная температура продукта после замораживания была равна температуре воздуха в камере хранения. Ее можно рассчитать по формуле

tц = 2 tск (Bi + 1) – t0 Bi / (Bi + 2); (63)

Bi = м l / м, (64)

где м — коэффициент теплоотдачи при замораживании, Вт/(м2 · К); К — коэффициент теплопроводности продукта при средней конечной температуре замораживания, Вт/(м · К).

В задачу теплового расчета процесса замораживания входит определение продолжительности замораживания и количества теплоты, отводимой при этом от продукта.

Продолжительность замораживания — время, необходимое для понижения температуры продукта от начальной до заданной конечной, за которое большая часть воды, содержащейся в тканях, превращается в лед. Оно зависит от теплофизических свойств продуктов, их толщины, формы, начальной и конечной температур замораживания, температуры и свойств охлаждающей среды.

Продолжительность замораживания продуктов м можно определить, представляя их в виде тел простой стереометрической формы. В холодильной технологии для приближенных расчетов наиболее часто используют формулу Планка

м = qм м lм (1/4 м + 1/м) / [3,6 (tкр - to) A], (65)

где qм — полная удельная теплота, отводимая от продукта при замораживании от начальной температуры до заданной средней конечной, кДж/кг; м — плотность замороженного продукта, кг/м; lм — толщина продукта, м; tкp — начальная криоскопическая температура продукта, °С; А — коэффициент, значение которого зависит от формы замораживаемого тела (для плоскопараллельной пластины А = 2, для бесконечного прямого круглого цилиндра А = 4, для шара А = 6);

qм = iн – iск, (66)

где iн — энтальпия продукта при начальной температуре, кДж/кг; iск — энтальпия продукта при средней конечной температуре, кДж/кг.

Тело в форме цилиндра замерзает в два раза быстрее, чем тело в форме пластины, тело в форме шара — в три раза быстрее.

При расчете продолжительности замораживания упакованных продуктов формула Планка приобретает вид:

= qм м lм {R / м + P [1/м + (ly / y)]} / [3,6 (tкр - to)], (67)

где R и P — коэффициенты, значения которых зависят от соотношения размеров тела и направления тепловых потоков; (ly / y) — сумма тепловых сопротивлений слоев упаковки,

м2 • К/Вт.

При расчетах продолжительности замораживания по формулам Планка можно получить лишь приблизительные значения, так как не учитывается теплоемкость замороженной части тела, а также особенности строения и специфические свойства пищевых продуктов.

Количество теплоты, отводимой от продуктов при замораживании, можно определить по формуле

Qм = G [c0 (tн – tкр) + rW + см (tкр – tск)], (68)

где G — масса замораживаемого продукта, кг; r — скрытая теплота замерзания воды, Дж/кг; — количество замороженной воды в продукте, определяемое при средней конечной температуре; W - относительное содержание воды в продукте; см — теплоемкость мороженого продукта, определяемая при средней температуре между криоскопической и средней конечной, Дж/(кг · К).

12.3. Тепло- и массообмен при холодильном хранении

Хранение — неотъемлемая часть процесса консервирования пищевых продуктов и биологических материалов. С точки зрения теплофизических процессов хранение является стабилизацией режимных параметров на заданном уровне, обеспечивающем консервирование исходных свойств материала.

Цель хранения — увеличение срока годности продуктов питания путем замедления изменений, ухудшающих их качество, поэтому продолжительность хранения является одной из основных его характеристик. Продолжительность хранения зависит от физико-химических свойств материала, режимов холодильной обработки, хранения и других факторов, т.е.

= f (А, В, С, ..., N), (69)

где А, В, С, ..., N — температура, влажность и скорость движения среды, ее состав и давление, наличие внешней оболочки (кожуры) и упаковки продукта и др.

Уровень значимости отдельных факторов различен. Температура, состав и скорость движения среды — основные регулируемые параметры процесса хранения. Их рассмотрим ниже. В настоящее время, как правило, продукты питания хранятся в воздушной среде. Изменение состава среды может улучшить условия хранения, т.е. удлинить его срок.

Как уже говорилось, существуют методы хранения в модифицированной газовой среде и в регулируемой среде. В первом случае материал хранится в упаковке, обладающей селективной способностью пропускать углекислый газ и выводить кислород. Недостаток такого метода — большая продолжительность создания определенного состава газовой среды, преимущество — максимальная защита продуктов от влияния внешних теплопритоков. Во втором случае материал хранится в регулируемой газовой среде, создаваемой в герметичных камерах при использовании газогенераторов, в которых происходит сжигание газа в присутствии катализатора. Такое хранение более совершенно. Рациональной можно считать среду, содержащую 2 — 3% СО2.

Большое влияние на продолжительность хранения продуктов питания оказывает давление окружающей среды. Эксперименты показали, что хранение под давлением 0,15 МПа увеличивает срок хранения мясопродуктов в полтора раза. Таким образом, перспективным можно считать хранение в регулируемой среде при повышенных внешних давлениях. Естественно, внешняя оболочка (кожура) и упаковка продуктов питания уменьшают усушку и удлиняют продолжительность хранения, поэтому перспективно хранение охлажденных и замороженных продуктов в упакованном виде. Как уже отмечалось, продолжительность хранения зависит от Множества факторов, поэтому выявление аналитической зависимости от свойств материалов и режимов хранения — сложная задача. Кроме того, отсутствуют четкие критерии оценки результатов хранения. Однако основным параметром все же можно считать температуру хранения. Д. Г. Рютов на основе экспериментальных исследований предложил справедливую в пределах температур -20 °С t -6 °С зависимость

= А · 10-btв, (70)

где А и b — постоянные, зависящие от свойств продуктов; tB — температура хранения, °С.

Приведем значение параметра А для некоторых продуктов: говядины и баранины — 2,15, свинины и нежирной рыбы — 1,78, кур — 1,58. Для всех этих продуктов b = 0,05. Для сливочного масла А = 2,85, b= 0,036.

В процессе хранения должна поддерживаться определенная температура. Ее повышение отрицательно сказывается на качестве хранящихся продуктов. За рубежом появились встроенные индикаторы, цвет которых изменяется при повышении температуры выше допустимой. Таким образом покупатель осведомлен о качестве купленного продукта. Работы по совершенствованию аналогичных датчиков продолжаются.

Рис. 19. Схема тепло- и массопереноса при холодильном хранении продуктов:

а — полная; б — упрощенная; / — наружные стены камеры; // — источники влаги помимо продукта; /// — воздух камеры; IV — продукт; V — приборы охлаждения; 1— перенос теплоту конвекцией; 2 — перенос теплоты радиацией; 3— перенос теплоты испарением и конденсацией

На рис. 19, а дана принципиальная схема тепловлажностных процессов в камере холодильного хранения, предложенная Д. Г. Рютовым. В схеме учитываются конвективный и радиационный переносы теплоты, а также перенос влаги испарением (сублимацией) и конденсацией (десублимацией). Однако для математического описания процесса приняты некоторые допущения: влага в воздух камеры поступает только за счет испарения (сублимации) с поверхности продукта; продукт получает теплоту от воздуха только путем конвекции.

Упрощенная схема переноса теплоты и массы в камере холодильного хранения при отсутствии лучистого теплообмена и посторонних источников влаги дана на рис. 19, б. Температура продуктов tn, хранящихся в камере, несколько ниже температуры хранения tB из-за испарения воды с поверхности продукта (усушки).

Таким образом, в камере хранения поддерживается температура tB > tn > tб, где tб — температура охлаждающих приборов.

Условием переноса влаги будет

(tв – tп) < (tв – tб). (71)

Количество теплоты, отбираемое от воздуха и расходуемое на испарение влаги в единицу времени, будет равно

Q = F(tB – tп), (72)

где — коэффициент теплоотдачи между продуктом и воздухом, Вт/(м2 · К); F — площадь поверхности продуктов, м2.

Количество влаги, испарившейся из продукта в единицу времени, кг/с,

Wи = F (pn – pв). (73)

Она оседает на батареях охлаждения, причемъ

Wи = б Fб (pв - рб). (74)

где , б — соответственно коэффициенты испарения и конденсации водяного пара, кг/(м2 · с · Па); Fб — площадь поверхности охлаждающих приборов, м2; рп, рб — давление водяных паров соответственно на поверхности продукта, батареи, Па; рв — давление насыщенных паров воздуха, Па; — относительная влажность воздуха.

Количество теплоты, затраченной на испарение, и количество испарившейся влаги связаны соотношением Wи = Q/rn, где rп — удельная теплота парообразования (сублимации), кДж/кг.

По закону Льюиса при испарении (сублимации) или конденсации (десублимации) / = const. Преобразовав уравнения (43) и (74), получим

F/(бFб) = А( рв – pб) / (tB - tn), (75)

где б— коэффициент теплоотдачи между воздухом и поверхностью охлаждающей батареи; А — постоянный коэффициент.

Анализ уравнения (75) показывает, что при данных F, , tB, tn уменьшения усушки (рв – pб) можно добиться, увеличивая бFб, т. е. увеличивая поверхность охлаждающих приборов или коэффициент теплоотдачи б.

Математическое описание тепло- и массообменных процессов усложняется при учете лучистого теплообмена между продуктом, батареями охлаждения и стенками камеры, а также внутренних тепловых потоков, возникающих в результате колебания температуры воздуха в камере хранения.

Учитывая теплоту, подводимую к продукту конвекцией и излучением от более теплой стенки камеры, теплоту, отводимую от продукта излучением к поверхности приборов охлаждения, и теплоту сублимации влаги, а также внутренние тепловые потоки, усушку определяют из уравнения

G = Fб (dп – dв) / [cб (1/б + 1/ п)], (76)

где Fб — площадь поверхности охлаждающих приборов, м2; dn, dв — влагосодержание насыщенного воздуха соответственно при температуре продукта и воздуха камеры, кг/кг; сб — удельная теплоемкость влажного воздуха при температуре поверхности приборов охлаждения, кДж/(кг • К); п — конвективный коэффициент теплоотдачи от поверхности продукта, Вт/(м2 · К).

Главный фактор, влияющий на усушку, — температура воздуха камеры хранения. Усушка уменьшается с понижением tB, причем на каждые 10 °С приблизительно в два с половиной раза. Не случайно в настоящее время рациональной температурой хранения замороженных продуктов считается -25...-30 °С, при этом не только уменьшается усушка, но и удлиняется срок хранения продуктов. Однако в некоторых старых холодильниках еще используется температура -12 °С, а общепринятая температура равна -18...-20 0С.

Относительная влажность воздуха почти не влияет на усушку при низких температурах хранения. При одной и той же относительной влажности воздуха усушка может возрастать, когда возрастает разность температур между воздухом камеры и поверхностью приборов охлаждения, и убывать, когда уменьшается. Увеличение приводит к возрастанию интенсивности конденсации влаги из воздуха и, следовательно, к увеличению усушки. Скорость движения воздуха в камерах хранения должна быть минимальной, обеспечивающей ликвидацию застойных зон.

Абсолютная усушка практически не зависит от количества продукта в камере хранения, однако относительная усушка резко возрастает, когда камера недогружена. Это объясняется увеличением удельной плотности теплового потока на единицу продукта. Самый лучший способ сократить усушку до минимальной — упаковка продуктов и понижение температуры, причем потери массы зависят от паропроницаемости упаковочных материалов.

12.4. Тепло- и массообмен при размораживании

Процесс размораживания происходит при подводе теплоты к замораживаемому продукту. Количество теплоты, подводимой к размороженному продукту, находят по той же формуле, что и количество теплоты, отводимой при замораживании (68).

Различают два способа подвода теплоты к продукту. В первом случае теплота подводится путем теплообмена с внешней средой, причем внешней средой могут быть воздух, вода, пароводяная смесь или нагретые металлические плиты. В этом случае передача теплоты в продукте осуществляется теплопроводностью. Во втором случае теплота генерируется внутри продукта за счет поглощения энергии высокочастотных колебаний, которая переходит в тепловую.

Продолжительность размораживания при первом способе подвода теплоты сокращается с увеличением разности температур окружающей средой и поверхностью продукта; скорости циркуляции среды; относительной влажности воздуха; отношения F/V, где F— поверхность продукта, V — объем продукта.

Продолжительность размораживания при высокочастотном нагреве зависит от электрофизических характеристик продуктов и параметров установки. С увеличением частоты колебаний продолжительность размораживания уменьшается.

Процесс размораживания по первому способу условно делят на две стадии. Первая стадия — отепление материала до криоскопической температуры tкp на его поверхности, осуществляемое конвективным теплообменом с окружающей средой. Вторая стадия — таяние льда, которое начинается на поверхности материала и заканчивается в области его термического центра. При этом основной механизм передачи теплоты в продукте — молекулярная теплопроводность как сухих веществ, так и влаги в виде воды или льда. При выводе формулы, определяющей продолжительность процесса, приняты следующие допущения: продукт представляет собой однородное изотропное тело в виде неограниченной пластины, температура окружающей среды и коэффициент теплоотдачи, теплоемкость, теплопроводность и плотность материала в процессе размораживания остаются постоянными.

Продолжительность первой стадии размораживания можно определить путем решения дифференциального уравнения теплопроводности dt/d = (d2t/dx2) при условии, что количество теплоты, подводимой к поверхности продукта, должно быть равно количеству теплоты, отводимой от поверхности внутрь продукта путем теплопроводности (граничное условие третьего рода):

(t0 - tп) = - dt/dx. (77)

Коэффициент теплоотдачи находят из известной критериальной зависимости

Nu = 0,032 Re0,8. (78)

Не приводя подробного решения дифференциального уравнения, представим продолжительность первой стадии размораживания в виде

= (l2/a12) ln[(t0 – tн) A1 cos1/(t0 – tкр)], (79)

где а — коэффициент температуропроводности продукта, м2/с; 1 — корень характеристического уравнения, находится в зависимости от Bi = l/np; A1 — коэффициент, определяемый корнем характеристического уравнения 1:

А1 = (2 sin 1) / (1 + sin 1 cos 1). (80)

Так как корень характеристического уравнения 1 полностью определяется критерием Bi, то и постоянный коэффициент А1 является однозначной функцией Bi. Существуют таблицы, по которым можно определить величину А1, зная критерий Bi (табл. 4). Порядок расчета продолжительности первой стадии размораживания следующий:

1) определить коэффициент теплоотдачи по критериальному уравнению (78) и критерию Re;

2) определить критерий Bi;

3) по табл. 4 найти 1 в зависимости от найденного критерия Bi;

4) определить постоянную А1 по формуле (80) или из таблиц;

5) определить продолжительность первой фазы размораживания по формуле (79).

Эксперименты и расчеты показали, что длительность первой стадии размораживания составляет в среднем около 30 % длительности основной, второй стадии, поэтому в общую продолжительность процесса в дальнейшем будет введен коэффициент т = 1,3.

Таблица 4

Зависимость корня характеристического уравнения от Bi

При определении продолжительности размораживания на второй стадии процесса при появлении границы раздела фаз допускается, что распределение температур по толщине в размороженном слое имеет линейный характер, а температура границы раздела остается постоянной и равной криоскопической температуре tкр. Эти же допущения были приняты при выводе формулы продолжительности замораживания материала. Так как физическая модель этих процессов одинакова и одинаковы сделанные допущения, можно воспользоваться формулой Планка:

= [ql / (t0 – tкр) Kф] [(l / (20)) + (1/)], (81)

где q — удельное количество теплоты, которое необходимо подвести к продукту при размораживании; — плотность продукта; l — половина определяющего геометрического размера продукта; Кф — коэффициент формы продукта; 0 — коэффициент теплопроводности размороженного слоя.

Полная продолжительность размораживания

= [ql / (t0 – tкр) Kф] [(l / 20) + (1/)] m, (82)

где т — коэффициент, учитывающий первую стадию размораживания.

ГЛАВА 13

ОСНОВНЫЕ ИЗМЕНЕНИЯ, ПРОИСХОДЯЩИЕ В

ПРОДУКТАХ ПИТАНИЯ ПРИ ОХЛАЖДЕНИИ

13.1. Охлаждение продуктов растительного происхождения

Для плодов, ягод и овощей охлаждение и хранение в охлажденном состоянии — самый надежный и распространенный способ консервирования, в основе которого лежит применение холода для поддержания оптимальных значений температуры, относительной влажности воздуха и воздухообмена.

Хранение свежих плодов и овощей основано на принципе биоза (поддержание жизнедеятельности за счет естественного иммунитета). Процессы, происходящие в плодах и овощах на всех этапах жизненного цикла, имеют общебиологическую природу, а процессы, протекающие в период хранения, в значительной степени являются продолжением этих процессов. Однако имеется и принципиальное различие: во время роста наряду с распадом органических веществ происходит активный их синтез, причем процессы синтеза преобладают над процессами распада, а в хранящихся плодах и овощах наблюдается главным образом распад веществ с выделением энергии, необходимой для жизнедеятельности клеток.

При охлаждении и хранении таких продуктов нужно максимально снизить интенсивность биохимических, микробиологических и физико-химических процессов, поддерживая жизнеспособность и естественный иммунитет на минимальном уровне. С этой Целью температуру продуктов снижают от исходной до низшей границы физиологической устойчивости, зависящей от видовой (генетической) их особенности.

Режим хранения продукции устанавливают на основе изучения ее свойств, продолжительности хранения, вида упаковки и др. Дополнительные методы консервирования (озонирование, пищевые покрытия, МТС, РГС и др.) позволяют существенно пробить срок хранения при сохранении качества. Особое значение для сохранения качества плодоовощной продукции имеет скорость ее охлаждения сразу после уборки на поле, в саду. Внедрение технологии предварительного охлаждения плодов и овощей в полевых условиях позволяет организовать для этой продукции единую холодильную цепь «от поля до потребителя».

Холодильная обработка — один из основных способов сохранения качества ягод, плодов и овощей. Однако ее преимущества используются не полностью, причем это относится в первую очередь к начальному этапу — предварительному охлаждению, обеспечивающему благодаря быстрому понижению температуры сокращение потерь от порчи и усушки.

Предварительное охлаждение плодов и овощей представляет собой процесс быстрого понижения их температуры от начальной (после уборки урожая) до требуемой при последующих технологических операциях (транспортировании, краткосрочном или длительном хранении). При немедленной реализации продукции (поле — прилавок) необходимость в холодильной обработке отпадает.

Эффективность предварительного охлаждения связана с положительным влиянием его на факторы, определяющие сохранность продукции. Чем быстрее понизится температура плодов и овощей после сбора, тем продолжительнее будет период хранения их в холодильнике и выше качество. Предварительное охлаждение позволяет снизить интенсивность дыхания плодов и овощей и связанных с ним биохимических процессов, предотвратить значительные потери массы и развитие фитопатогенных микроорганизмов. Показано, что «один день» жизни растительных клеток плодов при температуре 25 °С равен двум дням при температуре 15 °С, четырем — при 10 °С, восьми — при 4 °С и шестнадцати — при 0°С.

Охлаждение непосредственно после сбора обеспечивает сохранение пищевой и биологической ценности продукта, его вкусовых качеств, товарного вида и в конечном итоге повышает рентабельность транспортировки, последующего хранения и реализации продукции.

Быстроохлажденные плоды и овощи дольше сохраняют устойчивость к возбудителям болезней, развитие же самих возбудителей (бактерий, плесневых грибов, дрожжей) при быстром охлаждении значительно замедляется. В результате сокращаются потери плодов и овощей от перезревания, усушки, заболеваний и порчи. При этом увеличиваются сроки холодильного хранения яблок, груш, винограда на 1 — 1,5 мес, косточковых на 0,5 мес, ягод на неделю и более, овощей (в зависимости от вида и сорта) от нескольких недель до нескольких месяцев.

Преимуществом предварительного охлаждения является и то, что при загрузке в камеры хранения охлажденной плодоовощной продукции возможны единовременное заполнение всего их объема и создание наиболее оптимального и стабильного температурного режима уже на начальных этапах хранения. Это обеспечивается быстрым отводом теплоты от поступающей продукции еще до ее размещения на хранение. При загрузке плодов на хранение отдельными партиями без предварительного охлаждения высокая нагрузка на компрессорное холодильное оборудование сохраняется в течение всего периода загрузки (10 сут и более) и продолжается в течение 3 сут после нее. Продолжительное нахождение продукции при температуре выше оптимальной отрицательно сказывается на ее качестве, а дозагрузка неохлажденных партий нарушает созданный температурный режим, может вызвать появление конденсата на поверхности ранее загруженной и уже охлажденной продукции, увеличивает ее порчу и потери массы.

При транспортировке предварительно охлажденной продукции создается стабильный температурно-влажностный режим, обеспечивающий сокращение потерь от порчи на 3 — 12 % и увеличение выхода стандартной продукции по прибытии в места назначения на 10 — 25 %. В развитых странах предварительному охлаждению подвергают более 50 % плодоовощной продукции.

Существуют различные способы предварительного охлаждения: в потоке воздуха; в потоке воздуха, обусловленном разностью давлений; жидкостное (гидроохлаждение) ледяной водой орошением или погружением; снегование; вакуумное в специальных вакуумных охладителях; комбинированное. По скорости наиболее эффективно вакуумное охлаждение, затем гидроохлаждение, снегование и воздушное охлаждение. Однако наибольшее распространение получил воздушный способ в разных модификациях. Воздушный способ охлаждения может применяться:

в обычных камерах холодильного хранения при средней скорости движения воздуха 1 —1,5 м/с и умеренной кратности циркуляции 30 — 40 объемов/ч;

тоннельных камерах предварительного охлаждения или камерах другого типа при сравнительно больших скоростях движения воздуха (3 — 4 м/с) и повышенной кратности его циркуляции (60— 100 объемов/ч);

специальных аппаратах интенсивного охлаждения воздухом при повышенных скоростях движения (до 5 м/с) и значительной кратности его циркуляции (до 150 объемов/ч).

Эффективность предварительного охлаждения продуктов в значительной степени определяется его способом и режимом. Обилие видов и сортов плодоовощной продукции, специфические Условия ее выращивания определяют разнообразие режимов предварительного охлаждения.

Важную роль в установлении режима предварительного охлаждения играет неодинаковое у плодов и ягод замедление послеуборочного созревания и старения. Замедление созревания наблюдайся в большей степени у плодов, чем у ягод. При значительном снижении интенсивности дыхания в предварительно охлажденных плодах накапливается меньше неорганического фосфора, что косвенно свидетельствует о более существенном снижении энергетической активности дыхания. В плодах после предварительного охлаждения медленнее, чем в ягодах, уменьшается содержание протопектина и задерживается размягчение ткани. Замедляются также накопление красящих веществ и возрастание сахарокислотного индекса, определяемого снижением содержания органических кислот.

Установлено, что для ягод с низкой устойчивостью к возбудителям и быстрым старением тканей определяющим моментом в установлении режима предварительного охлаждения являются быстрота и степень ингибирования микрофлоры. Для долгохранящихся и некоторых малолежких плодов важное значение имеют степень замедления послеуборочного дозревания и стабилизация устойчивости к возбудителям. При этом эффект ослабевает по мере увеличения степени зрелости плодов. Воздействие предварительного охлаждения сильнее сказывается на товарном качестве плодов технической зрелости, чем потребительской. Интенсивность дыхания некоторых плодов в стадии технической зрелости после охлаждения уменьшается в 4 —5 раз. Во время кратковременного хранения и транспортирования практически не изменяется содержание органических кислот, пигментов, сохраняется высокая плотность ткани.

Режим охлаждения характеризуется конечной температурой продукта, продолжительностью периода охлаждения при регламентируемом температурно-влажностном режиме, скоростью потока охлаждающей среды, кратностью ее циркуляции, системой воздухораспределения и др.

Важным элементом технологии предварительного охлаждения является допустимая продолжительность времени между сбором продукции и началом ее охлаждения. Для большинства ягод, плодов и овощей охлаждение необходимо проводить в короткие сроки после сбора. Так, для земляники этот период составляет 1 — 4 ч, а его увеличение до 6 — 7 ч приводит к возрастанию общих потерь при хранении в 2 —5 раз. При этом в землянике, охлажденной в короткий срок после сбора, стабилизируется содержание витамина С и Р-активных соединений. Охлаждение зрелых томатов в течение 1 — 4 ч после сбора сокращает их потери в 1,5 — 2 раза. При сокращении времени нахождения персиков в саду после сбора с 24 до 10 или 4 ч потери массы от усушки сокращаются соответственно в 2 или 4 раза, а перезревших плодов — в 4 или 9 раз.

Для общего результата важна также продолжительность доохлаждения ягод до конечной температуры хранения. При одинаковой продолжительности предварительного охлаждения ягод (3 ч) увеличение периода доохлаждения с 2 до 15 ч обеспечивает прирост выхода стандартной продукции к концу хранения на 5 — 10 %. У яблок увеличение периода доохлаждения до 130— 150 ч обеспечивает увеличение выхода стандартной продукции до 12—15%. Такой эффект связан с тем, что при быстром темпе предварительного охлаждения возникает несбалансированность реакций, которые катализируют ферменты, имеющие различный температурный оптимум. Результатом такой несбалансированности является накопление ряда промежуточных соединений, по-разному вовлекаемых в обмен веществ, и вследствие этого его общее нарушение. Одним из таких нарушений является снижение энергетической эффективности дыхания, которое меньше проявляется в медленно доохлаждаемых после быстрого предварительного охлаждения ягодах и плодах. Наиболее стремительно все эти процессы протекают в косточковых плодах и ягодах.

Предварительное охлаждение косточковых плодов и ягод рекомендуется проводить быстро. Поскольку для косточковых плодов и ягод характерны интенсивное дыхание, короткие сроки послеуборочных процессов перезревания, ослабленная устойчивость к возбудителям заболеваний, они уязвимы для микробиологической порчи. Кроме того, велики потери от усушки и перезревания при повышенных температурах хранения. Для сокращения потерь косточковые плоды и ягоды рекомендуется перед транспортированием охлаждать до следующих температур: вишню, черешню, абрикосы — 3°С; персики, землянику — 4°С; сливы — 7 0С. В результате такого охлаждения сроки последующего хранения при температуре около 1 0С увеличиваются: земляники и малины — до 10 дней; черной смородины, крыжовника — до 20; белой и красной смородины — до 45; вишни, черешни и слив — до 25 — 90 дней.

При отсутствии камер предварительного охлаждения процесс осуществляют в камерах действующих холодильников. За период не более 1 — 2 сут после сбора урожая температуру продукции в зависимости от вида доводят до +1... -1 0С. Путем интенсификации можно сократить время воздушного охлаждения до 16 — 80 мин, а применяя гидроохлаждение, еще более ускорить процесс.

Разработаны режимы гидроохлаждения: для черешни 1— 2 °С, абрикосов 2 — 4 °С, слив 3 — 6 °С. Обработка может проводиться как методом погружения, так и орошения. При использовании гидроорошения в воду, как правило, добавляют антисептические вещества (беномил, сантоквин и др.) во избежание микробиологического обсеменения всей продукции.

Для семечковых плодов, винограда, цитрусовых и некоторых Других плодов, у которых интенсивность дыхания ниже, а устойчивость к микроорганизмам больше, темпы предварительного охлаждения можно замедлить. При этом важное значение имеет степень зрелости продукции. Так, зрелые яблоки в зависимости от сортовых и других особенностей охлаждают до 0 — 5°С, а незрелые — до 7 — 9 °С с последующим понижением температуры каждые 15-20 дней на 1-2°С.

Предварительное охлаждение винограда проводят воздухом до температуры 2 —8°С с последующим доохлаждением в камере хранения. При этом снижаются в несколько раз потери от порчи и увеличивается выход стандартной продукции.

Предварительное охлаждение овощей применяют как перед транспортированием, так и перед хранением.

Для большинства овощей требуется быстрое охлаждение, так как при дыхании они выделяют довольно значительное количество теплоты. Продолжительность охлаждения в зависимости от применяемого способа составляет от нескольких минут до нескольких часов или суток.

Воздушное охлаждение плодов и овощей проводят перед краткосрочным или длительным хранением в специализированных холодильных камерах или туннелях до температуры 2 — 15 0С в соответствии с особенностями растительного сырья. Продолжительность охлаждения составляет от 3 — 5 до 80 — 100 мин и более. Зеленую фасоль и огурцы охлаждают и хранят при температуре 5 и 9 °С в течение соответственно 20 и 9 дней. Цветная капуста при 0°С сохраняется 30 — 40 дней, а сладкий перец при температуре до 2°С — до 35 дней.

Режимы предварительного охлаждения овощей воздухом зависят от их зрелости и назначения. Так, незрелые томаты рекомендуется охлаждать медленно — в течение 96 ч до температуры 8 0С, а при последующем хранении периодически (два-три раза) повышать температуру до 20 °С (каждый раз в течение 3 сут), что обеспечивает ровное дозревание томатов и улучшает их качество. Для зрелых плодов эффективно быстрое понижение температуры до 0 0С, в результате потери сухих веществ снижаются в три раза и увеличивается срок хранения на 4 —7 сут.

На основе опыта перевозок скоропортящихся продуктов Международным институтом холода разработаны общие рекомендации по температурным режимам загружаемой в холодильный транспорт овощной продукции. Так, огурцы перед перевозкой охлаждают до 10 — 15°С, перец — 7 — 10, дыни — 4 — 10, капусту— 0 — 8, зелень — 0 —10°С.

Влажность воздуха поддерживают на уровне 85 —90 %, что позволяет снизить потери массы и обеспечить длительное хранение овощей.

Установлено, что повышение влажности до 98—100 % в период охлаждения и хранения положительно сказывается на сохраняемости моркови, репы, брюквы, свеклы, сельдерея, цветной и брюссельской капусты и др. При этом уменьшаются потери массы, сохраняется тургор тканей, а в некоторых случаях снижается выделение пектолитических ферментов микроорганизмами, что замедляет размягчение тканей.

Стабильное поддержание высокой относительной влажности при такой же стабильности температурного режима исключает подмораживание и выпадение конденсата на поверхности овощей, позволяет существенно удлинить период их хранения. Высокая относительная влажность в сочетании с модифицированной газовой средой позволяет на 30 — 40 % увеличить выход стандартной продукции.

Поддержание высокой относительной влажности особенно важно при охлаждении и хранении зелени и листовых овощей. Для сохранности овощей при краткосрочных перевозках эффективны снегование или пересыпка чешуйчатым льдом. Это позволяет при отсутствии более совершенных средств поддерживать высокую влажность и одновременно способствует быстрому охлаждению продукции.

В целях сокращения потерь массы и более быстрого охлаждения (3 — 30 мин) для некоторых овощей (морковь, капуста и др.) применяют гидроохлаждение до температуры 0 — 5°С. Продолжительность охлаждения зависит от вида продукции, начальной и конечной его температур и способа гидроохлаждения. Наиболее широко применяют метод гидроорошения, когда продукция в таре движется по конвейеру в туннеле и орошается холодной водой под давлением через распылительные форсунки.

Для предупреждения развития фитопатогенных микроорганизмов в условиях повышенного увлажнения в воду добавляют антисептики.

Более эффективен и широко применяем для охлаждения овощей, имеющих большую поверхность испарения, вакуум-испарительный метод. Суть его в том, что в условиях разрежения (для овощей 798 — 930 Па) происходят вскипание и испарение влаги с поверхности (частично из клеток) овощей и за счет выделения скрытой теплоты испарения продукт быстро охлаждается (по всему объему партии за несколько минут). Преимущество метода — пригоден и для затаренной продукции в транспортную упаковку, недостаток — потери массы продукта составляют 1,5 — 2,5 %, что ограничивает ассортимент продуктов, подвергаемых вакуум-испарительному охлаждению. Метод малопригоден для таких овощей, как томаты, огурцы, зеленый перец, морковь.

Для сокращения потерь массы продукта может применяться гидровакуумное охлаждение путем распыления влаги.

Использование вакуумной обработки ограничивается тем, что удаляются не только пары воды, но и газы, что существенно сказывается на протекании биохимических и физиологических процессов в тканях. При этом мягкое вакуумирование способствует торможению созревания, так как оно связано лишь с улучшением газообмена.

Резкое многократное вакуумирование, напротив, приводит к Ускорению биохимических процессов. В этом случае главным действующим фактором является резкое повышение давления (сброс вакуума) — переход от более низкого давления к высокому, что вызывает микротравмирование тканей, а это, в свою очередь, стимулирует раневые реакции, следствием которых является ускорение созревания.

При комбинированном охлаждении продукты могут сначала подвергаться вакуумному охлаждению до температуры 10—15°С,« а затем доохлаждаться воздухом в холодильной камере хранения. Это позволяет быстро снять тепловую нагрузку в начальный пе-риод охлаждения.

Вакуумное охлаждение широко используют за рубежом для охлаждения грибов, листовой зелени, салата и т.д. в промышленных масштабах.

13.2. Охлаждение продуктов животного происхождения

Поскольку из всех потребляемых продуктов животного происхождения наиболее важным и ценным является мясо, рассмотрим происходящие в нем процессы более подробно.

В послеубойный период в мясе происходят автолитические изменения, обусловленные действием тканевых ферментов. Сразу после убоя преобладающим становится процесс созревания, который протекает под влиянием содержащихся в мясе биологически активных соединений.

Физико-химические изменения мяса в процессе созревания. Процесс созревания состоит из двух фаз (стадий): в первой — посмертное окоченение — преобладают процессы окоченения мышц; во второй происходят размягчение мышечной ткани и накопление продуктов, формирующих потребительские свойства мяса. На этой стадии мышечные белки подвергаются различной степени денатурации и протеолиза. Продолжительность каждой стадии зависит от условий холодильной обработки и хранения продуктов животного происхождения.

Рассмотрим первую стадию. Мясо, полученное сразу после убоя животного (парное), в течение первых 3 ч обладает высокой влагопоглотительной и влагоудерживающей способностью, которая и обусловливает его нежную консистенцию после тепловой обработки. В парном мясе содержится значительное количество гликогена, аденозинтрифосфорной (АТФ), креатинфосфорной (КФ) кислот. Белки миозин и актин не связаны друг с другом, развариваемость коллагена соединительной ткани очень высокая (около 23 % его содержания), количество связанной влаги 80 —90 % общего содержания воды в мясе. Мышечные волокна в первые 2 —Зч после убоя набухшие.

Через 4 —6 ч после убоя наступает посмертное окоченение, которое начинается с мышц конечностей и сердца, выполняющих при жизни животного наиболее напряженную работу. Окоченение протекает неодинаково и зависит от температуры, возраста и упитанности животного. В период посмертного окоченения значительно изменяются физико-химические свойства мяса. Жесткость, а соответственно и сопротивление разрезающему усилию возрастают в два раза. Наблюдается уменьшение количества связанной воды, а также способности к гидратации. Такое мясо наименее пригодно для кулинарной обработки, поскольку имеет неудовлетворительные аромат и вкус и малоустранимую при тепловой обработке жесткость.

Посмертное окоченение имеет общебиологическую природу и единую для всех животных направленность процессов: распад гликогена, КФ и АТФ; ассоциация актина и миозина в актомиозиновый комплекс; изменение гидратации мышц.

Вследствие прекращения доступа кислорода в клетки затухает аэробная фаза энергетического обмена, в которой происходит ресинтез мышечного гликогена, и остается лишь анаэробная фаза— распад гликогена (гликолиз), который происходит путем фосфорилирования с участием АТФ. Из-за отсутствия кислорода в тканях (естественного акцептора протонов и электронов в условиях аэробного расщепления углеводов) акцептором протонов и электронов в анаэробных условиях становится пировиноградная кислота, которая восстанавливается при этом до молочной.

Анаэробные процессы распада гликогена, накопления молочной кислоты и снижения величины рН заканчиваются в мясе в основном через 24 ч хранения при 4°С; рН мышечной ткани при этом уменьшается с 7,0 до 5,8 — 5,6. Это оказывает тормозящее действие на развитие гнилостных микроорганизмов.

Содержание молочной кислоты и величина рН — важные показатели качества мяса. От них зависят стойкость его при хранении и ряд физико-химических показателей, определяющих технологические и потребительские свойства (влагоемкость, количество влаги, выделяющейся при тепловой обработке, и мясного сока при размораживании). По мере снижения величины рН создаются более благоприятные условия для действия мышечных катепсинов, что имеет большое значение для последующего созревания мяса.

В мышцах здоровых, упитанных, отдохнувших животных содержится до 0,8 % гликогена, а в мышцах утомленных и истощенных его меньше, молочная кислота накапливается слабо и рН не превышает 6,2 — 6,5.

Распад гликогена, протекающий после убоя животного, никогда не доходит до конца, и независимо от конечной величины рН (а она не может быть ниже 5,5) и продолжительности после-убойного хранения в мясе сохраняется некоторое его количество. При этом кроме фосфорилирования происходит амилолитический распад гликогена в мышечной ткани, которому подвергается около 10 % его общего количества. На первых стадиях автолиза отмечено лишь незначительное образование мальтозы, глюкозы и других продуктов амилолитического распада гликогена. На более глубоких стадиях окоченения (после 24 ч) распад гликогена идет именно по этому пути.

В организме животного КФ и АТФ наряду с гликогеном являются своеобразными аккумуляторами энергии, которая используется в процессах мышечного сокращения. Наиболее богаты КФ интенсивно работающие скелетные мышцы. Сразу после убоя происходят быстрый распад КФ и адекватный ему ресинтез АТФ, уровень которого сохраняется до быстрой фазы окоченения. Распад АТФ протекает медленнее, чем КФ. Одновременно происходит ресинтез АТФ в связи с распадом гликогена. До тех пор пока имеется запас гликогена, не может произойти полный распад АТФ, поэтому мышечная ткань не переходит в состояние окоченения. Когда содержание АТФ достигает критической концентрации, наступает фаза окоченения. Через 12 ч после убоя распадается до 90 % первоначального содержания АТФ.

Непосредственно после убоя миозин связан в комплекс с ионами калия, магния, кальция, а также с гликогеном и АТФ. Диссоциация комплекса, вероятнее всего, происходит в результате накопления молочной кислоты и снижения рН. Калий, магний и кальций освобождаются из комплексных соединений. Свободный ион кальция вызывает сближение миозина с Ф-актином, происходят образование актомиозина и активирование миозиновой АТФ-азы. При этом АТФ теряет неорганический фосфат, а освобождающаяся энергия макроэргическои связи используется на перемещение актиновых протофибрилл относительно миозиновых. Миофибриллы начинают укорачиваться, что является результатом втягивания нитей актина между нитями миозина. Образуется комплекс актомиозина, и происходит дальнейшее сокращение миофибрилл: внешне это выражается в посмертном окоченении мышечной ткани. Процесс образования актомиозина в результате взаимодействия актина с миозином сопровождается снижением числа свободных гидрофильных центров в их молекулах в результате взаимной блокировки активных групп белков. Уровень гидратации последних резко снижается.

После убоя мышечная ткань находится в состоянии очень высокой гидратации. В течение одних суток хранения наблюдается сильное падение способности мышечной ткани прочно удерживать воду. Минимум гидратации и максимум жесткости мяса совпадают по времени.

По мере перехода мышц в стадию окоченения растворимость белков резко уменьшается и достигает минимума на стадии максимального окоченения. Растворимость белков снижается при приближении значения рН к изоэлектрической точке мышечных белков. Кроме того, вследствие распада АТФ в процессе окоченения белки находятся в состоянии плотной сетчатой структуры, и их экстрагирование снижается. Уменьшение растворимости белков может быть обусловлено и буферным связыванием воды в результате конформационных изменений актина при переходе его из глобулярной формы в фибриллярную. Происходящая при этих превращениях полимеризация актина уменьшает его удельную поверхность и, следовательно, количество гидрофильных групп, способных взаимодействовать с водой. В результате снижения влагоудерживающей способности мышечной ткани уменьшается выход мяса и изделий из него при тепловой обработке.

Таким образом, в посмертном окоченении мышц решающая роль принадлежит сократительным белкам мышечной ткани, образующим прочные белковые комплексы, которые придают мясу повышенную жесткость, плотность, снижают его водоудерживающую способность.

С понижением температуры хранения задерживаются наступление и окончание первой фазы созревания мяса в связи с замедлением скорости биохимических процессов, протекающих в мышечной ткани. Так, если при 16 — 18 °С говядина находится в состоянии окоченения сутки, то при 0 °С — двое суток. При медленном охлаждении мяса происходит более глубокий процесс окоченения, чем при ускоренном, так как быстрее распадается гликоген и увеличивается содержание молочной кислоты.

В период развития окоченения не наблюдается существенного разрушения структурных элементов мышечного волокна. Лишь через сутки заметны изменения в строении ядер. Соединительная ткань между мышечными пучками немного отслаивается. Впоследствии обнаруживаются признаки разрушения структуры саркоплазмы. Все это свидетельствует о начале созревания.

На второй стадии созревания мяса — размягчение мышечной ткани и накопление продуктов, формирующих потребительские свойства мяса, — происходит ряд изменений его свойств, обусловленных углублением автолиза, в результате которых мясо приобретает хорошо выраженные аромат и вкус, становится мягким и сочным, более влагоемким и доступным действию пищеварительных ферментов по сравнению с мясом в состоянии посмертного окоченения.

Вторая стадия созревания наступает через двое суток хранения мяса при низких положительных температурах, процесс этот связан с изменением состава и состояния основных компонентов мяса. В этом процессе исключительно велика роль ферментов, потому что от их активности зависят общее направление и скорость протекания процессов распада при хранении мяса. Под действием целой группы гидролитических ферментов — протеаз, гидролаз, липаз и др. — белки начинают подвергаться ферментативному гидролитическому расщеплению — протеолизу.

Характер изменений в мясе под действием ферментов можно проследить на примере гидролазы и липазы. В клетках различных тканей гидролазы находятся в специальных субмикроскопических образованиях (мешочках, окруженных тонкой мембраной), получивших название лизосом. При созревании мяса мембраны лизосом разрушаются и гидролазы получают свободный доступ ко всем химическим компонентам клеток — так начинается процесс автолиза (растворение или разрушение) тканей. Сразу после убоя животного липиды мяса подвергаются воздействию мышечных липаз. Оптимум их действия лежит в слабощелочной среде (рН 7,3 — 7,5). Чем больше запасы гликогена в мышцах, тем интенсивнее его распад и значительнее понижение рН тканей. По мере распада гликогена активность мышечных липаз уменьшается.

В результате протеолиза миофибриллярных белков при созревании мяса увеличивается количество N-концевых групп вследствие разрыва пептидных связей в белках фракции миозина, что приводит к уменьшению жесткости мяса.

Установлено, что улучшение консистенции мяса обусловлено не только разрушением поперечных связей актомиозинового комплекса и ограниченным протеолизом миофибриллярных белков, но и дезинтеграцией z-пластинок саркомеров.

На второй стадии созревания растворимость белков вновь увеличивается, но не достигает значений растворимости белков парного мяса, что объясняется необратимостью начавшегося при созревании мяса процесса их денатурации. На растворимость белков мышечной ткани существенно влияет происходящее при созревании мяса перераспределение ионов Са, Mg, Zn.

Процесс гидратации белков имеет положительную корреляцию с нежностью мяса.

В тканях мяса уже после непродолжительного хранения увеличивается содержание свободных жирных кислот, а также ди- и мо-ноглицеридов — продуктов неполного гидролиза триглицеридов.

В течение некоторого времени в тканях может продолжаться окисление жирных кислот, в основном низкомолекулярных. Процессы окисления (дегидрирования) в анаэробных условиях, которые создаются в тканях сразу после убоя животных, из-за недостатка акцепторов водорода активно не развиваются. Процесс останавливается на стадии образования гидрокси- и кетокислот, превращающихся под действием тканевых декарбоксилаз в кетоны, которые обладают неприятным специфическим запахом и могут вызвать порчу продукта. По мере понижения температуры ферментативные процессы расщепления липидов замедляются.

В изменении потребительских достоинств мяса важную роль играют количество и состояние компонентов соединительной ткани. В процессе созревания степень превращений различных компонентов мяса неодинакова, поэтому при равных условиях нежность разных отрубов одного животного, а также одинаковых отрубов разных животных оказывается различной. Нежность мяса, содержащего значительное количество соединительной ткани, относительно невелика, и требуется более длительное его созревание. У молодых животных и птицы этот процесс протекает быстрее, чем у старых. Автолитические изменения в мясе больных и усталых животных менее глубоки и выражены, чем в мясе здоровых и отдохнувших. С увеличением нежности мяса наблюдается улучшение его вкусовых и ароматических свойств.

Сырое созревшее мясо имеет слегка кисловатый запах, аромат не ярко выражен. Приятные вкус и аромат оно приобретает после тепловой обработки, во время которой вещества, участвующие в формировании этих свойств мяса, подвергаются сложным превращениям — распаду с образованием новых соединений. Вкус и аромат вареного мяса и бульона улучшаются по мере накопления в сыром мясе свободных аминокислот, моносахаридов, продуктов распада нуклеотидов, летучих карбонильных соединений и др.

На второй стадии созревания мяса возрастает общее содержание свободных аминокислот и на вторые сутки хранения при 2°С превышает их количество в парном мясе, а при дальнейшем хранении увеличивается еще больше.

В процессе созревания в мясе продолжается накопление моносахаридов: глюкозы, фруктозы, рибозы и др. Во время тепловой обработки происходят меланоидиновые реакции, в ходе которых свободные аминокислоты взаимодействуют с моносахаридами: образуются меланоидины, придающие вкус и аромат мясу.

При распаде нуклеотидов увеличивается содержание инозиновой кислоты, инозина, гипоксантина. Инозиновая, гуаниловая и глутаминовая кислоты, а также их натриевые соли придают супам и бульонам специфические вкус и аромат.

Непрерывно возрастает содержание карбонильных соединений и к концу срока созревания превышает их количество в парном мясе более чем в два раза. Летучие карбонильные соединения сами обладают определенным запахом, а также могут участвовать в меланоидинообразовании.

Цвет мяса — один из важнейших показателей, определяющих его товарный вид. Он зависит от содержания и физико-химических изменений миоглобина и гемоглобина — сложных белков, относящихся к группе хромопротеидов.

Хромопротеиды — это сложные белки, в состав небелковой части которых входят окрашенные соединения. К ним относятся некоторые ферменты (цитохромы, каталаза) и кислородсвязывающие белки (гемоглобин и миоглобин). Простетической группой этих белков является окрашенное в красный цвет железосодержащее соединение (гем), способное соединяться с различными газами, в том числе с кислородом.

Решающую роль в формировании цвета мяса играет миоглобин. Поскольку физическая нагрузка мышц (и, следовательно, снабжение их кислородом) различна, содержание миоглобина, а значит, и цвет мяса неодинаковы не только у разных видов животных, но и у разных мышц одного и того же животного. Количество его в мышцах зависит от возраста и активности животных.

Связанный с кислородом миоглобин, содержащий двухвалентное железо (оксимиоглобин), придает мясу яркий светло-красный цвет. Потребительская оценка такого мяса самая высокая. Окисленный и неспособный связываться с кислородом миоглобин, в состав которого входит метмиоглобин, обусловливает коричнево-бурый цвет мяса, а восстановленный, способный связываться с кислородом, содержащий трехвалентное железо, — темно-красный. Соотношением производных миоглобина, одновременно присутствующих в мясе, определяется цвет последнего.

Оценку цвета мяса проводят комплексно, органолептически и спектрофотометрически (по соотношению производных миоглобина). Цвет поверхности свежего мяса, которое хранится на воздухе, зависит преимущественно от соотношения окисленного миоглобина и метмиоглобина, а цвет внутренних слоев — от содержания миоглобина.

Образование оксимиоглобина в мясе связано со скоростью и с глубиной диффузии кислорода в мышечную ткань. На поверхности свежего мяса, хранившегося на воздухе, на глубине 1—2 мм имеется светло-красный слой оксимиоглобина, под ним небольшая зона метмиоглобина, еще глубже преобладает его темно-красный слой. Глубина расположения светло-красного слоя оксимиоглобина зависит от температуры хранения продукта: при низких температурах кислород диффундирует в мясо более глубоко, чем при высоких. В поверхностном же слое присутствуют все формы миоглобина, но в различных соотношениях.

Благодаря изменению белковых веществ, а также усилению вкусовых и ароматических свойств при созревании мясо становится более доступным для действия пищеварительных ферментов. Так, суточное мясо переваривается в желудке за 6,5 ч, а 10-суточное — за 4 ч. Таким образом, по комплексу показателей созревшее мясо имеет более высокую пищевую ценность, чем мясо в состоянии окоченения.

Условия холодильной обработки и сроки созревания мяса. Установлены оптимальные сроки созревания, гарантирующие максимальную нежность мяса и его наилучшие вкусовые и ароматические свойства, но каждое из этих свойств достигает оптимума в разные сроки хранения.

Для мяса крупного рогатого скота могут быть рекомендованы следующие условия и сроки созревания, при которых оно приобретает необходимые потребительские свойства (нежность, вкус, аромат): при 0 °С — 12—14 сут, при 8 °С — 6 сут, при 16— 18 °С — 4 сут. Баранина и свинина созревают в более короткие сроки: при 0 °С — соответственно через 8 и 10 сут. Для мяса, направляемого на промышленную переработку, рекомендуется более сокращенная выдержка при 0 °С, так как во время технологической обработки процесс созревания продолжается: для колбасного производства 1 — 2 сут, для консервного и полуфабрикатов 5 — 7 сут.

При несвоевременном охлаждении туш послеубойное выделение теплоты приводит к возникновению загара мяса — пороку, в результате которого мышечная ткань в глубинных слоях приобретает сероватый оттенок и неприятный запах. Температура в толще мышц может достигать 40 °С и выше. При этом начинается денатурация термолабильных белков, происходят процессы распада отдельных полипептидов с выделением свободных, серосодержащих аминокислот (цистина, цистеина, метионина). Мышечная ткань характеризуется слабой связью волокон и низким сопротивлением на разрыв, тестообразной консистенцией. Такое мясо легко плесневеет и подвергается гнилостному разложению. Опасность появления загара особенно велика у мяса упитанных животных, в мышцах которых содержится больше гликогена. Для предупреждения загара туши и полутуши необходимо своевременно охлаждать и делать надрезы на их толстых частях, что улучшает газо- и теплообмен по всему объему продукта.

На качество мяса влияет также быстрота холодильной обработки в начальный период созревания. Если парное мясо с высоким значением рН быстро охлаждать или замораживать до наступления стадии окоченения, то при температуре мышц около 10 °С возникает так называемое «холодовое сжатие», или уплотнение, которое не полностью обратимо и приводит к повышению жесткости мяса. Холодовое сжатие имеет ту же природу, что и послеубойное окоченение, только развивается оно на фоне быстрого температурного перепада охлаждаемых мышц. Для быстрого охлаждения характерен высокий темп понижения температуры (до 4°С/ч и более), что и является решающим фактором развития холодового сжатия. Так как охлаждение мяса мелких животных и птицы происходит быстрее, чем крупного рогатого скота, то и опасность увеличения жесткости возрастает.

На эффект холодового сжатия влияют упитанность животного, состояние мышц и другие факторы. Так, свинина с толстым слоем Шпика из-за пониженного теплообмена охлаждается так медленно, что сжатия мышечной ткани под действием холода практически не происходит; если полутуши находятся в подвешенном состоянии и мышцы прикреплены к скелету, сжатие мышц уменьшается.

Холодовое сжатие можно рассматривать как результат повреждающего действия, приводящего к нарушению структуры и функций биологических мембран, которые весьма чувствительны и энергетической недостаточности и физико-химическим воздействиям.

Установлено, что в мышцах быстро охлажденных после убоя животных до температуры ниже 15 °С кальциевый насос перестает нормально функционировать. В соответствии с концентрационным градиентом ионы кальция выходят из цистерн и трубочек саркоплазматического ретикулума, вызывая сокращение мышц. Существенно, что концентрация АТФ в мышцах быстро охлажденного мяса (вследствие замедления распада АТФ при понижении температуры) выше, чем в мышцах постепенно охлаждаемого, поэтому жесткость мяса при холодовом сжатии более высокая, чем при послеубойном.

Наиболее эффективны методы борьбы с Холодовым сжатием, связанные с принудительным уменьшением содержания АТФ в мышцах мяса до момента его быстрого охлаждения. Один из них — метод электростимуляции, позволяющий предотвратить холодовое сжатие мяса путем пропускания электрического тока через парные туши, полутуши и отрубы. Электростимуляцию проводят на любом этапе технологической обработки скота (после обескровливания, съема шкуры или распиловки туш на полутуши) импульсным и переменным током (напряжение 240 — 250 В, частота 40 — 60 Гц, продолжительность 1—3 мин).

При пропускании тока сразу после убоя рН уменьшается с 7,0 — 7,3 до 5,7 через 2 ч. У туш, не подвергнутых электростимуляции, это происходит только через 7 — 9 сут и более. При понижении рН высвобождаются ферменты, вызывающие расщепление белков.

Электростимуляция повышает активность тканевых катепсинов, вызывает физическое растяжение и разрыв мышц, ускоряет биохимические изменения: в течение 2 мин в мышцах происходят такие биохимические изменения, которые в обычных условиях продолжаются 7 ч.

Применение электростимуляции эффективно для ускорения размягчения (тендеризации) охлажденного, замороженного и размороженного мяса. Подвергнутое электростимуляции мясо имеет нежную консистенцию, хорошие естественные окраску и вкус. Такая обработка рекомендуется для мяса, предназначенного для использования в парном виде в колбасном производстве или в охлажденном после 7 —8-суточного хранения для выработки натуральных полуфабрикатов.

Изменения в мясе при холодильной обработке. При холодильной обработке в продуктах происходят физические, биохимические и микробиологические изменения.

Физические изменения характеризуются главным образом потерями массы продуктов, уплотнением поверхностного слоя (образование корочки подсыхания).

Изменения, происходящие при холодильной обработке продуктов животного происхождения, тесно связаны с содержанием в них влаги (внутри клеток и между ними). С понижением температуры молекулы воды благодаря дипольному характеру (полигидроли) образуют комплексы. Вокруг ионов или гидрофильных коллоидных частиц создается гидратная оболочка, водосвязывающие силы внутри которой увеличиваются по направлению снаружи внутрь. Диполи воды, сгруппировавшиеся на молекуле-носителе, тесно связаны с ней, и вода в таком состоянии называется связанной. Она имеет повышенную плотность и пониженную растворяющую способность, которая является одной из причин сохранения качества продукта при холодильном хранении, так как неактивная гидратная оболочка препятствует обмену между продуктами реакции. С понижением температуры количество связанной воды увеличивается и тормозит химические и биохимические реакции.

Ввиду большого содержания влаги в мясе животных и птицы над поверхностью свежего мяса устанавливается высокая относительная влажность воздуха (98 — 99 %), которая всегда превышает среднюю влажность воздуха в камерах для холодильной обработки и хранения продуктов.

Относительная влажность воздуха в холодильной камере при температуре от -1 до 0 °С может составлять максимум 90 — 95 %. Из-за разницы в давлении пара поверхность охлаждаемого мяса быстро подсыхает, пока равновесная влажность над ней не приблизится к относительной влажности воздуха в холодильной камере. Чем больше поверхность продукта по отношению к его объему, тем быстрее он высыхает. С ростом скорости движения воздуха увеличиваются также потери от испарения. Концентрация раствора в поверхностном слое возрастает, что приводит к необратимым процессам (денатурация, усадка и образование корочки). Корочка подсыхания не только препятствует развитию микроорганизмов на поверхности мяса, но и значительно снижает потери массы при хранении охлажденного мяса.

При прочих равных условиях наибольшими будут потери массы в продуктах со значительным количеством воды или без упаковки. Кроме того, потери зависят от вида продукта, способа охлаждения и изменяются от 0,4 до 2 % и более.

В результате частичного испарения влаги с поверхности рыбы При охлаждении в воздушной среде уменьшается ее масса, увеличиваются плотность тканей и вязкость тканевых соков в крови. Величина усушки зависит от свойств рыбы, охлаждающей среды, условий охлаждения, размера, плотности и жирности. Чем больше в рыбе воды, тем больше влаги из нее испаряется в процессе охлаждения, поэтому у тощих рыб усушка больше, чем у жирных. Применение газо-, водонепроницаемых упаковочных материалов может практически полностью предохранить продукты от усушки.

Биохимические изменения в продуктах связаны с активностью содержащихся в них ферментов. С момента прекращения жизни животных резко нарушается равновесие обменных процессов — на смену процессам синтеза приходят процессы распада, связанные с необратимыми изменениями в составе этих продуктов.

Микробиологические изменения обусловлены тем, что в процессе охлаждения создаются условия, тормозящие развитие микроорганизмов, а уменьшение увлажненности поверхности продуктов значительно задерживает их рост и размножение. На мясе до и после охлаждения преобладают мезофильные формы микроорганизмов; психрофильных бактерий сравнительно немного; часть микроорганизмов в процессе охлаждения погибает или переходит в состояние анабиоза. Быстрое охлаждение продуктов тормозит развитие микроорганизмов.

13.3. Промышленные способы охлаждения продуктов животного происхождения

Сущность охлаждения продуктов животного происхождения состоит в понижении их температуры посредством теплообмена с охлаждающей средой, но без льдообразования.

Охлаждение обеспечивает сохранение высоких потребительских свойств продуктов (аромата, вкуса, консистенции, цвета) при наименьших изменениях в них. Поэтому если планируемый срок хранения небольшой, продукты выпускают в охлажденном виде. Однако охлажденные продукты длительному хранению не подлежат, так как при близкриоскопических температурах многие виды вредных микроорганизмов активно развиваются и продукт может быстро испортиться.

В настоящее время на основе комбинированных методов консервирования удается значительно повысить сроки хранения скоропортящихся пищевых продуктов в охлажденном состоянии.

При охлаждении имеют место процессы тепло- и массообмена между продуктом и охлаждающей средой, что вызывает испарение влаги с поверхности продукта (усушку) и переход теплоты от продукта в охлаждающую среду.

В промышленности наиболее распространены способы охлаждения, которые осуществляются передачей теплоты от продукта конвекцией, радиацией и вследствие теплообмена при фазовом превращении.

В соответствии со способом теплообмена для охлаждения используют следующие охладительные системы:

типа воздушных кондиционеров (конвективный способ);

применяющие сжиженные газы (конвективный способ);

охлаждающие некипящими жидкостями (кондуктивный способ);

охлаждающие некипящими жидкостями, движущимися относительно объекта (смешанный способ);

вакуумные, действующие до уровня давления 665 Па (испарительно-конденсационный способ).

Современные направления совершенствования холодильной обработки основаны на доведении температуры продуктов до уровня, неблагоприятного для развития микрофлоры и обеспечивающего их сохранность и уменьшение потери массы.

Конкретные режимы охлаждения для каждой группы продуктов определяют с учетом криоскопической температуры и в соответствии с особенностями их состава, свойств, микроструктуры, биохимических процессов, а также целевого назначения и экономичности.

Сравнительно новые методы охлаждения следующие:

воздушное при повышенном давлении;

гидроаэрозольное;

вакуумное;

с использованием электрофизических способов;

снегообразным диоксидом углерода;

глубокое в среде инертных газов.

Наиболее распространенным методом охлаждения мяса является воздушный.

Охлаждение говядины и свинины. Воздушному охлаждению туши или полутуши подвергают в камерах и туннелях, специально оборудованных подвесными путями и системой регулирования режима холодильной обработки.

В камере охлаждения говяжьи и свиные полутуши подвешивают на крючьях подвесных путей, а бараньи — на рамах. Расстояние между тушами не менее 5 см. В камеру охлаждения загружают мясо одного вида, одной категории упитанности и по возможности одинаковой массы, благодаря чему вся партия одновременно охлаждается до конечной температуры. Средняя нагрузка на 1 м подвесного пути составляет около 250 кг мяса. В процессе охлаждения относительная влажность воздуха самоустанавливается на уровне 85 — 92 % за счет испарения влаги из продукта.

Охлаждение мяса в воздухе проводят одно-, двух- и трехстадийным, а также программным способами. Одностадийное охлаждение проводят при температуре 0 °С и скорости движения воздуха 0,5 — 2 м/с до температуры в толще мышц бедра на глубине не менее 6 см от поверхности до 4 °С. Температура и скорость воздуха — основные параметры, влияющие на коэффициент теплоотдачи от поверхности продукта к охлаждающей среде и, следовательно, на продолжительность охлаждения. Для говяжьих полутуш температура воздуха может быть понижена до -2 °С, а для свиных — до -5 °С. Продолжительность охлаждения при этом составляет 14 — 24 ч.

Наметившаяся тенденция снижения температуры охлаждающего воздуха ниже криоскопической и повышения скорости его движения до 2 м/с объясняется желанием интенсифицировать процесс охлаждения. При этом дополнительные энергозатраты по сравнению с традиционным способом вполне оправданны, поскольку уменьшается продолжительность процесса на 30 — 40%, в таких же пределах снижается усушка, повышается качество мяса и мясных продуктов и увеличивается оборачиваемость камер охлаждения.

При дальнейшем снижении температуры охлаждающей среды возможно подмораживание мяса, поэтому используют двух- и трехстадийное охлаждение с применением переменных параметров воздушной среды. Стадийное охлаждение полутуш может осуществляться в одной или разных камерах. Так, свиные полутуши на первой стадии охлаждают при температуре -10...-12 °С в течение 1,5 ч, на второй — при -5 ...-7 °С в течение 2 ч и при доохлаждении (для равномерного распределения температуры по толщине полутуш) — около 0 °С в течение 6 — 8 ч. На первой и второй стадиях скорость движения воздуха 1 — 2 м/с, а при доохлаждении — 0,5 м/с при его относительной влажности 95 — 98 %.

При программном охлаждении мясо вначале охлаждают при температуре -4...-5 °С и скорости движения воздуха 4 — 5 м/с, а затем при температуре 0 °С и переменной скорости движения воздуха, изменяющейся по заданной программе от начальной до 0,5 м/с.

Интенсифицированный способ охлаждения говядины предусматривает использование на первой стадии воздуха температурой до -25 °С, движущегося со скоростью 5 — 10 м/с. По достижении на поверхности полутуш криоскопической температуры начинается вторая стадия охлаждения, в течение которой температура воздуха поддерживается на уровне криоскопической, а скорость его не превышает 0,5 м/с. При фронтальном способе охлаждения полутуш, когда они движутся на конвейере навстречу потоку охлажденного воздуха, холодильная обработка ведется с изменяющимся в течение процесса коэффициентом теплоотдачи. Это позволяет уменьшить продолжительность холодильной обработки на 10 % по сравнению с процессом, проведенным при постоянном значении коэффициента теплоотдачи, усушка при этом снижается еще на 30 —40 %. Скорость воздуха в камерах изменяют подбором определенных сечений воздухораспределителей. Полутуши перемещаются конвейерным способом по камере, размеры которой рассчитывают исходя из того, что за время продвижения в камере предварительного охлаждения температура поверхности полутуш не должна быть ниже криоскопической, а в камере доохлаждения должна достигать заданного конечного значения. Избежать холодового сокращения мышц (температурного шока) можно посредством электростимуляции или путем выдержки мяса в период предварительного охлаждения при температуре воздуха 10— 12 °С в течение 12—15 ч.

Гидроаэрозольное охлаждение изначально применяли только для обработки фруктов, овощей, цветов, зелени. В настоящее время таким образом охлаждают колбасы, мясо в тушах, полутушах и четвертинах.

Гидроаэрозольное охлаждение представляет собой охлаждение мяса в интенсивно циркулирующей и насыщенной до 100 %-ной относительной влажности воздушной среде. Для предотвращения порчи мяса в воду могут быть добавлены бактерицидные вещества. Процесс интенсифицируется за счет испарительного охлаждения с поверхности полутуш и по расходу энергии вдвое экономичнее традиционного воздушного охлаждения. Модификацией этого способа является применяемый за рубежом способ охлаждения мяса и мясных продуктов в капельно-жидкой среде пропиленгликоля. При этом продукты охлаждаются раствором пропиленгликоля температурой -8... -15 °С до достижения требуемой температуры в толще продукта; эффективность процесса в два-три раза выше, чем при воздушном охлаждении.

В технологии охлаждения и замораживания может использоваться способ гидрофлюидизации с применением «айссларри» (жидкий или текучий лед), который позволяет получить высокий коэффициент теплоотдачи и существенно увеличить скорость замораживания.

Для сокращения усушки при охлаждении мяса с последующим замораживанием разработан способ комплексной термовлажностной обработки после убоя. Для этого полутуши сначала охлаждают в камере перенасыщенным влагой воздухом при температуре -1°С, а затем быстро (за 5 —10 мин) обдувают сухим горячим воздухом (температура 50 —70 °С, влажность 5—10 %). В холодном отсеке камеры благодаря интенсификации теплоотдачи от продукта к перенасыщенному воздуху время охлаждения сокращается до 9 ч, а усушка — до 0,5 — 0,6 %.

Вакуумное охлаждение ранее применяли только для обработки растительного сырья, а сейчас в ряде стран используют при охлаждении туш крупного и мелкого рогатого скота, свиней, кускового мяса. Так, свиные полутуши, имеющие температуру 37 °С, разделывают, производят обвалку и жиловку мяса в помещении при температуре 8 °С. Отрубы поступают на вакуумупаковочную линию, где подвергаются вакуумному охлаждению при температуре 0...-2 °С. В зависимости от размеров отрубов через 4 —9 ч температура в толще продукта снижается до 7 °С, а через 14 ч — до 2 0С. При таком способе охлаждения значительно улучшается санитарное состояние мяса, увеличивается до 15 сут срок его хранения, снижается усушка.

Разрабатывается технология охлаждения с использованием электрофизических способов, к которым относятся способ охлаждения при помощи электрически заряженных капель жидкости, обработки мясопродуктов ионизирующими газами, электроконвективное охлаждение и др.

Принцип охлаждения при помощи электрически заряженных капель жидкости заключается в том, что к поверхности мяса, предназначенного для охлаждения, подводится электрод, на который подается высокое напряжение с положительным зарядом. Охлаждающая жидкость поступает по трубопроводу, заряженному отрицательно. Охлаждение происходит при контакте электрически заряженных капель жидкости с поверхностью продукта.

Охлаждение при помощи ионизирующих газов позволяет увеличить срок хранения полуфабрикатов в 1,3—1,5 раза при высоком их качестве, сокращении энергозатрат и уменьшении усушки.

В условиях электроконвективного охлаждения значительно возрастает плотность теплового потока от охлаждаемого продукта (для разных видов мяса — в 1,1 — 1,8 раза). С увеличением напряжения электрического поля максимум теплоотвода смещается на более раннюю стадию процесса и по времени сокращается примерно в два раза, что очень существенно, так как наибольшие потери массы приходятся на первую половину процесса охлаждения. Потери массы из-за препятствия электрических сил испарению влаги сокращаются на 10 — 20 %.

Субпродукты, уложенные в противни, ящики, формы, располагают в камере охлаждения на многоярусных стационарных стеллажах либо на передвижных этажерках или рамах не позже чем через 5 ч после убоя скота. Их укладывают слоем не более 10 см; почки, сердце, мозги и языки — в один ряд; рубцы охлаждают в подвешенном состоянии на крючьях. Продолжительность охлаждения субпродуктов при температуре 0 °С и относительной влажности воздуха 85 — 90 % около 24 ч. Для ускорения процесса используют скороморозильные аппараты (-2...-4 °С), а также непрямой контакт с жидкой охлаждающей средой.

Для субпродуктов и мясных полуфабрикатов, уложенных в картонные коробки, эффективным является охлаждение снегообразным диоксидом углерода. Охлаждение проводят в специальных туннелях, количество снегообразного диоксида углерода, подаваемого на продукт, регулируют с помощью реле времени. Для быстрого снижения температуры фарша из говядины свежих (парных) полутуш до 2 °С, что необходимо для заключительной стадии получения фарша, в мясо добавляют замороженные хлопья диоксида углерода в соотношении 1 : 10.

Для создания инертной среды и охлаждения колбасного фарша из парного мяса в процессе куттерования применяют жидкий азот. Удельный расход жидкого азота зависит от качества и температуры обрабатываемого сырья и окружающей среды и составляет от 0,15 до 0,35 кг на 1 кг колбасного фарша. Охлаждение жидким азотом позволяет поддерживать в куттере необходимый температурный режим и соответственно оптимальную продолжительность процесса, исключив при этом отрицательное воздействие повышения температуры на состав и качество фарша. Увеличение продолжительности куттерования вареных колбас при охлаждении жидким азотом способствует значительному улучшению растворимости мясного белка и в результате повышению водо- и жиросвязывающей способности фарша, что позволяет в принципе отказаться от применения фосфатов.

Охлаждение мяса птицы. Тушки птицы охлаждают воздухом, водоледяной смесью, ледяной водой, диоксидом углерода и азотом. Применяют также комбинированное охлаждение (орошение тушек или погружение их в ледяную воду, а затем в воздушную среду).

Достаточно эффективен с точки зрения условий теплоотдачи, затрат труда, продолжительности и технологичности процесса метод погружного охлаждения тушек птицы в чистой ледяной воде или в водоледяной смеси.

Водоледяную смесь или ледяную воду получают путем добавления к обычной водопроводной воде чешуйчатого льда либо пропускания ее через специальные испарители, в которых она охлаждается до нужной температуры. В современных условиях этот эффект достигается барботированием через воду диоксида углерода или азота с низкими температурами.

После охлаждения ледяной водой кожа на тушках становится светлой и чистой, исчезают пятна от ушибов и кровоизлияний. Тушки птицы поглощают некоторое количество воды, вследствие чего они округляются и приобретают лучший товарный вид.

Температура ледяной воды должна быть не выше 2 °С, а время охлаждения — 0,5—1 ч. Для уменьшения возможного обсеменения микроорганизмами применяют антисептированную воду, а также гидроаэрозольный метод охлаждения: тушки в подвешенном состоянии орошаются ледяной водой из специальных форсунок в течение 30 — 35 мин.

В санитарном отношении наиболее эффективно комбинированное охлаждение (орошение — погружение, орошение — погружение — воздушная обработка).

При методе орошение — погружение потрошеные тушки предварительно охлаждают, непрерывно орошая водопроводной водой из центробежных форсунок в течение 10—15 мин в зависимости от вида птицы, затем погружают в воду температурой 0 — 2 °С на 25 — 35 мин до достижения температуры в толще грудной мыщцы 0 —4°С.

При воздушном доохлаждении происходит частичное удаление приобретенной при орошении тушками воды и одновременно их охлаждение в результате испарения.

При охлаждении в ледяной воде тушки поглощают от 3 до 8 % влаги, в среднем же (с учетом испарения) их масса увеличивается на 4 %.

Продолжительность охлаждения птицы интенсифицированным воздушным методом (температура 0...-2 °С, скорость движения воздуха 4 м/с) составляет от 3 до 6 ч в зависимости от массы и упитанности тушек. Воздушное охлаждение применяют только для тушек после сухой ощипки и тепловой обработки, в противном случае мясо обезвоживается и теряет товарный вид.

Очень эффективным для охлаждения тушек птицы является применение снегообразного диоксида углерода, который вводят в их внутреннюю полость из расчета 0,07 кг на 1 кг массы. Этого достаточно, чтобы очень быстро охладить тушку до среднеобъемной температуры 0 0С.

Охлаждение колбасных и мясных консервов. Вареные колбасы обычно охлаждают в две стадии: тонкораспыленной водой с использованием испарительного эффекта охлаждения, затем интенсивно движущимся воздушным потоком, имеющим температуру 0 — 8 °С, скорость движения до 4 м/с. Продолжительность охлаждения водой 5 — 30 мин, воздухом 1 — 10 ч. Однако для вареных колбас наиболее эффективен трехстадийный способ: орошение водой из форсунок грубого распыления, охлаждение в гидроаэрозольной среде, воздушное охлаждение. На второй стадии может быть предусмотрен непрерывный или цикличный режим распыла воды в зависимости от устройств, обеспечивающих ее подачу, и условий циркуляции воздушного потока.

Сравнительно новым является способ охлаждения в пенном воздушно-жидкостном потоке. Колбасные изделия охлаждают в две стадии: на первой — за счет испарения воды при прохождении через нее воздуха, на второй — путем использования испарительного эффекта в сочетании с холодом, с последующим подсушиванием батонов в течение 2 — 3 мин. Скорость движения воздуха 10—16 м/с. При начальной температуре продукта 70 ° С и температуре воды -2 °С батоны охлаждаются за 50 мин (в 1,5 раза быстра по сравнению с охлаждением колбас водой, распыляемой форсунками). Усушка составляет менее 0,3 %.

Для варено-копченых и полукопченых колбас целесообразно воздушное охлаждение при температуре 8 — 12 °С и скорости движения воздуха 1,5 — 2 м/с.

Пастеризованные мясные консервы охлаждают водой, а затем воздухом при температуре 0 — 2 °С и скорости охлаждающей среды до 3 м/с. Продолжительность охлаждения до конечной температуры не превышает 24 ч.

Для охлаждения применяют туннели и аппараты конвейерного типа, в которых размещены этажерки с продуктом, картонные коробки, лотки, поддоны и т.д. Направление движения воздушных потоков в аппаратах зависит от размера и формы продуктов и способа размещения их на конвейере.

Охлаждение яиц. Яйца при поступлении в холодильник предварительно охлаждают до температуры хранения в специальной камере. Начальная температура в камере должна быть на 2 — 3 °С ниже температуры яиц, затем ее постепенно понижают (на 1—2 °С в течение 1 — 2 ч); относительная влажность воздуха в период охлаждения 75 —80 % при скорости его движения 0,3 — 0,5 м/с. Процесс охлаждения в зависимости от первоначальной температуры длится двое-трое сут. Яйца по достижении температуры 2 °С направляют в камеры хранения.

Охлаждение рыбы. Рыбу охлаждают льдом, охлажденной пресной и морской водой, холодным воздухом, криогенными жидкостями (жидкий азот), комбинированными методами (ледяная вода и лед, лед и жидкий азот и др.).

Охлаждение и замораживание относятся к важнейшим технологическим процессам в рыбной промышленности. Рыбу и морепродукты, обработанные холодом, широко используют в качестве полуфабрикатов в производстве различных видов рыбной продукции, а также в охлажденном или замороженном состоянии реализуют в розничной торговой сети. Согласно данным ФАО, на долю охлажденной и мороженой продукции приходится более 80 % всей вырабатываемой рыбной пищевой продукции.

Для охлаждения рыбы льдом используют различные его виды — чешуйчатый, трубчатый, плиточный и др. Наиболее распространенный способ — охлаждение в таре (ящиках, контейнерах, корзинах, мешках и др.). Для этого рассортированную по размеру рыбу тщательно промывают чистой водой, дают ей стечь, после чего укладывают в тару со льдом в неразделанном или разделанном виде. При этом на дно тары помещают слой мелкодробленого льда толщиной 2 — 3 см, поверх него укладывают рыбу, затем опять слой льда. Крупную рыбу укладывают ровными рядами головами в разные стороны к стенкам тары, а мелкую насыпают равномерным слоем толщиной не более 10 см. Возможно и предварительное перемешивание рыбы со льдом с последующей укладкой рыболедяной смеси в тару; сверху насыпают дополнительный слой льда.

При хранении и транспортировке рыбы на судах с охлаждаемыми трюмами расход льда в ящиках составляет от 30 до 40 % массы рыбы. При охлаждении рыбы в бочках на дно насыпают не менее 20 %, а на верхний ряд рыбы — не менее 30 % всего количества льда.

Контейнеры дают возможность повысить качество рыбы, обеспечивают экономию льда, доставляемого на промысел, так как при перевозке в них лед тает на 75 % медленнее, чем в ящиках. Термоизолированные контейнеры при использовании льда применяют только в районах с холодным климатом вследствие замедленного теплообмена.

В жарком климате термоизолированные контейнеры не обеспечивают длительное сохранение рыбы, так как из-за медленного снижения температуры начинается интенсивное развитие микрофлоры.

Охлаждение рыбы льдом имеет ряд недостатков — нерационально используются производственные помещения, трюмы судов, камеры холодильников; затруднен количественный и качественный контроль и учет рыбы, в некоторых случаях не обеспечивается быстрое понижение температуры улова и т.д.

Охлаждение рыбы охлажденной морской или пресной водой имеет ряд преимуществ, к основным из которых относятся более быстрое снижение температуры рыбы, экономичность процесса при охлаждении, транспортных операциях и выгрузке в конечных пунктах транспортирования. Наиболее существенные недостатки — набухание мяса промысловых объектов и его просаливание при использовании охлажденной морской воды. Отрицательное влияние охлажденной воды уменьшается с понижением температуры, но оно достаточно выражено даже при близкриоскопических температурах. Вследствие этого продолжительность хранения улова в охлажденной воде ограничена несколькими сутками, иногда часами и зависит от технохимических особенностей объектов: проницаемости их кожного покрова, консистенции мяса, размеров и др. Особенно быстро отрицательное влияние охлажденной воды проявляется при хранении мелкой пелагической рыбы, ракообразных и моллюсков. Более рационально охлаждение водой и хранение во льду или в сухом холодном помещении.

Охлаждение рыбы в жидкой среде производится погружением или орошением. В качестве охлаждающей среды используют пресную, морскую воду или 2%-ный раствор хлорида натрия в пресной воде, осмотическое давление которого соизмеримо с давлением тканевого сока рыбы.

На промысловых судах рыбу сразу после вылова погружают в специальных корзинах в бак с циркулирующей охлаждающей средой. Хорошие результаты дает добавление в холодную воду льда (соотношение рыбы, воды и льда соответственно 2 : 1 : 1). Охлаждение может проводиться и орошением холодным рассолом на конвейере, где рыба по мере продвижения орошается через форсунки или другие устройства.

Достаточно эффективно также использование вместо водоледяной смеси льда-шуги (канадский метод). Лед-шугу получают путем медленного снижения температуры воды или раствора до начала формирования мелких кристаллов (0,05 — 0,07 мм). Образовавшаяся ледяная шуга может быть отфильтрована в виде сухого льда от незамерзшей части или же вместе с последней (около 30 %) может быть перекачана насосом в контейнеры либо другую тару. Этот способ отличается высокими показателями качества и экономичностью по сравнению с другими.

Продолжительность охлаждения в холодной воде зависит от размеров рыбы, температуры воды, скорости ее циркуляции, конструкции охладителя и составляет от нескольких минут до 3 ч и более.

Для охлаждения морской воды используют жидкий азот, который, кроме того, применяют вместе со льдом для охлаждения и хранения упакованной и неупакованной рыбы.

В первом случае жидкий азот впрыскивают в морскую воду для ее охлаждения до 0...-2 °С, после чего загружают рыбу. По мере отепления воды впрыскивание жидкого азота повторяют. При транспортировании грузовой объем может охлаждаться жидким азотом путем периодического впрыскивания его в кузов авторефрижератора. Еще более эффективным является применение жидкого азота в комбинации со льдом. В результате применения жидкого азота для охлаждения значительно увеличиваются последующие сроки хранения рыбы (в два-три раза).

Охлаждение рыбы под вакуумом основано на частичном испарении воды с ее поверхности при понижении давления (не ниже 400 Па), что существенно сокращает продолжительность охлаждения при незначительных потерях массы продукта.

Копченую рыбу, некоторые виды рыбных полуфабрикатов и продуктов кулинарии, для которых нежелателен контакт с водой или льдом, охлаждают в воздушной среде. Применение при этом диоксида углерода или жидкого азота интенсифицирует процесс и существенно улучшает качество продукта.

Охлаждение животных пищевых жиров. Жиры охлаждают перед упаковкой в тару для придания им плотной консистенции, однородной структуры, а также торможения окислительных и гидролитических процессов. При упаковке в крупную тару жиры подвергают одностадийному охлаждению от 65 до 40 °С (говяжий и бараний) и 35 °С (свиной и костный). При упаковке в картонные контейнеры свиной жир охлаждают до 25 — 24 °С; при упаковке в мелкую тару на фасовочных автоматах (по 250, 500 г) жиры, предварительно охлажденные до 35 °С для большей пластичности, дополнительно охлаждают до 21 — 12 °С. При охлаждении перед упаковкой в среде инертного газа в жирах замедляются химические и биохимические процессы, приводящие к их порче.

Охлаждение молока и молочных продуктов. При производстве, транспортировке, хранении и реализации молока и молочных продуктов требуется обязательное присутствие холода.

Для сохранения первоначальных свойств и продления бактерицидной фазы молоко фильтруют и охлаждают сразу же после доения до 10 — 2 0С. В специальных охладителях для охлаждения молока бесконтактным способом применяют холодную воду, рассол др. В этом случае охлаждение осуществляется быстро — в течение скольких минут. Если молоко с ферм после каждого доения сразу отправляют на завод, нецелесообразно проводить низкотемпературное охлаждение. В таких случаях температуру охлаждения выбирают в зависимости от промежутка времени, которое проходит с момента конца охлаждения молока на ферме до момента доставки его на завод. Если этот промежуток не превышает 6 ч, молоко охлаждают до 10 0С, 12 ч — до 8 °С, 24 ч — до 5 °С. На молочном заводе упакованные продукты охлаждают в воздушной среде при температуре 0 °С и скорости движения воздуха до 1 м/с.

ГЛАВА 14

ОСНОВНЫЕ ИЗМЕНЕНИЯ, ПРОИСХОДЯЩИЕ В ПРОДУКТАХ ПИТАНИЯ ПРИ НИЗКОТЕМПЕРАТУРНОЙ ОБРАБОТКЕ

14.1. Замораживание продуктов растительного происхождения

Консервирование плодоовощной продукции замораживанием позволяет сгладить сезонность в ее потреблении, насытить рацион жизненно необходимыми витаминами, минеральными элементами, сократить время приготовления пищи, значительно улучишь ее санитарно-гигиенические показатели. В качестве полуфабриката замороженные плоды, овощи и ягоды — прекрасное сырье для промышленного производства многих других продуктов (фруктовые и молочные кремы, йогурты, мороженое, кондитерские изделия и др.). Значительную долю концентратов фруктовых соков в мире в настоящее время получают методом замораживания (криоконцентрация).

Потребление быстрозамороженной продукции за рубежом составляет от 5 до 50 кг на душу населения, в СНГ — 0,5 кг.

Способы замораживания. Все способы замораживания подразделяют по виду теплообмена на конвективные, кондуктивные, испарительно-конденсационные, смешанные.

Замораживание воздушным способом проводят в морозильных камерах и туннельных морозильных аппаратах. Последние отличаются интенсивностью движения воздуха (4—12 м/с) и незначительной продолжительностью замораживания. В зависимости от вида продукта и типа холодильной установки продолжительность замораживания плодов и овощей при температуре -25...-45 °С составляет от нескольких минут до нескольких часов.

Преимущество туннельных морозильных камер — универсальность: в них можно замораживать пищевые продукты разной формы, размера и в различной упаковке.

Основные критерии при выборе способа замораживания — быстрота и экономичность процесса. При этом количество теплоты, отводимой воздухом от продукта, прямо пропорционально площади контакта воздуха с продуктом, разности температур воздуха и продукта и коэффициенту теплопередачи от продукта воздуху.

Замораживание в «кипящем слое» (флюидизационный способ) происходит под действием подаваемого восходящего потока холодного воздуха, достаточного для поддержания продукта во взвешенном состоянии. Последнее достигается с помощью мощного потока воздуха, подаваемого вентиляторами через охлаждающую батарею, а затем через слой замораживаемого продукта, находящегося, как правило, на сетчатой ленте конвейера. Проходя через отверстия ленты, воздух поднимает частицы продукта, отделяет их друг от друга и удерживает во взвешенном состоянии. В установках без сетчатой ленты замораживаемый продукт не только поддерживается потоком воздуха во взвешенном состоянии, но и направленным движением перемещается в установке.

Способ флюидизации применяют для замораживания неупакованных мелких или нарезанных плодов и овощей диаметром до 40 мм длиной до 125 мм. Из продуктов, полученных этим способом, можно готовить различные смеси. Кроме того, легче механизировать упаковку таких овощей и плодов, осуществлять их дозировку и употреблять по мере надобности.

Флюидизационные аппараты имеют широкий диапазон производительности — от 0,5 до 15 т/сут, а теплообмен в них протекает интенсивнее, чем в обычных воздушных аппаратах.

При контактном способе замораживания продукт зажимается между двумя металлическими плитами, в которых циркулирует жидкий или кипящий хладоноситель. Важное условие — равномерность толщины загружаемых порций по всей поверхности плиты. В противном случае ухудшается контакт плиты с остальным продуктом и увеличивается продолжительность замораживания. Контактные плиточные аппараты непригодны для замораживания продуктов неправильной формы. При температуре кипения хладагента -35...-45 0С продолжительность замораживания продукта в упаковке 0,5 кг составляет 1—3 ч, а небольших порций при толщине 50 мм — до 1 ч.

В кипящих хладоносителях (жидкий воздух, азот, фреон, диоксид углерода) обеспечивается сверхбыстрое замораживание продуктов. В этом случае вся поверхность продукта участвует в теплообмене, а очень низкие температуры (-40...-196 °С) обеспечивают замораживание за несколько минут.

Комбинированный способ замораживания с использованием низкотемпературной газовой среды, создаваемой в результате испарения жидкого хладоносителя, позволяет избежать механических повреждений продуктов льдом.

Замораживание с использованием испарительно-конденсационно-го обмена применяют, как правило, в случаях, когда удаление влаги из продукта способствует проведению какого-либо последующего процесса, например сублимационной сушки. На первом этапе под вакуумом вследствие бурного испарения воды из продукта понижается его температура и образуются кристаллы водяного льда, а затем уже под глубоким вакуумом осуществляется сублимация водного льда, тем самым обеспечивается обезвоживание продукта.

Отбор сырья. Пригодность растительного сырья для замораживания, а также качество замороженной продукции определяются прежде всего генетическими особенностями сортов и видов, степенью созревания, условиями вегетации, сбора, транспортировки и предварительной обработки.

Для получения высококачественной продукции следует отбирать сырье соответствующей степени зрелости, пригодное для замораживания.

Плоды, собранные в стадии полной зрелости, при размораживании часто размягчаются. Чтобы лучше сохранить форму плодов, быстрое замораживание следует проводить до наступления стадии биологической зрелости.

На качество продукции существенно влияет также время от сбора продукции до ее замораживания. При удлинении этого срока до нескольких дней ослабляется консистенция мякоти после ее размораживания.

На крупнейших зарубежных предприятиях по производству замороженной плодоовощной продукции продолжительное хранение сырья от момента сбора до начала переработки сокращена до 1,5 ч. Если невозможно переработать продукцию сразу после уборки, свежие плоды и ягоды следует немедленно охладить и хранить до замораживания при температуре от 0 до 6 °С в зависимости от вида сырья от 5 ч до 7 сут.

Важный показатель пригодности растительного сырья для замораживания — влагоудерживающая способность, которая определяется его видовыми свойствами, а также зависит от условий обработки, замораживания и хранения.

Вода в тканях удерживается посредством химических связей с протеинами, полисахаридами, пектиновыми соединениями. Отдельные сорта плодов и ягод в большей степени подходят для замораживания, так как их ткани обладают высокой влагоудерживающей способностью.

Влагоудерживающая способность плодов и ягод при замораживании снижается, так как кристаллы льда повреждают клеточные мембраны. При этом существенное значение имеет предварительная подготовка сырья к замораживанию.

Основные этапы подготовки растительного сырья к замораживанию — инспекция, сортировка, калибровка. В процессе этих операций удаляют посторонние примеси, перезревшие, недозревшие, больные, поврежденные при транспортировании плоды, ягоды, овощи. Для каждой замораживаемой партии отбирают продукцию одинакового размера, одной степени зрелости и окраски.

Отсортированное сырье моют проточной водой, причем такие ягоды, как земляника, малина и др., должны находиться в воде минимальное время. После мойки проводят повторные сортировку и калибровку, что обеспечивает однородность партий продукта. Подготовленное сырье подсушивают и замораживают без сахара, с сахаром и в сахарном сиропе. Замораживание с сахаром предохраняет плоды от окислительного действия кислорода воздуха, тормозит ферментативные и микробиологические процессы, способствует лучшему сохранению вкуса и аромата. Кроме того, растворы сахара обладают криопротекторными свойствами, что позволяет уменьшить повреждающее действие кристаллов льда. Во избежание растрескивания плоды, ягоды, виноград предварительно охлаждают до 0 — 1 0С, а затем быстро замораживают при -35 °С до заданной конечной температуры в центре продукта (-18...-25 °С).

Овощи при замораживании сортируют по качеству, иногда по размеру, моют, очищают, режут, как правило, бланшируют (кроме томатов, баклажанов, перца) в целях разрушения окислительных ферментов, вызывающих потемнение продукта, охлаждают и замораживают, иногда с применением 2%-ного раствора поваренной соли.

Замораживают плоды, ягоды и овощи россыпью или в таре (картонной, полимерной, стеклянной, металлической). Плоды и овощи, замороженные россыпью, быстро фасуют в тару, преимущественно в пакеты из полимерных материалов, которые затем герметизируют.

Изменение состава и свойств плодов и овощей при замораживании. Интенсивность и характер изменений продуктов при замораживании зависят от условий и параметров процесса, а также качественных характеристик плодов и овощей. Специфика состава и строения плодов и овощей, особенности и взаимосвязь протекающих в них физико-химических и биохимических реакций оказывают существенное влияние на сохранение их свойств.

При замораживании вода превращается в лед, что изменяет осмотические условия и резко сокращает скорость большинства биохимических процессов в плодах и овощах. Замораживание приводит к повышению концентрации растворенных веществ вследствие миграции влаги из микробной клетки во внешнюю среду на первой стадии и к внутриклеточной кристаллизации воды на последующих стадиях, а также нарушению согласованности биохимических реакций за счет различий в степени изменения их скоростей.

Устойчивость микробной клетки к замораживанию зависит от вида и рода микроорганизмов, стадии их развития, скорости и температуры замораживания состава среды обитания. Наиболее высокая степень отмирания микроорганизмов наблюдается при температуре -4...-6 °С, а их рост и размножение полностью исключаются при -10...-12 °С. В этих условиях плоды и овощи не подвергаются микробиологической порче, хотя полного уничтожения микроорганизмов не происходит. В замороженных ягодах или фруктово-ягодных соках при температуре хранения выше -8 0С под действием дрожжей происходит спиртовое брожение и накапливается спирт.

При определении условий и режимов замораживания стремятся максимально учитывать особенности свойств и строения плодов и овощей, чтобы достичь максимальной обратимости процесса.

Особенности состояния плодов и овощей при замораживании обусловливаются фазовым переходом воды в твердое состояние и повышением концентрации растворенных в жидкой фазе веществ. Процесс кристаллообразования приводит к изменению физических характеристик плодов и овощей, сопровождающемуся изменениями физико-химических, биохимических и морфологических свойств.

Размер, форма и распределение кристаллов льда в структуре плодов и овощей зависят от их свойств и условий замораживания. Состояние мембран и клеточных оболочек, их проницаемость, ионная, молярная концентрация растворенных веществ отдельных структурных образований растительных тканей, степень гидратации основных компонентов предопределяют особенности распределения льда в системе, размер и форму кристаллов.

Более низкая концентрация растворенных веществ в межклеточном пространстве определяет разницу в значениях криоскопических температур структурных элементов, вследствие чего кристаллы льда формируются в первую очередь в межклеточной жидкости. При температуре ниже точки замерзания водяной пар в крупных межклеточных пространствах начинает конденсироваться в виде капелек влаги на прилегающих клеточных стенках. Эта вода и превращается в первые микроскопические кристаллики льда, которые распространяются, обволакивая стенки клеток. Кристаллы разной формы (в виде линз, разветвленные и др.) разрастаются между клетками эпидермиса и паренхимы. Процесс сопровождается повышением осмотического давления вследствие роста концентрации растворенных в жидкости солей, что, в свою очередь, обусловливает миграцию влаги из клеток. Дальнейший рост кристаллов происходит за счет влаги, содержащейся в клетках, что объясняется разницей в давлении пара поверхности разных кристаллов.

При понижении температуры в клетках сначала наступает состояние переохлаждения, а затем спонтанно возникают центры кристаллизации, приводящие к образованию внутриклеточного льда. Граница перехода из одного агрегатного состояния в другое обусловлена не только концентрацией раствора, свойствами отдельных его компонентов, но и рядом других факторов. Так, в тонких капиллярах воду можно переохладить до -20 °С. Граница переохлаждения отдельных растворов пищевых продуктов различна, а температура ниже этой границы или механическое встряхивание приводят к очень быстрому, практически массовому превращению воды в лед.

При медленном замораживании с образованием крупных кристаллов вне клеток изменяется первоначальное соотношение объемов за счет перераспределения влаги и фазового перехода воды. Быстрое замораживание предотвращает значительное диффузионное перераспределение влаги и растворенных веществ и способствует образованию мелких, равномерно распределенных кристаллов льда.

С изменением скорости замораживания по мере перемещения границ фазового перехода от периферии к центру продукта изменяются размер и характер распределения кристаллов льда. Наиболее мелкие кристаллы образуются в поверхностных слоях продукта.

Максимальное кристаллообразование в плодах и овощах происходит при температуре от -2 до -8 0С. При быстром прохождении этого интервала можно избежать значительного диффузионного перераспределения воды и образования крупных кристаллов. Степень повреждения тканевых структур плодов и овощей при замораживании зависит от размеров кристаллов льда и физико-механических превращений, протекающих в тканях на молекулярном уровне.

На размер кристаллов льда и характер их распределения между структурными элементами существенно влияют состав и свойства плодов и овощей. Так, лук, картофель и некоторые другие овощи покрыты плотной естественной оболочкой, что способствует переохлаждению, тогда как капуста белокочанная, не имеющая такой оболочки, не переохлаждается из-за крупных межклетников и большого содержания свободной воды.

Сильное влияние на характер кристаллообразования оказывает также степень зрелости плодов. В недозрелых плодах содержится значительное количество свободной воды и происходит в основном внутриклеточная кристаллизация, что губительно действует на клетки. В созревших плодах накапливается пектин, обладающий высокими гидрофильными свойствами. Он связывает значительное количество воды и способствует образованию гелеобразной структуры, что положительно сказывается на обратимости процесса замораживания.

Замороженные плоды и овощи приобретают новые свойства: твердость (следствие превращения воды в лед), плотность, интенсивность и яркость окраски (результат оптических эффектов) и др.; кроме того, значительно изменяются их теплофизические свойства.

Вследствие снижения кинетической энергии молекул при понижении температуры, повышения вязкости внутриклеточной жидкости, уменьшения растворимости газов и диффузии веществ значительно снижается скорость химических реакций, однако полное прекращение их возможно только при абсолютном нуле (-273 °С).

При постепенном вымораживании влаги в жидкой фазе продукта повышается концентрация минеральных солей (электролитов), агрессивных по отношению к белкам и оказывающих наиболее повреждающее действие на ферментные системы. При этом происходит как ускорение, так и замедление отдельных реакций, меняется их направленность. В первую очередь при замораживании повреждаются ферментные системы дыхательной цепи и окислительного фосфорилирования митохондрий, вследствие чего исчезают основные жизненные функции: дыхание и способность к генерации энергии.

Поскольку при замораживании плодов и овощей окислительно-восстановительные процессы, присущие свежим продуктам, сдвигаются в сторону окислительных реакций, качество полученного продукта зависит в основном от степени активности оксидоредуктаз, среди которых особое значение имеют полифенолоксидаза, аскорбатоксидаза, каталаза и пероксидаза.

Деятельность ферментов является, пожалуй, основной причиной появления посторонних привкусов в продуктах. При этом, как правило, снижается содержание крахмала и витамина С, увеличиваются кислотность и количество редуцирующих сахаров, в результате ферментативного потемнения изменяется окраска продукта, ухудшаются консистенция, вкус, запах.

Из-за разрушения части ферментов при замораживании нарушаются сбалансированность и координация отдельных реакций, их синхронность. При этом устойчивая к изменению рН инвертаза проявляет активность в широком диапазоне (3 — 7,5), что инициирует реакции накопления сахаров в замороженных плодах и овощах.

Сохранение активности пектолитических ферментов способствует повышению гидрофильных свойств коллоидов и уменьшению степени повреждения клеток. В зависимости от вида продукта они оказывают различное действие: в ткани сливы эти ферменты теряют активность и замороженный продукт имеет плотную консистенцию, в яблоках же их активность приводит к размягчению ткани.

Каталаза и пероксидаза катализируют дегидрирование аминокислот, фенолов, аминов, флавонов и др., при этом ухудшается качество плодов и овощей, которые приобретают посторонние привкусы. Каталаза и пероксидаза часто действуют антагонистически по отношению друг к другу. Так, в неразрушенных тканях каталаза тормозит действие пероксидазы; в разрушенных действие последней более активно. В отдельных случаях эти ферменты оказывают одинаковое действие.

Некоторые ферменты (липаза) сохраняют активность даже при очень низких температурах.

Изменения углеводов при замораживании в значительной степени зависят от их состава. Так, имеются сведения, что высокомолекулярные углеводы в процессе замораживания подвергаются агрегатированию. Для систем, богатых крахмалом, характерно снижение способности связывать воду.

Изменение состава и содержания витаминов при замораживании зависит от их химической структуры, вида и строения ткани. Потери витаминов имеют место при предварительной обработке сырья и непосредственно в процессе замораживания. Наиболее устойчивы к замораживанию тиамин, рибофлавин, пантотеновая кислота, каротин. Непосредственно при замораживании теряется около 10 % витамина С, а с учетом подготовки сырья (бланширование, мойка и др.) потери могут составить до 20 — 30 %. Сохранению витамина С при замораживании способствует интенсификация процесса.

При замораживании плодов и овощей в неупакованном виде неизбежны поверхностное испарение и сублимация части воды, что приводит к усушке продукта. Так, при замораживании разных видов неупакованных плодов и овощей в туннельном морозильном аппарате с принудительной циркуляцией воздуха при -35 °С потери массы колеблются от 0,2 до 0,9 %.

14.2. Замораживание продуктов животного происхождения

Замораживание мяса крупного рогатого скота и свиней. Мясо замораживают обычно в полутушах и четвертинах, баранину — в тушах. Кроме того, мясо замораживают в блоках, сортовых отрубах и мелкой фасовке.

Для замораживания мясо в тушах и полутушах по подвесным путям направляют в морозильные устройства камерного типа. Камеры однофазного замораживания предназначены для замораживания мяса в виде туш, полутуш в парном состоянии с температурой в толще мышц бедра не ниже 35 °С. При отсутствии таких камер мясо замораживают двухфазным способом, предварительно охладив до температуры 0...-4 °С в толще мышц бедра.

При однофазном замораживании уменьшаются потери массы, сокращаются затраты труда на транспортировку, рациональнее используются холодильные емкости, не ухудшается качество мяса.

Говяжьи полутуши замораживают при следующих параметрах: температура от -30 до -40 °С, скорость движения воздуха 1 — 2 м/с, относительная влажность воздуха 95 — 100%; продолжительность процесса в пределах 24 ч. Время замораживания свиных полутуш и бараньих туш составляет соответственно около 80 (18 — 20 ч) и 60 % (14—16 ч) времени замораживания говяжьих полутуш.

Интенсификация процесса замораживания мяса идет по пути понижения температуры кипения хладагента, увеличения скорости циркуляции воздуха, использования криогенных жидкостей, а также нетрадиционных физических методов.

При понижении температуры охлаждающей среды до -40 °С и ниже и скорости движения воздуха до 5 м/с можно заморозить парные полутуши до посмертного окоченения (за 18 ч), с которым связано холодовое сокращение. По органолептическим свойствам такое мясо не будет отличаться от мяса, замороженного двухфазным способом с предварительным созреванием. Максимальная скорость замораживания достигается применением криогенных хладагентов. При этом значительно повышается коэффициент теплоотдачи, обеспечивается ускоренный теплообмен, в максимальной степени сохраняется исходное качество продукта и уменьшается до минимума его усушка. Кроме того, обеспечивается повышенная обратимость биологических процессов. Продукты, замороженные криогенными жидкостями, меньше подвержены воздействию холодового шока, в них не происходит денатурации белка; при варке мясо получается более нежным и сочным.

Интенсифицировать процесс замораживания можно и с помощью физических методов — повышения давления воздушного потока, применения ультразвука, вибрации и т.д.

Замораживание птицы. Птицу замораживают в воздушной среде после предварительного охлаждения или без него. Продолжительность замораживания птицы в таре зависит от ее вида и упитанности, температуры и скорости движения воздуха. При -18 °С и естественной циркуляции — 48 — 72 ч, при -23...-26 °С и скорости движения воздуха 1 — 1,5 м/с — 20 ч (куры и утки), 35 —40 ч (гуси, индейки).

Быстрее можно заморозить птицу в скороморозильных аппаратах туннельного типа при -30...-40 °С и интенсивном движении воздуха. Продолжительность замораживания составляет 4,5 — 10 ч в зависимости от упитанности и вида птицы. Потери массы при замораживании 0,2 — 0,4%.

Для замораживания в жидких хладоносителях в качестве теплоотводящей среды применяют в основном водные растворы хлоридов натрия и кальция, пропилен- и этиленгликоль; птицу предварительно вакуумируют в термоусадочной пленке. При температуре -25 °С и скорости циркуляции среды 0,1 м/с продолжительность процесса замораживания упакованных тушек кур массой 1 — 2 кг составляет 0,5 — 1 ч. Воздушный способ позволяет достичь такой продолжительности замораживания только при -50 °С и скорости движения воздуха 3 м/с.

Еще более перспективно применение модульных скороморозильных аппаратов, работающих на жидком азоте или диоксиде углерода, распыляемых с помощью форсунок в зоне замораживания. Под действием образующихся при этом паров хладагента происходят предварительное охлаждение и выравнивание температуры по объему продукта. Предварительное охлаждение продукта исключает последующее растрескивание его и, следовательно, сокращает потери массы при размораживании и кулинарной обработке. Продолжительность замораживания полутушек кур до среднеобъемной температуры -18 °С 6 мин.

Замораживание субпродуктов. Субпродукты замораживают на противнях, которые укладывают на рамы, этажерки или стеллажи, либо в виде блока при температуре -30...-55 0С и скорости движения воздуха 1 —2 м/с. Продолжительность замораживания при двухфазном способе 12 ч, при однофазном — 18 ч; при замораживании в морозильных аппаратах — соответственно 3 — 4 и 4 —7 ч.

Замораживание продуктов из яиц. Из общего мирового производства яиц (650 млрд шт./год) 10% подвергают замораживанию в различном виде. Замораживают продукцию из яиц — яичный меланж, альбумин (белки) и желтки с сахаром для выпечки хлебобулочных изделий. Кроме того, замораживают соленый желток, применяемый при изготовлении майонеза и приправ для салата, а также простой желток без сахара и соли, используемый для детского питания и в рецептуре лапши. Замораживают и специальные яичные продукты (смесь для яичницы-болтуньи, омлеты, суфле, кубики, рулеты и т.д.).

Для длительного хранения меланж замораживают при -35... 45 °С до -18°С и хранят при этой же температуре. Для замораживания пригодны только очень свежие яйца, в некоторых случаях, чтобы уничтожить сальмонеллы, их дополнительно стерилизуют путем применения обратного осмоса и ультрафильтрации. Эффект желирования можно свести к минимуму подмешиванием 5—10% соли, 10% сахарозы или 5% глицерина. Эффекта резинистости альбумина можно избежать применением криогенного замораживания в диоксиде углерода и азоте.

Замораживание молочных продуктов. Из молочных продуктов чаще всего замораживают сливочное масло, предназначенный для переработки творог, некоторые кисломолочные продукты, редко молоко, сыры.

Для холодильной обработки ящики масла укладывают так чтобы обеспечить доступ холодного воздуха к каждому пакету или вертикальному ряду пакетов. Высота вертикальных рядов грузовых пакетов не должна превышать при температуре масла ниже 5 °С трех рядов, при 5 — 8 0С — двух, при 8°С и выше - одного.

Холодильная обработка масла считается законченной, если в монолите на глубине 6 — 8 см температура продукта не превышает -12 °С.

Количество сливочного масла, загружаемого ежесуточно для холодильной обработки в камеры хранения с температурой воздуха -18°С и ниже, не должно превышать для камер вместимостью до 200 т включительно 6 %, более 200 т — 12 % (повышение температуры воздуха камеры выше -14 °С не допускается).

Замораживание рыбы. Рыбу перед замораживанием сортируют, у крупной удаляют внутренности; слизь смывают чистой водой. Существуют следующие способы замораживания рыбы: в воздухе с помощью естественного холода; в смеси льда и соли; с помощью искусственного холода, получаемого машинным методом (воздушное замораживание, контактное в плиточных морозильных аппаратах); с применением жидких углерода и азота; в рассоле; комбинированные.

Воздушное замораживание с помощью естественного холода (при температуре наружного воздуха не выше -10 °С) применяют в местах подледного лова. Это наиболее простой и экономичный способ. Рыбу раскладывают на предварительно подготовленной ледяной площадке поштучно в один ряд, чтобы обеспечить максимальный теплообмен поверхности с воздухом; по мере замораживания ее переворачивают. Крупную рыбу обычно замораживают в подвешенном состоянии, мелкую раскладывают слоем толщиной не более 12 см. При сильном морозе и ветре рыба замораживается быстро, при этом обеспечиваются высокое качество продукта и значительная экономия.

Способ замораживания в смеси льда и соли (метод Оттесена) основан на явлении самоохлаждения смеси льда и поваренной соли, в которой одновременно протекают такие процессы, как плавление льда и растворение соли. При этом корочка льда препятствует проникновению соли. Продолжительность замораживания слоя рыбы до 6 см составляет 10— 11 ч.

Способ замораживания орошающим раствором (метод Заротченцева —Тейлора) предусматривает охлаждение рыбы сначала чистой водой, а затем охлаждающим раствором соли температурой -16...-20 °С и последующим ополаскиванием. Продолжительность замораживания этим способом вдвое превышает продолжительность замораживания предыдущим способом.

Рыбу замораживают также в камерах при температуре -25 °С с естественной и принудительной циркуляцией воздуха. При замораживании крупных объектов, например рыбных блоков, оптимальная скорость движения воздушного потока составляет 5 м/с; при поштучном замораживании продуктов небольшого размера в воздушных морозильных установках скорость движения среды 1 может быть повышена до 10 м/с.

На современных промысловых судах рыбу и морепродукты замораживают, как правило, контактным способом с использованием горизонтальных и вертикальных плиточных морозильных установок. Преимущество этого способа — возможность получать рыбные блоки правильной геометрической формы. Такие блоки, приготовляемые за рубежом из филе, из смеси филе и фарша или только из фарша, широко применяют для производства рыбных палочек и порционных продуктов, пользующихся повышенным спросом. Замораживание продукции с высокой скоростью применяют при производстве на судах высококачественного рыбного фарша сурими, из которого получают фаршевую кулинарную продукцию, в том числе такую деликатесную, как аналоги мяса краба, креветок, гребешка.

Мелкую, среднюю и крупную рыбу замораживают стандартными блоками размером 800 х 250 х 60 мм (массой до 12 кг) в металлических формах с крышками. Рыбу в мелкой фасовке, предварительно упакованную в картонные коробки, пакеты из полимерной пленки, замораживают на открытых противнях.

Продолжительность замораживания до -18 °С составляет: рыбы в блоках толщиной 60 мм — 3 — 5 ч; крупной и средней рыбы, уложенной на противни, — 3 — 6 ч; осетровых и других крупных рыб в подвешенном состоянии — 6 — 10 ч.

Контактный способ замораживания в плиточных морозильных аппаратах применяют для замораживания рыбы мелких и средних размеров, а также филе, фарша и рыбной кулинарии. Продукт помещают между двумя полыми металлическими плитами, внутри которых циркулирует хладагент или хладоноситель. Затем плиты сдвигают, создавая определенное давление, которое обеспечивает подпрессовку продукта при замораживании.

Давление (в пределах 0,01—0,1 МПа) регулируют с помощью гидравлического привода и устанавливают в зависимости от вида продукта, его свойств и вида упаковки. Продолжительность замораживания рыбы в плиточных морозильных установках связана с толщиной блока, при увеличении которой удлиняется процесс и снижается производительность установки. Для рыбы разных видов с толщиной блоков от 30 до 100 мм продолжительность замораживания составляет от 40 до 180 мин.

К специфическим рыбным объектам холодильной обработки относится рыба тунцового промысла, отличающаяся крупными размерами и массой. Эту рыбу необходимо охладить в течение нескольких часов, поэтому воздушный способ непригоден, а применяют, как правило, рассольный, основанный на использовании концентрированных растворов хлористого натрия (-15...-18 °С) и хлористого кальция (-30 °С). Причем при применении первого качество рыбы значительно хуже из-за просаливания и низкого теплообмена. Интенсификация процесса путем понижения температуры хлорида кальция до -45 °С в Японии показала преимущество этого способа перед воздушным замораживанием при температуре -55 0С.

Замораживание в жидких азоте и диоксиде углерода обеспечивает очень высокую эффективность холодильной обработки, но вследствие большой стоимости сжиженных газов в 2 — 3 раза превышает стоимость традиционного замораживания. Поэтому такой способ эффективен только при обработке дорогостоящей продукции: крабов, креветок, лососевых и др. Он позволяет получать мороженый полуфабрикат высокого качества при минимальных потерях массы. Этот способ комбинируют с воздушным замораживанием, используя жидкий азот лишь для быстрого снижения температуры в критической зоне (до -5...-7 °С). Так, рыбопродукты доставляют на береговое предприятие в охлажденном виде, зачищают, упаковывают под вакуумом и замораживают в криогенной установке до температуры не выше -5 °С в течение 32 мин. Замороженные филе, фарш, полуфабрикаты быстро перекладывают в картонные ящики по 10 — 21 кг и домораживают до -20 °С в воздушной морозильной установке. По качеству филе комбинированного замораживания превосходит филе, замороженное в условиях промысла на судах в плиточных морозильных установках.

Установки, работающие на диоксиде углерода, за рубежом используют для поштучного замораживания рыбного филе, полуфабрикатов, ракообразных, моллюсков. Охлаждение среды в туннельных, ленточных и спирально-ленточных установках происходит за счет сублимации твердой двуокиси углерода при температуре до -78 °С, а подаваемый в установку хладоноситель обеспечивает температуру газовой среды около -70 °С.

Использование такой установки, несмотря на высокую стоимость замораживания, экономически выгоднее воздушного метода благодаря более высокой (в четыре раза) производительности, меньшей обсемененности бактериями, отмирающими в атмосфере углекислого газа, и более высокому качеству продуктов.

Для предохранения рыбы от усушки и окисления жира в технологический процесс вводят операцию глазирования. Ледяную корочку (глазурь) получают трехкратным погружением блоков или отдельной рыбы температурой не выше -18 °С в воду температурой 1 — 2 °С. Продолжительность каждого погружения 2 с. Для ускорения процесса образования ледяной корочки и увеличения ее прочности мороженую рыбу после погружения в воду выдерживают в потоке холодного воздуха (скорость 2 — 3 м/с) в течение 10 — 20 с. Масса глазури составляет 2 — 4 % массы рыбы.

В то же время водной глазури свойствен существенный недостаток — относительно быстрая сублимация, из-за чего уже через несколько месяцев хранения она может исчезнуть, а продукция окажется практически незащищенной от окислительной порчи и усушки. Поэтому для защиты мороженой рыбы в процессе длительного холодильного хранения на ее поверхность целесообразно наносить не воду, а растворы пленкообразующих составов, обладающих высокими адгезионными свойствами. Растворы наносят в виде газонепроницаемых оболочек, устойчивых к механическим воздействиям и испарениям. В качестве водорастворимых покрытий используют поливиниловый спирт в смеси с различными модификаторами — оксиметилцеллюлозой, оксипропилцеллюлозой, карбоксиметилцеллюлозой и др.

14.3. Быстрозамороженные продукты

Производство быстрозамороженной продукции — одна из наиболее динамично развивающихся отраслей пищевой промышленности. В 1980-е годы темпы роста производства замороженных продуктов в развитых странах достигали 8 — 12 % в год, и хотя в 1990-е снизились до 5 — 8 %, они остались одними из самых высоких среди других групп продовольственных товаров.

Крупнейшие в мире потребители быстрозамороженных продуктов — США и Швеция, где их потребление уже превысило 50 кг на душу населения в год. Производство и потребление быстрозамороженной продукции (вместе с пельменями) в нашей стране составляет около 0,5 — 1 кг на душу населения в год.

По классификации ФАО к быстрозамороженным продуктам относятся изделия из овощей и картофеля, фрукты, готовые изделия и кулинарные полуфабрикаты. Производится и потребляется более 10 тыс. видов этой продукции, что в значительной степени определяется потребностями рынка. При этом отмечают следующие общественно-экономические выгоды, связанные с производством быстрозамороженной продукции: снижение потерь сырья; уменьшение на 20 —25 % необходимых производственных площадей, на 50 % — обслуживающего персонала на предприятиях общественного питания; сокращение затрат времени на домашнее приготовление пищи; обеспечение сбалансированного питания согласно научным рекомендациям; безвредность для потребителя и окружающей среды; уменьшение расхода электроэнергии на 50 % по сравнению с ее расходом на производство консервов.

Темпы роста производства быстрозамороженной продукции в значительной степени определяются также развитием производства и сбыта современных домашних холодильников и морозильников, в которых температуру хранения можно поддерживать в интервале -12...-30 °С, использованием промышленных и домашних микроволновых устройств, где замороженный продукт в упаковке доводится до готовности за несколько минут.

Ассортимент быстрозамороженной продукции зависит в первую очередь от национальных традиций, спроса, активности продвижения на рынок, а также развитости холодильной цепи от сырьевой базы до домашней холодильной и тепловой техники. За рубежом быстро замораживают главным образом зеленый горошек, шпинат, коренья, стручковую фасоль, черную смородину, землянику и др. В группе быстрозамороженных готовых блюд и кулинарных полуфабрикатов первое место занимают изделия из теста, особенно пицца и различные мучные изделия (кнедлики с начинкой, русские пельмени). Среди рыбных изделий значительную долю на рынке составляет филе. В США замораживают несколько десятков тысяч тонн сладкой кукурузы в виде початков и более 110 тыс. т зерна в год.

Широкое распространение за рубежом получила дифференциация замороженных блюд по целевому назначению: повседневные обеды, блюда праздничной кухни, ужины для одного-двух человек или целой семьи, еда для тех, кто не может пользоваться столовой в течение дня, специальные наборы для отдыхающих за городом, блюда, соответствующие требованиям определенных лечебных диет, и др.

В России в настоящее время детально разработаны технология и оборудование для замораживания монопродуктов (плодов и овощей в целом или резаном виде без особой обработки). Освоена также технология получения продуктов высокого качества (IQF), производство быстрозамороженных полуфабрикатов (овощные смеси, холодные компоты, холодные супы и др.). В стадии разработки и испытания находятся оборудование и новые технологии для приготовления быстрозамороженной пищи повышенной готовности в виде сбалансированных рационов питания, предназначенных для туристов, альпинистов, космонавтов, энергетиков геологов, газовиков и др. Разрабатываются технологии и оборудование для быстрого питания (школьные завтраки и др.).

Для обеспечения сбалансированного питания школьников различных возрастных групп с учетом медикобиологических требований разработаны рецептуры и технология производства быстрозамороженных плодоовощных блюд повышенной пищевой ценности. Особенность этих продуктов — наличие добавок целенаправленного действия, повышающих их питательную ценность, калорийность, с радиопротекторными и защитными свойствами, |что особенно актуально в связи с неблагоприятной экологической обстановкой во многих регионах России.

Для изготовления этих блюд используют наиболее ценное плодово-ягодное сырье с большим содержанием биологически активных веществ (минеральные и пектиновые, белки, углеводы, витамины, пищевые волокна, антоцианы и др.). В качестве добавок применяют синтетические витамины, молочную сыворотку и концентрат сывороточного белка, пектин, морепродукты и др.

Особую группу составляют фруктово-ягодные десерты из черной смородины, клубники, малины, вишни, сливы, черноплодной рябины и др.; салаты на основе тыквы, яблок, зеленого горошка; вторые обеденные блюда (котлеты мясные с кабачками, сырники с морковью, баклажаны с мясом и с соей и др.). Эти блюда сбалансированы по основным компонентам химического состава и рекомендованы Институтом питания РАМН. Плодово-ягодные десерты сохраняют натуральные свойства и пищевую ценность сырья и добавок благодаря щадящей технологии и быстрому замораживанию как наиболее прогрессивному методу консервирования.

Полуфабрикаты фруктовых и овощных начинок представляют собой измельченную массу плодов сливы, тыквы, яблок и вишен без косточек, смешанных с пищевым загустителем и сахаром.

На долю замороженных изделий из картофеля в отдельных странах приходится 30 % потребления всех быстрозамороженных продуктов. Экономично замораживать свежий картофель, когда его состав наиболее полноценный, к тому же витамина С в таком случае сохраняется гораздо лучше, чем при других способах переработки и хранения.

Производство быстрозамороженных картофелепродуктов включает подготовку сырья, основное производство и утилизацию отходов.

Ассортимент изделий из картофеля достаточно разнообразен. Это и гарнирный картофель (обжаренный и необжаренный), картофельное пюре, картофельные котлеты, биточки, вареники, клецки и др.

Для получения качественного продукта гарнирный картофель замораживают в скороморозильных аппаратах при температуре -35...-40 0С в течение 6 — 12 мин до температуры в центре продукта -15 °С. В последующем температура по всей массе выравнивается, и продукт хранится при -18 °С в течение 6 мес.

Ассортимент картофелепродуктов, вырабатываемых за рубежом, разнообразен. Только в США выпускают около 2 млн т замороженных продуктов из картофеля нескольких десятков видов. Наибольшую долю в реализации составляет картофель, обжаренный по-французски, нарезанный столбиками (прямые или гофрированные) длиной от 25 до 50 мм, сечением 13x13 мм. Более длинные (76 мм и более) столбики картофеля — это отдельный товарный вид — шустринг. Кроме того, вырабатывают целые мелкие клубни, гладкие или гофрированные ломтики, кубики и др. с более и менее глубокой обжаркой. Отдельную группу составляют замороженные картофельные котлеты, оладьи, картофель бланшированный (необжаренный) и др.

Зеленый горошек занимает второе место после картофеля в мировом производстве замороженных продуктов. Его используют самостоятельно и в виде компонента замороженных смесей. В некоторых странах его доля составляет от 10 до 40 % всех замораживаемых овощей.

Сырьем для производства служат зерна зеленого горошка молочной спелости, которые сразу после уборки направляют на переработку. Транспортировку горошка без охлаждения можно производить только в том случае, если время от его обмолота до переработки не превышает 1 ч. Важная операция — ополаскивание горошка перед транспортировкой. После ополаскивания и снижения температуры до 7 °С (холодная вода, измельченный лед) количество микроорганизмов уменьшается на 50 — 80 % от первоначального. Перед замораживанием проводят сортировку по размеру и цвету, бланширование. После бланширования горошек быстро охлаждают в каскадных противоточных холодильных установках, а затем дополнительно путем орошения водой на перфорированном конвейере, на котором также контролируется качество продукта и отделяется избыточная вода. На следующем этапе горошек направляют на замораживание, которое наиболее эффективно проводить во флюидизационных аппаратах. Замороженный продукт разделяют на вибрационных или барабанных сортировочных машинах на несколько фракций и упаковывают каждую отдельно в контейнеры или мешки.

В некоторых странах стандартами разрешается добавлять в горошек натуральные или искусственные вкусовые вещества, глютамат натрия и другие разрешенные органами здравоохранения пряности (соль, лист мяты, подсластители и др.). Расширяется производство замороженного горошка и овощных продуктов с добавлением животного и растительного масла, майонеза, введением загустителей, ароматизаторов и других добавок. Такие продукты, упакованные в термосвариваемую пленку, предназначены для быстрого приготовления.

Замороженную стручковую фасоль выпускают различных видов: нарезанную на кусочки, целиком, в виде различных смесей, с вкусовыми добавками, в масляном соусе и др. Для производства этого продукта используют весь стручок с малоразвитыми или совсем неразвившимися семенами. Наличие сравнительно крупных зерен в стручках — дефект сырья. Технология замораживания аналогична замораживанию зеленого горошка.

Сахарную кукурузу, замороженную в зернах, выпускают без добавления других компонентов, а также в масляном соусе, с солью, пряностями, в смесях с бобами Лима (саккоташ) и др. Замораживают ее, как правило, во флюидизационных морозильных аппаратах.

Капусту белокочанную как самостоятельный продукт не замораживают, она входит в состав различных овощных смесей. Замораживают чаще всего капусту цветную, брокколи, брюссельскую, как в натуральном виде, так и с солью, пряностями, в соусах и др.

Морковь замораживают кубиками, а мелкую — целиком. В последнем случае необходим особо тщательный подбор сортов сырья. Замораживают ее как во флюидизационных, так и в туннельных морозильных аппаратах. Замороженная морковь пользуется большим спросом, значительное ее количество реализуется в смесях с зеленым горошком.

Томаты в натуральном виде обычно не замораживают. Но они могут входить в замороженные овощные смеси — гювеч и паприкаш (до 50 % целых зрелых томатов). Сырьем для замораживания служат зрелые томаты с гладкой поверхностью, плотной мякотью, довольно толстой, но достаточно упругой кожицей. Томаты сортируют по размеру, иногда по окраске (делят на 5 групп) и замораживают в туннельных морозильных аппаратах как целиком, так и нарезанными на ломтики, без сердцевины, очищенными и др.

Томат-паста, сгущенная в выпарной установке (полученная из перезревших плодов) и затем замороженная, — высококачественный продукт для приготовления кулинарных изделий.

Среди других овощей наиболее часто замораживают сладкий перец, лук, тыкву, шпинат, спаржу и др.

Овощные смеси готовят главным образом из замороженных овощей в охлаждаемых помещениях с температурой около 5 °С. Из приемных бункеров продукты в определенном соотношении поступают в барабанный смеситель, где они перемешиваются до получения требуемой смеси. Смесь поступает в бункер-накопитель, а из него в упаковочные автоматы. Смесь может содержать кабачки, горошек, нарезанную стручковую фасоль, брюссельскую капусту, кукурузное зерно, морковь, тыкву и др.

В связи с увеличением спроса мировой объем производства овощных смесей ежегодно растет, а их ассортимент расширяется. Из традиционных смесей можно отметить калифорнийскую, которая содержит 12 % бобов, по 22 % стручковой фасоли, зеленого горошка, репы и зерна кукурузы.

В смесь для тушения входит 55 % картофеля, 28 % моркови-каротели, 12 % лука и 5 % сельдерея.

Смесь саккоташ содержит 50 — 70 % кукурузы, а остальное количество составляют стручковая фасоль или бобы Лима. Во Франции приготавливают смеси из стручковой фасоли и зеленого горошка с грибами, кукурузой, томатами, перцем и др.

В группе плодов наибольшим спросом пользуются замороженные косточковые: вишня, черешня, абрикосы, персики, слива и др.; ягод — земляника, клубника, черника, черная и красная смородина и др. Плоды, предназначенные для замораживания, должны соответствовать определенным требованиям: быть зрелыми здоровыми, соответствующей окраски, свежими, чистыми, одного сорта, не пораженными болезнями и вредителями, без посторонних запаха и привкуса, механических повреждений.

Земляника занимает первое место в мире среди замороженных ягод; в некоторых странах замораживают более 50 % всего ее объема. Предназначенная для замораживания земляника должна иметь интенсивную окраску, характерный аромат, плотную мякоть. После сортировки по качеству (иногда и по размеру) ее в большинстве случаев направляют для замораживания во флюидизационный аппарат или же замораживают на нейлоновых ситах в ленточном морозильном аппарате. Сортировать по размеру ее лучше после замораживания и немедленно упаковывать в мешочки из синтетической пленки.

Земляника относится к тем продуктам, для которых скорость замораживания и размораживания — решающий фактор. Первая обусловливает консистенцию продукта, а вторая — потери сока после размораживания. Применение сверхбыстрого замораживания в жидком азоте позволяет снизить потери за счет вытекания сока до 6 — 8 %, в то время как потери при традиционном замораживании составляют 30 %.

Кроме натуральной замороженной земляники вырабатывают нарезанную землянику с сахаром, земляничное пюре с сахаром и др.

Аналогичным способом (с сахаром и без него) замораживают смородину, крыжовник, чернику, ежевику, малину и др.

Абрикосы и персики замораживают разрезанными пополам, без косточек. В предварительную обработку входит операция фиксции цвета, для чего плоды погружают в растворы антиокислителей (лимонная и аскорбиновая кислоты, диоксид серы и др.). При замораживании к плодам, как правило, добавляют сахар-песок (в соотношении 3:1) либо заливают их 35 —50 %-ным сахарным раствором, чаще всего с добавлением лимонной или аскорбиновой кислоты не только в качестве антиокислителя, но и для улучшения вкуса.

Быстрозамороженные изделия из теста можно длительно хранить в замороженном состоянии и вырабатывать их в промышленных масштабах, снабжая население крупных городов, сельской местности, курортных зон, а также зрелищные мероприятия, независимо от места их нахождения по мере необходимости в любое время года через систему розничной торговли и общественного питания. Полуфабрикаты пресного слоеного теста готовят ускоренным или традиционным способом, формуют блоками (пластами) толщиной 8 — 10 мм и упаковывают в полиэтиленовую пленку.

Пирожки формуют из пресного слоеного теста с фруктовыми (вишневая, сливовая, яблочная) и овощными (тыквенная, капустная) начинками и выпекают до готовности. Изделия из теста с начинкой упаковывают в полиэтиленовую пленку после замораживания, полуфабрикаты — до замораживания. Срок хранения этих продуктов при температуре -18 °С составляет: начинок — не более 12 мес; теста — не более 3 мес; пирожков со сливовой, вишневой, яблочной и тыквенной начинками — не более 6 мес; пирожков с начинками из свежей и квашеной белокочанной капусты — не более 2 мес.

Развитие производства быстрозамороженных продуктов позволит: значительно (до 30 %) сократить потери важнейших биологически ценных компонентов сельскохозяйственного сырья при длительном хранении;

снизить потери пищевых продуктов в общественном питании и домашнем хозяйстве;

высвободить часть работников, занятых неквалифицированным ирудом по сортировке и подготовке продуктов к реализации и потреблению;

уменьшить затраты домашнего труда;

создать запасы продуктов широкого ассортимента для равномерной реализации в крупных потребительских центрах в течение года.

14.4. Сублимационная сушка продуктов

Сублимационная сушка основана на способности льда при определенных условиях испаряться, минуя жидкую фазу. Она имеет следующие преимущества по сравнению с традиционными методами консервирования:

исключается необходимость холодильного хранения, так как сухие продукты могут длительное время храниться при положительных температурах;

значительно уменьшается масса продуктов после сушки, следовательно, снижаются расходы на погрузочно-разгрузочные работы и транспортировку;

упрощается система реализации продуктов и удлиняются сроки их реализации;

вкусовые качества продуктов изменяются незначительно.

Для протекания процесса сублимационной сушки необходимы два условия:

наличие основной части влаги в продукте (не менее 70 %) в твердом агрегатном состоянии;

поддержание достаточной разницы парциальных давлений паров воды в продукте и окружающей среде.

Сублимационная сушка возможна, когда давление паров окружающей среды ниже давления в тройной точке А. При этом лед, минуя жидкую фазу, превращается в пар, который ассимилируется окружающей средой или конденсируется на холодной поверхности испарителя.

В процессе сушки в зону парообразования непрерывно должна подводиться энергия в количестве, достаточном для компенсации теплоты фазового превращения, отнимаемой от продукта. Подвод теплоты в зону парообразования усложняется по мере продвижения этой зоны в глубь продукта. Образующийся слой подсохшего продукта оказывает сопротивление как переходу пара из зоны парообразования к поверхности продукта, так и передаче теплоты снаружи в зону парообразования.

Ассортимент продуктов, полученных способом сублимационной сушки, достаточно разнообразен и может быть подразделен на несколько групп:

мясо и мясопродукты — говядина, баранина, свинина, мясо птицы и др. — перерабатываются в сыром виде, предварительно сваренными или приготовленными иными способами;

молочные продукты: творог, молоко и др.;

яйцепродукты: яичный белок, яичный желток, смесь белка и желтка;

овощи: картофель, морковь, свекла, различные виды капусты, петрушка, зеленый горошек, кабачки, лук, грибы, овощные первые, вторые блюда и др. — как в сыром виде, так и предварительно сваренные;

фрукты, ягоды и продукты их переработки: яблоки, абрикосы, персики, сливы, бананы, клубника, малина, фруктовое пюре, плодово-ягодные соки и др.;

быстрорастворимые чай, кофе, пряности.

Технологический процесс получения сублимированных продуктов состоит из следующих основных операций:

отбор и предварительная обработка сырья;

замораживание;

сублимационная сушка;

упаковка высушенных продуктов.

Отбор и предварительная обработка сырья. Характер и количественное соотношение веществ, входящих в состав сухого остатка продукта, предопределяют условия его сушки и последующего хранения. Так, температура натуральных продуктов животного происхождения на стадии удаления остаточной влаги должна быть такой, чтобы в процессе сушки не происходили значительные денатурационные изменения белковых веществ. Возможность окисления жиров, некоторых витаминов и других компонентов пищевых продуктов определяет необходимость изоляции большинства сухих продуктов от воздуха в процессе хранения. Уровень содержания редуцирующих веществ в продуктах предопределяет количество воды, которое следует удалять в процессе сушки для предотвращения развития сахароаминных реакций при хранении сухого продукта. Необходимо также учитывать бактериальную обсемененность пищевых продуктов, поступающих на сублимационную сушку.

Таким образом, при подборе сырья и определении условий его предварительной обработки обращают внимание на следующие основные факторы:

высокую биологическую ценность и оптимальные органолептические показатели продукта;

максимальную степень сохранения структуры и исходного состояния составных компонентов продукта (белков, липидов, витаминов, пигментов, летучих веществ) при замораживании, сушке и последующем хранении;

оптимальный размер и форму продукта;

низкий уровень окисления липидной фракции;

низкую бактериальную обсемененность.

Физико-химические, биохимические и структурно-механические свойства исходного сырья определяют качество и пищевую ценность высушенного продукта, а также особенности технологии его консервирования.

Особенности предварительной обработки поступающего на сублимационную сушку сырья определяются спецификой состава и свойств пищевых продуктов и сводятся в основном к тепловой обработке, нарезке, измельчению, введению добавок, а также биохимическим методам.

Замораживание. Процесс замораживания существенно влияет на качество продуктов, причем быстрое замораживание способствует максимальному сохранению исходных свойств большинства из них.

Пищевые продукты в зависимости от их свойств замораживают в специальных камерах при атмосферном давлении или Непосредственно в сублиматоре за счет интенсивного испарения части влаги в результате непрерывно возрастающего вакуума. В то же время вакуум-замораживание неприемлемо при сублимационной сушке сырого мяса и рыбы в кусках, фруктовых соков, пюре, некоторых видов ягод и фруктов, так как при этом существенно изменяются физико-химические и структурные свойства продукта.

При замораживании пастообразных продуктов (молоко, чай соки и др.) предусматривается последующее измельчение их в условиях отрицательных температур. Поэтому достаточно эффективно замораживание жидких материалов в распыленном состоянии с последующей сушкой замороженных гранул в тонком слое.

При замораживании продуктов в специальных скороморозильных камерах технологический процесс следует организовать так чтобы продукт перед началом сублимации не оттаивал.

Проведение сублимационной сушки. При проведении собственно сублимационной сушки для получения высококачественного продукта необходимо удалить 75 — 90% влаги при отрицательной температуре в центральной зоне продукта. Оставшаяся часть наиболее прочно связанной влаги удаляется при положительных температурах продукта. Допустимый уровень температуры продукта в период сублимации и удаления остаточной влаги определяются его свойствами и продолжительностью процесса сушки. Пищевые продукты достаточно высокого качества могут быть получены при умеренно низких температурах сублимации — от -10 до -30 °С. Так, при сушке большинства овощей достаточная температура сублимации -10 0С. При сушке ягодных и фруктовых соков вследствие высокого содержания в них сахара в зоне сублимации должна поддерживаться температура от -20 до -30 °С. Температура продуктов животного происхождения в период сублимации влаги должна быть выше -15...-20 °С. Длительность этого периода сушки составляет 50 — 60 % полного времени сушки, а количество удаляемой влаги— 40 — 50 %.

На стадии удаления остаточной влаги наиболее важные факторы, обеспечивающие высокое качество продукта, — продолжительность воздействия повышенной температуры и ее максимальное значение. Для каждого вида пищевых продуктов существует температурный предел устойчивости к нагреву. В границах этого температурного предела могут быть подобраны оптимальные соотношения температуры продукта и продолжительности нагрева, при которых длительность процесса сушки будет наименьшей при минимальных изменениях в продукте. Так, в зависимости от свойств продукта и продолжительности процесса сушки допустимый уровень температур материала в период удаления остаточной влаги находится в пределах 40 — 80 °С. Длительность этого периода составляет 30 — 40 %, а количество удаляемой влаги — 20 — 30 % общего ее количества.

Оценка пищевой ценности продуктов сублимационной сушки по органолептическим, физико-химическим показателям, степени переваримости и усвояемости показывает их незначительные отличия от исходных. При этом достаточно хорошо сохраняются полиненасыщенные жирные кислоты, незаменимые аминокислоты, витамины, минеральные вещества и другие важные показатели пищевой ценности продуктов. Сохраняются также присущий продуктам аромат и вкус. В то же время продукты сублимационной сушки имеют пористую структуру, поэтому обладают высокой абсорбционной способностью. Обезвоженные продукты животного и растительного происхождения интенсивно поглощают кислород из окружающей среды, причем особенно интенсивно в начальный период хранения. Абсорбция газообразного кислорода может привести к интенсивному развитию окислительных процессов, следствием чего является снижение органолептических показателей и пищевой ценности продуктов. Кроме того, продукты сублимационной сушки активно адсорбируют из окружающей среды влагу, что стимулирует развитие реакций потемнения, приводящих к снижению качества продукта в процессе хранения. Адсорбционную способность продукта можно уменьшить прессованием до его упаковывания. Процесс прессования необходимо проводить в условиях, исключающих контакт продукта с кислородом воздуха. Прессование высушенных продуктов позволяет также увеличить их объемную массу и коэффициент использования тары.

Упаковывание. Сублимированные продукты сразу после получения необходимо герметично упаковать. Упаковка должна изолировать продукт от кислорода воздуха и действия света, предотвращать сорбцию влаги высушенным продуктом из окружающей среды, защищать от механических повреждений, предохранять от потери естественного запаха и приобретения постороннего. Наиболее приемлема для этих целей тара из полимерных материалов, основными преимуществами которой являются относительно высокие барьерные свойства, небольшие масса и жесткость, хороший внешний вид и низкая стоимость. Оптимальным вариантом являются полимерные материалы на основе алюминиевой фольги, кашированной полимерными пленками. Продукты следует упаковывать сразу после сушки в условиях пониженного содержания кислорода и влаги.

Кислород из упаковки удаляют различными методами: физическими, химическими или биохимическими. Из физических методов в производственной практике наибольшее распространение получило однократное вакуумирование упаковки с последующим введением в нее азота. К достаточно эффективным химическим методам относится удаление кислорода из упаковки в результате реакции взаимодействия его с водородом, протекающей с участием катализатора, в качестве которого используется палладий. Можно также упаковывать продукты в специальных герметизированных камерах с инертным газом под управлением микропроцессора.

Общепризнанно, что в процессе сублимационной сушки происходят некоторые изменения свойств исходного сырья, но они минимальны по сравнению с изменениями при консервировании другими методами.

ГЛАВА 15

ХОЛОДИЛЬНОЕ ХРАНЕНИЕ ПРОДУКТОВ ПИТАНИЯ

15.1. Характеристика холодильного хранения

Холодильное хранение позволяет обеспечить ритмичные поставки населению высококачественных продуктов питания с минимальными потерями в течение года.

Хранение охлажденных, подмороженных и замороженных продуктов проводится на базисных и распределительных холодильниках, в местах их производства и в торговле, а также в бытовой холодильной технике потребителя, причем в первых случаях речь может идти о долгосрочном хранении замороженных продуктов (исчисляемой месяцами и годами), в остальных — хранение, как правило, кратковременное.

Длительность холодильного хранения многократно превосходит продолжительность холодильной обработки пищевых продуктов, поэтому производственные площади и емкости, отводимые для холодильной обработки, много меньше площадей и емкостей для холодильного хранения продуктов.

По содержанию холодильное хранение также принципиально отлично от холодильной обработки.

Для осуществления холодильной обработки необходимо или отвести от продукта теплоту (охлаждение, замораживание, подмораживание), или подвести ее к нему (отепление, размораживание). При хранении этого не требуется.

Главная цель хранения — исключить изменение состояния продуктов. Однако в абсолюте эта цель недостижима по той причине, что любой форме материи неизбежно присуща постоянная и непрерывная изменчивость, заключенная в самой ее природе.

Холодильное хранение продуктов питания ограничивается замедлением изменений, причем именно тех, которые ухудшают их качество. Основное средство — стабильная низкая температура хранения, но немаловажную роль играют и другие средства.

Иногда при хранении ставится задача не просто затормозить изменения, но и направленно их регулировать, например при созревании сыров, выдержке охлажденного мяса в целях размягчения. При этом выбирают режимы хранения, наиболее благоприятные для развития необходимых изменений, и холодильное хранение становится производственным, технологическим процессом.

Температура хранения большинства охлажденных продуктов находится в пределах +2...-2°С. Растительные продукты, содержащие жиры, хранят при более высокой температуре.

При хранении охлажденных продуктов не прекращаются развитие микрофлоры и ферментативные процессы.

Охлажденные продукты обычно не упакованы герметично, поэтому с их поверхности происходит испарение влаги в воздух камеры. Чрезмерно высокая влажность воздуха и местные застои его создают опасность развития микрофлоры, что недопустимо. Чтобы избежать этого, применяют воздушную систему охлаждения, а продукт размещают так, чтобы было достаточное движение воздуха во всем объеме камеры. Скорость движения воздуха от 0,1 до 0,5 — 0,8 м/с.

Рекомендуемая относительная влажность воздуха находится в пределах 75 — 90 % для различных продуктов. При такой влажности и скорости движения воздуха усушка незначительна.

Таким образом, температура, относительная влажность и скорость движения воздуха — основные параметры, обеспечивающие благоприятные условия хранения продуктов.

В условия хранения можно включить дополнительные факторы — применение антибиотиков, антиокислителей, ультрафиолетовое облучение, озонирование, радиоактивное облучение, герметичную упаковку, газовые среды (азот, углекислый газ) и др.

При хранении замороженных продуктов температура достаточно низкая, обеспечивающая гораздо более сильное торможение жизнедеятельности микрофлоры и ферментативных процессов, чем при охлаждении. Поэтому основной регулируемый параметр — температура продукта.

Допустимая температура для хранения замороженных продуктов -12 °С, а рекомендуемая -18°С и ниже. Обычно при их хранении не создают побудительное движение воздуха («тихое охлаждение», так как возникают большие потери (усушка) продукта).

Относительная влажность воздуха в камерах хранения мороженых продуктов не регулируется искусственно, а устанавливается обычно самопроизвольно на уровне от 95 до 100 %.

15.2. Условия хранения скоропортящихся продуктов

Существуют общие принципы выбора режимов хранения охлажденных и замороженных продуктов и некоторые требования к холодильным сооружениям и системам охлаждения камер хранения, вытекающие из этих принципов.

Во-первых, строгое постоянство и равномерность поля режимных параметров, поддержание оптимальных режимов постоянными во всем объеме холодильных камер в течение всего времени хранения. Если меняются какие-либо внешние условия, воздействующие на режимные параметры в камере, то их необходимо компенсировать таким образом, чтобы режим не нарушался. Полностью соблюдать этот принцип невозможно, поэтому стремятся тому, чтобы отклонения от заданного режима были минимальны. В наибольшей степени этого можно добиться при совершенной теплоизоляции и автоматическом регулировании работы охлаждающих устройств.

Во-вторых, сокращение всякого рода теплопритоков в камеры хранения. Это внешние теплопритоки, которые уменьшаются, когда надежна теплоизоляция камеры, и внутренние, которые могут образовываться при внесении теплого груза, открывании дверей и вследствие других причин подобного рода. Теплопритоки нарушают температурный режим, могут влиять на величину относительной влажности, создают неравномерность поля режимных параметров.

Общими обязательными условиями хранения скоропортящегося продукта независимо от того, как долго он будет находиться в холодильнике, являются следующие:

доброкачественность продуктов, поступающих на хранение (холод только замедляет или приостанавливает развитие микроорганизмов);

содержание камер в чистоте; необходимо возможно чаще проводить дезинфекцию холодильных камер и тщательную их уборку; поддержание в холодильных камерах необходимых температур, относительной влажности, скорости циркуляции воздуха и его вентиляции;

правильные размещение и укладка скоропортящихся продуктов при холодильном хранении;

строгое соблюдение принципов товарного соседства.

Доброкачественность продуктов, поступающих на хранение. Прием продуктов осуществляют при поступлении их на холодильник в соответствии с требованиями действующих инструкций, положений, стандартов, технических условий и других документов.

Сопроводительные документы (вагонные и контрольные температурные листы, санитарные и ветеринарные свидетельства, удостоверения о качестве, сертификаты, спецификации и накладные отправителей) проверяют до разгрузки холодильного транспорта. При отсутствии одного или нескольких документов делают соответствующую запись в приемном документе. Перед началом разгрузки тщательно проверяют состояние пломб, люков, затем приступают к приемке по количеству и качеству.

Грузы с различными дефектами размещают в специальной камере для кратковременного хранения (камера дефектных грузов). Тару и упаковку проверяют на соответствие требованиям стандарта и санитарному состоянию. Все продукты в неисправной таре отсортировывают, а массу нетто определяют взвешиванием после освобождения тары.

Любые продукты (5 — 10 % партии) тщательно осматривают и в зависимости от результатов проверки определяют их дальне шее назначение. Принятые продукты немедленно передают на холодильную обработку или хранение.

В зависимости от вида контроля продукты, поступающие на холодильник, подразделяют на две группы: продукты, подлежащие товароведческо-технологическому и ветеринарно-санитарному контролю (мясо и мясопродукты, птица, яйца, меланж, яичный порошок, жир-сырец, шпик, топленый животный жир, консервы мясные и мясорастительные); продукты, которые подлежат технологическому и товароведческому контролю (масло сливочное, маргарин, кисломолочные продукты, сыр, молоко сгущенное, рыба и рыбные продукты).

Качество продуктов первой группы оценивают до поступления Б камеры, в процессе холодильной обработки и после ее окончания. При их хранении необходимо выполнять следующие правила: строго выдерживать температурно-влажностный режим, правильно размещать продукты на хранение и определять его продолжительность. Осмотр мороженых продуктов первой группы в целях определения условий хранения и состояния качества проводят ежемесячно, охлажденных — ежесуточно. Результаты осмотра оформляют соответствующими актами.

Качество продуктов второй группы оценивают при приемке, холодильной обработке и хранении технологи и товароведы. Результаты анализов качества продуктов и условий хранения отражают в журнале или вносят в память компьютера.

Санитарно-гигиенические условия содержания холодильных камер. Новые партии продуктов при поступлении на хранение следует помещать в камеры, в которых хранились подобные продукты. Там они должны хорошо омываться охлаждающим воздухом со всех сторон, для этого их укладывают не на пол, а на подтоварники или стеллажи. Нельзя также размещать продукты впритык к стенам и слишком плотно друг к другу, для подступа к ним надо оставлять проходы.

Температуру воздуха в камерах контролируют не менее двух раз в сутки, относительную влажность — раз в сутки (в камерах хранения охлажденных и подмороженных продуктов) и раз в 10 сут (в камерах хранения мороженых продуктов). Особое внимание уделяют поддержанию стабильности температурно-влажностного режима и санитарному состоянию камер. В случае нарушений условий хранения принимают меры для их устранения.

Поскольку основная причина порчи пищевых продуктов — жизнедеятельность микроорганизмов, наряду с ее подавлением действием низких температур на холодильниках применяют специальные меры: фильтрование вентилируемого воздуха, периодическую очистку и дезинфекцию воздухоохладителей, дезинфекцию камер и внутрикамерного оборудования и т.д.

Необходимость дезинфекции устанавливают на основании контроля микробной обсемененности. Для своевременного выявления микробиальной зараженности, а также проверки эффективности дезинфекции, холодильные камеры подвергают микробиологическому контролю. Периодичность этого контроля для камер с температурой воздуха -12 °С и ниже — раз в квартал, а для камер с температурой -11,9 °С и выше — два раза в квартал.

При подготовке к дезинфекции камера должна быть полностью освобождена от продуктов и отеплена до температуры не ниже 5°С, но так, чтобы при этом не произошло отпотевания стен и потолка. После отепления приступают к ее промывке, побелке и дезинфекции.

Эффективные средства для дезинфекции холодильных камер — антисептол (2,5 части хлорной извести с содержанием 25 % активного хлора и 3,5 части кальцинированной соды на 100 частей воды) и оксидифенолят натрия (препарат Ф-5), который используют при температуре в камере выше -4 °С (особенно губительно действует на плесени).

Состояние стен и потолка камеры после дезинфекции и побелки считается хорошим в отношении снижения микробной обсемененности при содержании микробных зародышей на 1 см2 до 100, а удовлетворительным — до 1000 и плохим — свыше десятков тысяч.

В камерах, оснащенных системами кондиционирования воздуха, особое внимание следует обращать на чистоту, поскольку принудительное движение воздуха способствует распространению микроорганизмов. В таких камерах следует проводить фильтрацию воздуха.

Для поддержания требуемого санитарного состояния эффективно применение озонирования и УФ-облучения. Озонирование камеры в течение 72 ч при концентрации озона в воздухе 15— 25 мг/м3, температуре 0 °С и относительной влажности 90 % обеспечивает полную очистку ее от микроорганизмов. Такой же эффект достигается при применении УФ-облучения (3 ч в сутки мощностью 1 Вт/м3 помещения).

Очень эффективен применяемый за рубежом метод Synergolux, объединяющий воздух, озон и УФ-облучение для дезинфекции, дезинсекции, стерилизации и консервирования.

Санитарное состояние производственных и складских помещений, территорий, оборудования и инвентаря на холодильниках контролируют органы Государственного санитарного надзора ведомственной санитарной и ветеринарной служб. Контроль проводят при приемке продуктов, в процессе их термической обработки, хранении и выпуске с холодильника.

Температурно-влажностный режим и скорость движения воздуха в камере хранения зависят от вида продукта, его состояния, тар способа и плотности укладки, степени загрузки камеры и т. д.

Учитывая специфику последующего холодильного хранения особое внимание уделяют соблюдению температурного режима при транспортировании (по регистрации температуры, температурным индикаторам на грузе и др.); температуре воздуха в транспортном средстве перед выгрузкой продуктов; температуре продуктов (для продуктов животного происхождения).

Во время выгрузки мяса из транспортных средств в каждой поступившей партии измеряют температуру мяса в толще мышц бедра или лопатки на глубине 6 — 8 см от поверхности стеклянным термометром в металлической оправе, который погружают в толщу продукта на 10 мин, либо переносным полупроводниковым измерителем температуры типа ПИТ, предназначенным для быстрого определения температуры как на поверхности, так и в толще продукта.

Для измерений отбирают среднюю пробу из среднего и верхнего рядов штабеля: мяса и мясопродуктов в блоках — не менее четырех мест, прочих продуктов — не менее двух мест (единиц упаковки).

В случае поступления полностью оттаявших продуктов число мест измерения увеличивают до 10, причем пробы отбирают в нижнем, среднем и верхнем рядах штабеля. В приемных документах указывают среднюю температуру поступившей партии продуктов.

Перед загрузкой камеры инвентарь, тару и транспортные средства приводят в надлежащее санитарное состояние, при необходимости дезинфицируют.

Размещение и укладка скоропортящихся продуктов при холодильном хранении. Перед размещением и укладкой продуктов ветеринарная служба холодильника, которую возглавляет главный (старший) ветеринарный врач, осуществляет ветеринарно-санитарную экспертизу продуктов животного происхождения.

Работники ветеринарной службы имеют право не допускать на хранение недоброкачественные продукты, требовать срочной реализации продуктов, срок хранения которых истек, запрещать погрузку пищевых продуктов на транспорт, не отвечающий санитарным требованиям.

Санитарный контроль на холодильнике осуществляет ведомственная санитарная служба. Санитарный врач имеет право не принимать на хранение недоброкачественное сырье и запретить выпуск с холодильника непригодных в пищу продуктов. Указания санитарного врача по вопросам санитарно-гигиенического режима обязательны для работников холодильника.

В зависимости от вида продукта охлаждаемые помещения подразделяют на камеры хранения мяса, масла, яиц, жира, субпродуктов, колбас и т.д.

Совместное хранение продуктов в одной камере допускается только при крайней необходимости (например, при угрозе порчи продуктов, принятых холодильником и находящихся вне холодильных камер, при недостатке холодильной площади и маневрировании в целях более полного использования холодильной площади). При этом хранить в одной камере можно только продукты, для которых требуется одинаковый температурно-влажностный режим. Для совместного хранения неупакованных мороженых продуктов следует использовать камеры с температурой воздуха не выше -15 °С. При более высокой температуре запахи, присущие продуктам, становятся интенсивнее и легче передаются от одного продукта другому. Продукты с более высокой температурой подлежат перед закладкой на совместное хранение домораживанию в камерах замораживания. Домораживание в камерах совместного хранения не допускается.

Не разрешается совместное с другими продуктами хранение колбасных изделий и мясокопченостей, сыров всех видов, фруктов и овощей (свежих и замороженных), дрожжей хлебопекарных.

Продукты поступают на холодильное хранение в охлажденном, замороженном и подмороженном состоянии со средней конечной температурой, равной температуре хранения. Продукты, прибывшие на холодильник с температурой в толще выше установленной, направляют на доохлаждение и домораживание.

Технологическими инструкциями допускается загрузка и отепленных продуктов, но при этом суточное поступление груза ограничивается в камеры хранения грузовой вместимостью до 200 т 8 % вместимости, более 200 т — 6 % вместимости.

Режимы холодильного хранения. В холодильной технологии хранения продуктов различают три основных режима: для охлажденных, подмороженных и замороженных продуктов. Общие принципы хранения — это обобщение технологии хранения различных по свойствам продуктов.

Охлажденные продукты хранят при температуре воздуха на 0,5 — 2 °С выше криоскопической, относительной влажности 85 — 90 %; скорости движения воздуха 0,1 —0,2 м/с. В зависимости от вида, характера и наличия упаковки их укладывают неполными штабелями (с учетом нагрузки на 1 м2 камеры) с прокладкой реек между рядами, подвешивают на крючьях подвесных путей или раскладывают на стеллажах с таким расчетом, чтобы воздух свободно циркулировал вокруг них.

Подмороженные продукты хранят при температуре воздуха на 1 — 2 °С ниже криоскопической, относительной влажности 92 —95 % и скорости движения воздуха 0,1—0,2 м/с. Подмороженные мясо, рыбу и птицу хранят в два-три раза дольше, чем охлажденные.

Режим хранения мороженых продуктов устанавливают в зависимости от их вида, упаковки, требуемого срока хранения. Согласно рекомендации Международного института холода замороженные продукты следует хранить при температуре не выше -18 °С и относительной влажности воздуха 100 %. Замороженные продукты укладывают плотными рядами, чтобы исключить циркуляцию воздуха внутри штабеля. Камеры хранения загружают однородными продуктами или с одинаковым режимом (желательно и сроком) хранения.

Многие проблемы решаются на современных автоматизированных, роботизированных холодильниках при хранении упакованных и фасованных продуктов в контейнерах, в пакетах, на полетах.

15.3. Общие изменения продуктов в процессе хранения

Общие изменения продуктов в процессе хранения — потеря массы, изменение внешнего вида, химического состава, консистенции.

При хранении охлажденных и мороженых продуктов в результате испарения влаги с их поверхности уменьшается масса, изменяется внешний вид.

У мороженых продуктов испарение влаги с поверхности вызывает при длительном хранении образование разной толщины обезвоженного слоя. Пористая структура этого слоя способствует активизации в нем окислительных процессов. В результате ухудшаются вкус, цвет и внешний вид продукта. При оттаивании такого продукта обезвоженный слой частично восполняет потерянную влагу, но вкус и пищевая ценность не могут быть восстановлены в силу происходящих необратимых изменений.

Интенсивность испарения влаги зависит от многих причин: динамических свойств воздуха, вида, состояния и размеров продукта, рода упаковки, способа укладки груза и места его расположения в камере, загруженности камеры, системы охлаждения, теплопритоков и т.д. Испарение увеличивается с повышением температуры и уменьшением относительной влажности воздуха.

Температурно-влажностный режим воздуха камер хранения в летние и зимние месяцы значительно различается. Практика хранения продуктов на современных холодильниках показала, что усушка их в значительной степени зависит от температуры наружного воздуха или от внешних теплопритоков через наружные ограждения. Эта зависимость отражена в действующих нормах естественной убыли по зонам.

Наиболее низкая температура в камере устанавливается вблизи приборов охлаждения, наиболее высокая — у наружных стен. Наличие в камере поверхностей с разной температурой (холодные батареи и относительно теплые наружные стены) вызывает движение воздуха. Охлаждаясь у батарей, воздух достигает точки росы и осушается. Влага оседает на батареях в виде снеговой шубы. Затем воздух проходит некоторый путь к наружной стене, нагревается, при этом его относительная влажность понижается. При движении дальше по камере воздух омывает продукты, поглощает влагу с их поверхности, а затем, попадая на охлаждающие батареи, снова осушается. Снеговая шуба при этом увеличивается. Повышение температуры наружного воздуха вызывает увеличение влагоемкости воздуха (за счет внешних теплопритоков), а следовательно, более интенсивное испарение влаги из продуктов и рост снеговой шубы на батареях.

В небольших камерах влияние теплопритоков на величину усушки значительнее, чем в больших.

Усушка продукта происходит главным образом с наружных частей штабеля и с уменьшением относительной поверхности становится меньше.

Испарение из внутренних слоев штабеля зависит от плотности его укладки. Чем плотнее укладка и больше размеры штабеля, тем меньше усушка. Она зависит не только от внешних условий хранения, но и от состояния продукта, величины его поверхности, химического состава. Влажная поверхность и большое содержание влаги вызывают большую усушку продукта.

Величина усушки зависит от отношения площади поверхности продукта к его массе: чем больше это отношение, тем она значительнее.

Мелкофасованные продукты имеют большую поверхность на единицу массы по сравнению с крупными, следовательно, и усушка первых больше.

Для сокращения потерь при хранении изучают причины, вызывающие испарение. Основные из них следующие:

поступление теплоты в камеру от наружных стен и других источников путем конвекции и излучения;

испарение влаги с поверхности продукта за счет теплоты, полученной им путем конвекции и излучения;

поступление влаги в камеру с наружным воздухом от увлажнителей при испарении ее с поверхности замораживаемого продукта;

конденсация влаги на поверхности охлаждающих приборов за счет теплоты, получаемой из камеры путем конвекции и излучения.

При расчетах величины усушки замороженных продуктов во время хранения можно пользоваться формулой, полученной из уравнения баланса теплоты, необходимой для испарения влаги с поверхности продукта, и теплоты, полученной продуктом из окружающего воздуха.

Если выразить массу испарившейся влаги g (%) относительно общей массы продукта, получим уравнение,

g = F (tв-tn) 100 / (LG),

где — коэффициент теплоотдачи, Вт/(м2 · К); F — общая поверхность продукта или поверхность испарения, м2; — продолжительность процесса, ч или с; (tв - tn) — разность температур воздуха и поверхности продукта, °С или К; L — удельная теплота испарения воды, Дж/кг; G — масса продукта, кг.

Большие потери пищевых продуктов при хранении побуждают систематически искать пути к уменьшению усушки, в частности совершенствовать внешние условия хранения, защищать от взаимодействия с окружающим воздухом. Первое достигается подбором изоляции; расположением камер с низкой температурой в окружении холодильных помещений; применением системы вне-камерного охлаждения (охлаждение воздуха между двойными стенами обеспечивает поглощение теплоты, проникающей через изолированную стену, что уменьшает до минимума конвективное движение воздуха в камере).

Существенно влияют на температурный и влажностный режимы в камере размер поверхности приборов охлаждения и расположение их в камере.

Количество теплоты Q, поглощаемой охлаждающими приборами в единицу времени, пропорционально площади поверхности охлаждения S и разности температур между температурой воздуха камеры tB и температурой поверхности батареи t0:

Q = S(tB - t0).

С увеличением разности (tB - t0) усиливаются циркуляция воздуха, испарение влаги из продукта и выпадение ее в виде инея на трубах.

Для уменьшения усушки необходимо устанавливать в камерах хранения батареи с относительно большой поверхностью. Но и рациональное их размещение в камере также имеет большое значение. Расположение батарей в камерах должно удовлетворять основному требованию — создавать равномерное и постоянное температурное поле.

Эффективная мера борьбы с усушкой — укрытие штабеля плотной тканью (брезентом), а также сооружение экрана перед батареей с намораживанием на нем льда. Под оболочкой из брезента, снега или льда воздух насыщается влагой, испарившейся из продукта, и в силу того что движение ее к приборам охлаждения значительно затруднено, испарение вскоре существенно сокращается.

Применение синтетических упаковочных материалов, газо- и водонепроницаемых, сводит потери продукта к минимуму.

Хороших результатов можно достичь при глазировании проектов.

При хранении мороженых продуктов происходит процесс перекристаллизации. Эти изменения сводятся к увеличению разменов кристаллов, уменьшению их числа, скоплению в межклеточных и межволоконных пространствах. Основной причиной перекристаллизации является колебание температуры окружающей среды. Таким образом, в неблагоприятных условиях хранения нарушается мелкокристаллическая структура, образовавшаяся в процессе быстрого замораживания.

При хранении изменяются цвет, консистенция продукта, происходят биохимические изменения. Все это в значительной степени зависит от вида продукта.

15.4. Изменение состава и свойств плодов и овощей

При охлаждении и последующем хранении в плодах и овощах происходят микробиологические, биохимические, химические, физические процессы, вызывающие изменения состава, свойств и в конечном итоге товарного вида, а также потребительских достоинств плодоовощной продукции. При этом наиболее важное значение (по быстроте и масштабам порчи) имеют микробиологические процессы.

Необходимым условием развития микроорганизмов является наличие в продукте или на его поверхности воды в доступной для них форме. Потребность микроорганизмов в воде может быть выражена количественно в виде активности воды, которая зависит от концентрации растворенных веществ и степени их диссоциации.

Развитие микрофлоры при понижении температуры резко тормозится, причем тем больше, чем ближе температура к точке замерзания тканевой жидкости продукта. Эффект влияния понижения температуры на микробную клетку обусловлен нарушением сложной взаимосвязи метаболических реакций в результате различного уровня изменений их скоростей и повреждением молекулярного механизма активного переноса растворимых веществ через клеточную мембрану. Наряду с этим происходит изменение и качественного состава микроорганизмов. Некоторые группы их размножаются и при низких температурах, вызывая заражение травмированных при уборке и транспортировке плодов и овощей. Затем инфекция распространяется и на здоровые, неповрежденные плоды и овощи.

Особенно опасны болезни, возникающие в поздний период вегетации, поскольку на хранение могут быть заложены больные плоды и овощи, что приводит к инфицированию всей товарной массы. Наиболее распространенные болезни — черная плесневидная и мокрая бактериальная гнили. Благодаря наличию плотной оболочки, покрытой воском, плоды более устойчивы к действию патогенной микрофлоры, чем овощи.

На интенсивность развития микробиологических процессов влияет влагосодержание поверхностных слоев продукта. Испарение влаги с поверхности в процессе охлаждения плодов и овощей не компенсируется миграцией воды из внутренних слоев, что приводит к увеличению концентрации растворенных компонентов и понижению активности воды и, как следствие, к подавлению жизнедеятельности микроорганизмов. Уровень снижения влагосодержания зависит от степени гидрофильности клеточных коллоидов, анатомического строения и состояния покровных тканей, условий и режимов холодильной обработки, степени зрелости, упаковки, способов и сроков хранения, интенсивности дыхания и других факторов.

Различные виды и сорта плодов и овощей неодинаково устойчивы к микробиологическим заболеваниям, что определяется их восприимчивостью к последним, проявляющейся в результате непосредственного контакта продуктов с фитопатогенными микроорганизмами.

Большая или меньшая устойчивость плодов и овощей к микроорганизмам или полная невосприимчивость, основанная на несовместимости растительного организма и паразита, — наследственный признак, который регулируется генетическим аппаратом организма. Микроорганизмы обладают высокой адаптацией к защитным механизмам плодов и овощей, которые по мере созревания теряют иммунитет.

Устойчивость плодов и овощей к заболеваниям при хранении определяется многими взаимосвязанными биологическими факторами: анатомическим строением, образованием раневой перидермы, выделением бактерицидных веществ, реакцией сверхчувствительности, характером внутриклеточного обмена и главным образом дыхания. При хранении в результате дыхания происходит распад сложных органических веществ, накопленных плодами и овощами во время их роста и формирования, до более простых, сопровождающийся выделением энергии и испарением влаги.

В разные периоды роста и развития плодов и овощей характер их дыхания неодинаков. Наиболее высокая его активность наблюдается в период созревания, особенно на первых этапах роста, затем она снижается и через некоторое время снова повышается. В период созревания (при хранении) в яблоках, грушах, бананах, томатах, дынях наблюдается интенсивный подъем дыхания (климактерис), затем спад. В следующий период плоды перезревают и становятся менее устойчивыми к заболеваниям.

В охлажденных плодах и овощах в периоды дозревания и созревания происходят изменения окраски, вкуса, аромата, консистенции, в результате чего формируются их высокие потребительские достоинства. Периодам дозревания и созревания плодов и овощей соответствуют предклимактерический (с низким уровнем дыхания) и климактерический (с максимальным уровнем дыхания) периоды.

Пониженные температуры тормозят интенсивность климактерического подъема дыхания, растягивая его во времени, способствуют удлинению сроков хранения. Состояние климактерия - это поворотный пункт в жизни плода, когда его развитие и созревание уже закончены, а разрушение еще не началось. В постклимактерический период (интенсивность дыхания снижается) в плодах начинаются необратимые изменения.

Климактерический подъем дыхания протекает у разных плодов неодинаково и отражает скорость их созревания. Так, у яблок и груш он длится несколько недель, у бананов — от 1 до 3 сут, а у апельсинов и лимонов он отсутствует вообще.

Вегетативные овощи с наступлением конца лета — началом осени переходят в состояние покоя, т.е. естественного приспособления к неблагоприятным условиям внешней среды. Происходит временная приостановка, задержка всех жизненных процессов, причем продолжительность состояния покоя у отдельных видов и сортов овощей различна.

В состоянии естественного покоя возникают внешне не проявляющиеся специфические изменения, без которых невозможен последующий переход растения к активной жизни. При неблагоприятных условиях хранения растения могут перейти в состояние вынужденного покоя.

Для сохранения овощей необходимо создать условия для предотвращения прорастания, т.е. обеспечить длительное и устойчивое состояние естественного и вынужденного покоя. Длительность и глубина покоя регулируются фитогормонами и природными ингибиторами роста.

При переходе овощей в состояние покоя интенсивность дыхания уменьшается, в результате происходят сложные изменения в протоплазме клеток: клетка обогащается жирами и фосфолипидами, гидрофильность коллоидов снижается, оводненность уменьшается, проницаемость клеточной оболочки понижается.

В конце хранения (весной) дыхание вегетативных овощей возрастает в связи с начавшимися процессами прорастания (окончанием периода покоя и переходом к генеративной стадии развития). К моменту окончания периода покоя в овощах понижается содержание ингибиторов и возрастает действие стимуляторов роста, которые усиливают интенсивность дыхания, активизируются гидролитические и окислительные процессы. При повышении ферментативной активности покоящихся тканей используются запасные вещества, являющиеся источниками энергии, и пластические соединения в процессе биосинтеза новых клеток и тканей проростка. Энергия связи воды с компонентами клеток уменьшается, доля более подвижной воды увеличивается, устойчивость запасающих тканей к фитопатологическим заболеваниям и их способность к синтезу защитных соединений ослабевают. По мере развития процессов роста снижается содержание питательных веществ в овощах.

Процесс дыхания — довольно сложный и протекает через ряд промежуточных превращений веществ с участием ферментов. При аэробном дыхании происходит поглощение кислорода, сопровождающееся (при участии тканевых ферментов) окислением органических веществ с последующим выделением углекислого газа, воды и энергии. Плоды и овощи в первую очередь расходуют углеводы, затем органические кислоты, азотистые, пектиновые, дубильные вещества, гликозиды и др. По мере изменения дыхательного субстрата изменяется и дыхательный коэффициент (ДК), определяемый как отношение объема выделенного СО2 к объему поглощенного О2. Величина дыхательного коэффициента зависит от многих причин, в том числе и от доли сахаров и кислот, вовлекаемых клеткой в процесс дыхания.

Энергия, выделяемая при дыхании плодов и овощей, частично используется клеткой для обменных реакций и на процесс испарения, запасается в виде химически связанной энергии в АТФ, а также в большом количестве уходит в воздух камеры в виде теплоты.

При усилении анаэробных процессов возрастают количество СО2 и величина ДК, энергии при этом выделяется значительно меньше, чем при аэробном дыхании. Для обеспечения себя необходимой энергией плоды и овощи вынуждены увеличить расход дыхательного субстрата, что ведет к потере массы.

Интенсивность дыхания зависит от вида, сорта плодов и овощей, степени их зрелости, газового состава тканей и среды, температуры и др.

Замедление скорости внутриклеточных реакций при пониженных температурах приводит к снижению интенсивности дыхания. Однако в результате испарения воды оно может возрастать, причем интенсивность испарения влаги зависит не только от параметров охлаждающей среды, но и от объекта. Значительные размеры паренхимных клеток и межклетников, небольшая толщина покровных клеток определяют интенсивность испарения воды плодов и особенно овощей.

Испарение влаги при хранении плодов и овощей нарушает нормальное течение обмена веществ в тканях, вызывает ослабление тургора и увядание. Последнее происходит, как правило, не по всей поверхности плода и овоща, а только на отдельном участке (со слабой покровной тканью). Так, морковь начинает увядать с конца корня, яблоки и груши — с участка около чашечки. Увядание ускоряет процессы распада содержащихся в клетках веществ, увеличивает их расход на дыхание, нарушает энергетический баланс.

Под влиянием охлаждения изменяются вязкость и подвижность Протоплазмы, что приводит к нарушению ее структуры, тем самым снижается жизнеспособность клетки.

Для сохранения нормальной жизнедеятельности плодов и овощей при одновременном максимальном понижении интенсивности процессов обмена температура должна быть достаточно низкой, но не ниже физиологических возможностей, определяемых видовыми особенностями организма, а во избежание подмораживания — как минимум на 1 °С превышать криоскопическую температуру продукта.

При резком понижении температуры может возникнуть частично разобщение дыхания, в результате возрастет тепловыделение.

В процессе холодильного хранения плодов и овощей происходит существенное изменение углеводов, пектиновых веществ, витаминов, которые в значительной степени определяют пищевую ценность этих продуктов. Особенно значительные изменения наблюдаются в углеводах, которые расходуются клетками в процессе жизнедеятельности в период послеуборочного дозревания. Содержание крахмала в некоторых плодах и овощах уменьшается вследствие его ферментативного осахаривания. Общее количество сахаров при этом возрастает, а затем начинает снижаться, так как расходуется на дыхание. В некоторых культурах крахмал при хранении синтезируется (фасоль, сахарная кукуруза, овощной горох и др.).

При хранении картофеля в клубнях с понижением температуры в определенных пределах происходит накопление сахаров, а при повышении ее возрастает синтез крахмала из сахаров, что связано с активностью ферментов, катализирующих прямую и обратную реакции и имеющих различный температурный оптимум.

В процессе хранения количество сахарозы, протопектина, гемицеллюлоз, органических кислот обычно снижается, а растворимого пектина увеличивается. В результате перехода части протопектина в пектин твердость плодов уменьшается. Скорость превращения углеводов, а также характер их изменений зависят от вида и сорта плодов, степени зрелости, условий хранения и других факторов.

Существенное влияние на качество и сохраняемость плодов оказывают превращения в пектиновом комплексе. По мере старения плодов растворимый пектин распадается до полигалактуроновой кислоты и метилового спирта, в результате происходят разрыхление тканей, отравление клеток, возникают функциональные расстройства. Содержание полифенолов в плодах и овощах за счет гидролиза быстро снижается, образуется множество других соединений, что отражается на вкусе и аромате продуктов.

Во время хранения изменяется витаминный состав плодов и овощей. Наибольшим изменениям (особенно в период перезревания) подвергается витамин С. Наименьшие потери витамина С у цитрусовых. С понижением температуры хранения потери витамина С уменьшаются. В процессе хранения увеличивается количество каротиноидов, а количество хлорофилла снижается.

На качество продуктов в период охлаждения и хранения влияет взаимодействие с внешней средой: возникает тепло-, влаго- и газообмен, интенсифицируются процессы окисления кислородом воздуха.

Режим хранения охлажденных продуктов растительного происхождения должен обеспечивать условия, определяемые естественным иммунитетом, при максимальном снижении интенсивности биохимических процессов и подавлении развития микрофлоры (табл. 5).

Таблица 5

Рекомендуемые режимы и продолжительность холодильного хранения некоторых плодов и овощей (по данным Н. А. Моисеевой и И. Л. Волкинда)

Плоды и овощи

Температура, °С

Относительная влажность воздуха, %

Срок хранения, мес

Абрикосы

-0,5

90

До 1

Айва

0

90

2

Апельсины:

2

85-90

2-4

желтые

3-4

85-90

До 5

недозрелые

5-6

85-90

До 5

Бананы:

зеленые

14-16

85-90

10 — 20 дней

зрелые

13-14

85-90

5 — 10 дней

Виноград

0...-2

85-90

1-6

Гранаты

-1...-2

90

2-3

Груши:

летние

-0,5

90

До 1

зимние

-1...-2

90

4-5

Дыни

0-1

85-90

2-3

Яблоки:

летние

1-3

85-90

До 1

зимние

0...-2

85-90

5-8

Арбузы

2-3

85-90

До 2

Баклажаны

7-10

85-90

До 10 дней

Зеленый горошек

-0,5...0

85-90

1 — 3 нед

Зеленые овощи (салат, шпинат, лук)

0

90-95

5 — 10 дней

Кабачки

0-4

85-90

До 2

Капуста белокочанная:

ранняя

0...-0,5

85-90

До 1

поздняя

+0,5...-1

85-90

6-8

Картофель:

ранний

3-4

85-90

2 нед

поздний

3-4

85-90

4-8

Лук репчатый

-2

70-75

4-8

Морковь

0...-0.5

90-95

4-6

Патиссоны

0

90-95

2-4

Перец стручковый:

острый

7-10

85-90

1

сладкий

0-1

85-90

8 — 10 дней

Петрушка

0-1

85-90

1-2

Редис

0

90-95

3 нед

Свекла

0

90-95

3-5

Томаты:

зеленые

11-13

85-90

3-4 нед

бурые

1-2

85-90

До 1

красные

0

90-95

До 2 нед

Тыква

10-13

70-75

2-6

Хрен

0...-1

90-95

До 10

Чеснок

0...-1,5

70-75

6-7

Необходимо осуществлять контроль за соблюдением технологического режима хранения, качеством и сохранностью плодов и овощей.

Температуру, относительную влажность и скорость движения воздуха контролируют и регистрируют в течение всего периода хранения. На современных холодильниках контроль за режимом и параметрами хранения осуществляется автоматически с применением ЭВМ.

Плоды и овощи, которые хранят в холодильниках, размещенных в местах сбора, направляют непосредственно на реализацию или на распределительные холодильники в местах потребления. При этом очень важно при перегрузке и транспортировании соблюдать непрерывность холодильной цепи.

Некоторые плоды и овощи (груши, томаты и др.) в процессе хранения не дозревают, поэтому за несколько суток до реализации их переносят в помещение с усиленной циркуляцией воздуха (при температуре 18 — 20 °С и относительной влажности 90 %). Переборку, сортировку, перетаривание плодов и овощей из санитарных соображений также целесообразно проводить в специальных помещениях.

В целях поддержания оптимального температурно-влажностного режима, сохранения качества продукции и экономичности хранения рекомендуется:

максимально ограничивать теплопритоки в камеры, сокращать сроки их загрузки, поддерживать равномерность температурного поля;

вентилировать камеры летом в ночные часы, зимой — в дневные;

использовать тару с равновесной влажностью, соответствующей параметрам воздуха в камере;

хранить плоды и овощи со слабой водоудерживающей способностью в камерах меньшей вместимости;

камеры длительного хранения загружать полностью;

экранировать штабеля в частично загруженной камере или перегружать продукцию в камеру меньшей вместимости;

соблюдать правила хранения различных групп плодов и овощей, не допуская совместного хранения продукции, требующей разного температурно-влажностного режима.

Определяющим фактором сохранения высоких потребительских свойств замороженных плодов и овощей является температурный режим. Понижение температуры уменьшает потери массы и интенсивность необратимых изменений их качества.

Стойкость продуктов растительного происхождения к микроорганизмам при хранении в значительной степени зависит от их первоначальной зараженности. Важное значение имеет постоянство температурно-влажностного режима, так как даже незначительные его колебания приводят к перекристаллизации в тканях и сублимации влаги.

Оптимальным режимом хранения замороженных плодов и овощей являются температура -18 °С и относительная влажность воздуха 95 — 98 %.

15.5. Условия хранения продуктов животного происхождения

Хранение охлажденных продуктов. Охлажденное мясо хранят при температуре воздуха 0...-1 0С, его умеренной циркуляции (0,1 — 0,2 м/с) и относительной влажности 85 — 90 %. Охлажденные полутуши размещают в камерах хранения на подвесных путях на расстоянии 3 — 5 см одна от другой.

При хранении должно быть обеспечено равновесное состояние теплообмена между мясом и внешней средой, однако достичь этого трудно, так как при испарении воды с поверхности возникает психометрическая разность температур, определяющая теплопереход от внешней среды к продукту и непрекращающийся тепло-, влагообмен. Поэтому в камерах хранения циркуляция воздуха должна быть минимальной, но достаточной для того чтобы избежать застоев, способствующих развитию плесеней.

Рекомендуется разные виды мяса хранить раздельно.

Сроки хранения охлажденного мяса зависят от времени года, продолжительности отдыха и состояния животного перед убоем, упитанности, степени обескровливания и санитарно-гигиенического состояния туши, состояния камер холодильной обработки и хранения и т.д.

Переохлажденное мясо с температурой по всему объему туш и полутуш от -1 до -2 °С хранят также в подвешенном виде. Допустимые сроки хранения охлажденного мяса в воздушной среде температурой от 0 до -1,5 °С составляют в зависимости от вида и состоянии мяса 7—12 дней, переохлажденного — до 17 дней.

Удлинить сроки хранения мяса можно с помощью:

предельно низких температур хранения (до -2°С);

модифицированной атмосферы (с газообразным азотом);

комбинированной газовой среды (азот и углекислый газ);

вакуумной упаковки, уменьшающей скорость окислительных процессов и ликвидирующей усушку;

консервантов и антиокислителей в упакованном и фасованном мясе;

нанесения покрытия на поверхность мяса (способом орошения) специальными пленкообразующими составами (ацетилированные моноглицериды); так, применяемые за рубежом пищевые покрытия («Дерматекс» и др.) представляют собой маслянистую жидкость, получаемую из растительного масла; они в сочетании с вакуумной упаковкой гарантируют сохранение цвета и свежести мяса в течение длительного времени (говядины — до 50 дней, свинины — до 24, баранины — до 70 дней).

Достаточно эффективно хранение мяса в герметичной упаковке в атмосфере углекислого газа с невысоким избыточным давлением (до 50 кПа) при температуре 1 0С. Низкое содержание кислорода (до 1 %) практически исключает изменение цвета мяса, что наблюдается при хранении в углекислотных средах с относительно высоким остаточным давлением кислорода. При этом высокие потребительские свойства мяса сохраняются в течение нескольких недель.

Использование модифицированной атмосферы (20 % СО2 и 8 % О2) при хранении говяжьего фарша позволяет задерживать развитие анаэробной микрофлоры и увеличивать сроки его хранения при температуре 2 °С до 4, а при 0 °С — до 8 дней.

Модифицированная газовая атмосфера дает возможность значительно увеличить сроки хранения колбасных изделий, субпродуктов и других скоропортящихся продуктов.

Охлажденную птицу хранят в ящиках, которые укладывают в штабеля с промежутками 10 см. Температура воздуха 0...-2 °С, относительная влажность 80 — 85 %, срок хранения не более 5 сут со дня выработки. Срок хранения мяса птицы обусловливается активностью развития микроорганизмов, вызывающих ослизнение и появление неприятного запаха. Изменения белковых и липидных компонентов наступают значительно позже и практически не влияют на стойкость хранения охлажденной птицы. Упаковка в полимерные пленки позволяет снизить усушку в 10 раз, улучшить санитарное состояние продукта и повысить культуру торговли. Срок хранения такой птицы без дополнительных средств 5 — 6 сут. Применение снегообразной углекислоты, модифицированной и комбинированной атмосферы увеличивают срок хранения охлажденной птицы при поддержании высокого качества продукта.

Колбасные изделия (варено-копченые, полукопченые и сырокопченые колбасы) хранят в подвешенном виде или упакованными в деревянную, пластиковую или картонную тару.

Полукопченые колбасы хранят в подвешенном виде при температуре воздуха 12— 15 °С и относительной влажности 75 —78 % не более 10 сут, в ящиках при температуре не выше 6 0С не более 15 сут.; варено-копченые колбасы в подвешенном виде при температуре воздуха 12—15 °С и относительной влажности 75 — 78 % не более 15 сут, в ящиках при температуре 0...-4 °С и влажности 75 —78 % не более 1 мес; сырокопченые при температуре 12— 15 °С, влажности 75 — 78 % не более 4 мес, а при -2...-4 °С до 6 мес.

Крупнокусковые ветчинные изделия хранят в охлаждаемых помещениях при температуре 0 — 8 °С; вареные и варено-копченые — в подвешенном виде так, чтобы они не соприкасались друг с другом, копченые — в упаковке. Допустимые сроки хранения изделий: вареных, варено-копченых, копчено-запеченных, запеченных, жареных при температуре 0 —8 °С 5 сут; сырокопченых при температуре 12 °С до 15 сут; при 0 — 4 °С не более 30 сут; сырокопченых нарезанных ломтиками, фасованных и упакованных в пленки под вакуумом при температуре 5 — 8 °С 15 сут, при 15 °С 10 сут.

Мясные стерилизованные консервы хранят при температуре воздуха от 0 до 15 °С и относительной влажности не выше 75 % (оптимальная температура около 0 °С). Сроки хранения в зависимости от вида консервов от 1 года до 3 лет.

Консервы для детского и диетического питания в лакированных банках можно хранить при температуре 0— 15 0С до 18 мес, в банках из белой жести нелакированных — до 12 мес; остальные консервы в стеклянной и лакированной таре — до 2 лет; пастеризованные консервы при 0 —5 °С — не более 6 мес.

Охлажденную рыбу хранят в ящиках со льдом (с применением антисептиков) не более суток, в холодильных камерах при температуре 0...-2 °С и относительной влажности 90 % — не более 2 сут. Применение антисептиков (гипохлорид, пероксид водорода) и антибиотиков (биомицин, хлортетрациклин, террамицин и др.) позволяет увеличить сроки хранения в 1,5 — 2 раза. Поступившую в места потребления охлажденную рыбу следует сразу же отправлять на реализацию или кулинарную обработку.

Слабо-, среднесоленую, пряную и маринованную рыбу хранят в заливных бочках при температуре +1 ...-1 °С и относительной влажности воздуха 85 —90 % 10 сут; при 4 °С 7 сут; соленую в сухотарных бочках и ящиках при +1 ...-1 0С — 3 сут; рыбу холодного копчения, вяленые балычные изделия — при относительной влажности воздуха 75 — 80 % и температуре 0...-2 °С 7 сут, 0 — 4 °С 3 сут.

Рыбные консервы следует хранить при относительной влажности воздуха 75 % и температуре 0 — 20 °С в масле, 0— 10 °С натуральные, 0 — 5 °С в томатном соусе в течение соответственно 12 — 24, 6 — 24 и 6 —18 мес.

Рыбные пресервы хранят при относительной влажности воздуха 70 — 75 % и температуре +1 ...-1 °С в течение 10 сут, 4 — 6°С 3 сут.

Сметану, упакованную в бочки, фляги и алюминиевые бидоны, хранят при температуре 0...-2 °С и относительной влажности воздуха 80 — 85 % до 4 мес. Срок хранения сгущенных консервов в герметичной таре при температуре 0 — 10 °С и относительной влажности воздуха 85 % — 12 мес с момента выпуска предприятием-изготовителем, в негерметичной — 8 мес; какао и кофе со сгущенным молоком и сахаром — 6 мес.

Сыры хранят в камерах холодильников с батарейной или воздушной системой охлаждения. В первом случае циркуляция воздуха естественная; в камерах с воздушной системой охлаждения поддерживают скорость движения воздуха не более 0,4 м/с. Сыры, исключая рассольные без созревания, хранят при температуре -4...0 °С и относительной влажности воздуха 85 —90 %.

Международный институт холода рекомендует для хранения твердых сычужных сыров температуру 2 °С, сыров типа голландского 0 — 5 °С при относительной влажности воздуха 90 %. Однако оптимальной является температура хранения, близкая к криоскопической (-3 °С), при которой замедляются микробиологические и биохимические процессы, а структура сыра сохраняется. При этом потери массы снижаются в 2 — 3 раза, срок хранения увеличивается до 6 мес.

Сыры в таре (ящиках, барабанах) укладывают партиями в штабеля, между рядами прокладывают рейки или используют пакетированную укладку с применением поддонов. Между двумя штабелями ящиков или барабанов оставляют проход шириной 0,5 м.

Сыр швейцарский хранят в стопках высотой до пяти кругов в зависимости от массы. Каждую стопку укладывают на деревянный круг или поддон; сыры рассольные и брынзу — в бочках с рассолом, которые размещают на решетках или рейках в три яруса по высоте. Сыры рассольные в таре не рекомендуется хранить в одной камере с другими видами сыров.

Для контроля температуры, относительной влажности и скорости движения воздуха в камерах хранения сыров используют дистанционные автоматические приборы.

В процессе хранения товароведы (технологи) холодильника ведут постоянный контроль за температурно-влажностным режимом: температуру воздуха в камере проверяют не менее двух раз в сутки, а относительную влажность — раз в сутки. Колебание температуры допускается только во время загрузки и выгрузки сыров при загруженности камеры от 20 до 50 % включительно — на 1 °С свыше 50 % — на 2 °С.

Товароведы холодильника тщательно контролируют качество сыров (вкус, запах, консистенцию, состояние поверхности), соблюдая следующую периодичность осмотра: при температуре 0 — 4 °С — через каждые 7 сут; -4...0°С — через каждые 10 сут; рассольные сыры — ежемесячно. В бочках проверяют наличие рассола, при необходимости его доливают или полностью заменяют. При хранении швейцарского сыра в стопках головки переворачивают при температуре 0 — 4 °С через 8 — 10 сут, при -4...0 °С — раз в месяц.

Сыры, на которых при периодическом осмотре были обнаружены поверхностная плесень, плесень под парафиновым покрытием, подпревание корки, нарушение покрытия и др., подвергают товарной обработке (протирка, зачистка, парафинирование), а при необходимости — мойке и сушке.

Относительная влажность воздуха при хранении плавленых и сычужных сыров при температуре 0 — 4 °С составляет 80 — 85 %, при 0 – 3 °С – 85-90%.

Яйца поступают на холодильное хранение в охлажденном виде, рассортированными, без дефектов. Загружать на хранение неохлажденные яйца не рекомендуется, так как при этом изменяется температура в камере, что приводит к конденсации влаги на поверхности охлажденных яиц и последующему быстрому развитию микроорганизмов.

Яйца хранят в картонных коробах или деревянных ящиках. Оптимальная температура хранения -1...-2 °С при относительной влажности воздуха 85 — 88 %. Ящики укладывают в штабеля, обеспечивая достаточную циркуляцию воздуха. Срок хранения при этих условиях до 6 мес.

Понижение температуры хранения до -2 ...-2,5 °С способствует лучшему сохранению яиц, сроки их хранения при переохлаждении удлиняются до 12 мес.

Не реже одного раза в 2 мес проводят контрольное овоскопирование яиц. При этом определяют усушку по увеличению воздушной камеры внутри яйца. На основании контроля устанавливают срок дальнейшего их хранения.

Животные топленые жиры поступают на длительное хранение упакованными в деревянные бочки и ящики. Для их хранения отводят специальные камеры, так как они легко воспринимают посторонние запахи. Говяжий, бараний, свиной жир в ящиках и бочках при 0 — 6 °С хранят 1 мес, в герметичных металлических и стеклянных банках — 18 мес.

Охлажденные маргарин и кулинарные жиры хранят при относительной влажности воздуха не более 80 % и постоянной его циркуляции (табл. 6, 7).

Хранение мороженых продуктов. Мороженое мясо размещают на хранение в плотные устойчивые штабеля, уложенные на рейки или решетки; полутуши и четвертины — в универсальные контейнеры в несколько ярусов. При хранении в штабелях норму загрузки 1 м3 грузового объема камеры мороженым мясом условно принимают равной 0,35 т.

Температура хранения мороженого мяса не выше -18 "С, относительная влажность воздуха 95—100%, естественная циркуляция 0,1 м/с. Срок хранения говядины в полутушах и четвертинах 12 мес, свинины — 6 мес (табл. 8).

Таблица 6

Сроки хранения охлажденного маргарина (со дня выработки), сут

Маргарин

Температура, 0С

0-4

5-10

11-15

Нефасованный Фасованный:

в пергамент

в каширо- ванную фольгу

60

35

45

45

20

-

30

15

-


Таблица 7

Сроки хранения охлажденных кулинарных жиров (со дня выработки)

Жир

Температура, °С

Срок хранения, мес

Сало растительное

1-4

4

«Прима», «Новинка», «Украинский»

5-10

2

«Маргагуселин», «Фрипорный»

11-15

1

Таблица 8

Сроки хранения различных видов мороженого мяса, мес

Мясо

Температура, °С

-12

-18

-20

-25

Говядина в полутушах и четвертинах

8

12

14

18

Свинина в полутушах

3

6

7

12

Баранина в тушах

6

10

11

12

Снижение температуры хранения до -30 °С и ниже позволяет не только увеличить сроки хранения, но и значительно уменьшить усушку. Так, при температуре хранения замороженного мяса -30 °С (неупакованных четвертин) усушка уменьшилась в 2,6 раза по сравнению с усушкой при -20 °С. На некоторых холодильниках (в Японии, США) применяют температуру хранения -50 °С. Понижение температуры хранения особенно важно при применении воздушной системы охлаждения, которая вызывает довольно значительные потери массы в камерах с большим грузовым объемом.

Для поддержания высокой относительной влажности воздуха и сокращения потерь массы штабеля укрывают брезентом, упаковочной тканью с нанесением слоя ледяной глазури, экранируют охлаждающие пристенные батареи, применяют систему воздушного охлаждения с активным увлажнением воздуха в камере хранения и т.д.

Более эффективно хранение замороженного мяса в виде бескостных и мясокостных отрубов в вакуумной упаковке или в среде инертных газов.

Мороженую птицу размещают на хранение так же, как и охлажденную. Температура воздуха в камере холодильника не выше -12 °С, относительная влажность 85 — 95 %.

Сроки хранения мороженой птицы на распределительных холодильниках в зависимости от вида, температуры и упаковки приведены в табл. 9.

Субпродукты хранят рассортированными по видам в металлических, обитых внутри оцинкованным железом ящиках, на металлических противнях, в пластиковой таре. Упакованные мороженые субпродукты хранят: при температуре не выше -12°С не более 2 мес, при -15°С — до 3 мес, при -18 °С — до 4 мес, при -30°С — до 6 мес. Норма загрузки 1 м3 грузового объема камеры неблочными субпродуктами 350 кг, в блоках 600 кг.

Таблица 9

Сроки хранения мороженой птицы, мес

Птица

Температура, °С

Неупакованная птица

Упакованная птица

-12

-15

-18

-25

-12

-15

-18

-25

Куры, индейки,

цесарки

5

7

10

12

8

10

12

14

Цыплята, цыплята-бройлеры,

индюшата,

цесарята, дичь

4

6

8

11

8

10

12

14

Гуси, утки

4

5

7

11

6

8

10

12

Гусята, утята

3

4

6

10

6

8

10

12


Полукопченые колбасы, уложенные в ящики, при температуре 7...-9 °С разрешается хранить до 3 мес, варено-копченые — не более 4, сырокопченые — до 9 мес, сырокопченые ветчинные изделия — 4 мес.

Важное условие сохранения мороженой рыбы — ее высокое исходное качество.

Замораживание особенно широко применяют для сохранения морских рыб, доля которых в мировой добыче составляет около 85 %. Качество морской рыбы зависит не только от продолжительности и условий хранения, но и от ее физиологического состояния в момент вылова, способов вылова и обработки, а также от времени года, района промысла.

Рыба может быть заморожена непосредственно на судах и на суше.

В первом случае производят полную разделку рыбы, удаление внутренностей, чешуи, нарезание на порции и замораживание в виде готового продукта. Во втором случае рыбу замораживают на траулерах без предварительной разделки, затем размораживают на суше, разделывают, порционируют, упаковывают в индивидуальную упаковку и снова замораживают.

Основные преимущества замораживания в неразделанном в — простота и низкая стоимость технологического оборудования, пригодного для обработки рыбы различных видов, размеров и количества. Кроме того, товарный вид такой рыбы лучше. К недостаткам метода следует отнести необходимость обработки и хранения менее ценных частей, составляющих 40 —50 % массы рыбы, и возможность снижения качества при двукратном замораживании. Однако, по данным Международного института холода, качественные различия между рыбой двукратного и однократного замораживания незначительны, если сохраняются оптимальные условия в процессе первого замораживания и последующего хранения продукта.

Для рыбы характерна пониженная сохраняемость в замороженном состоянии. При хранении жирной рыбы решающим фактором, определяющим ее стойкость, является окислительное прогоркание, нежирной — денатурационные изменения белков. Окислительные процессы в жирах вызывают главным образом нежелательные изменения вкуса, а денатурация белков приводит к ухудшению структуры тканей.

Для защиты от обезвоживания (усушки) и окислительной порчи при хранении мороженую рыбу глазируют, упаковывают в полимерные пленочные материалы, коробки, ящики. Поштучно замороженное рыбное филе упаковывают в пакеты из полимерной пленки, картонные коробки, пластмассовые лоточки. Упаковку в потребительскую тару также широко применяют для мороженой продукции из беспозвоночных. Особенно высокие требования предъявляют к упаковочным материалам, используемым для упаковки жирной рыбы, — паро- и газонепроницаемость, устойчивость к воздействию жира, защита от световых лучей.

Ящики с мороженой рыбой укладывают в штабеля с прокладками между рядами для обеспечения свободной циркуляции воздуха. Чем плотнее уложена мороженая рыба в штабеле, тем лучше ее сохраняемость и меньше усушка. Чтобы продукция перед хранением не обезвоживалась, в коробки перед замораживанием может быть залита вода. Плотность укладки на 1 м3 грузового объема зависит от вида рыбы, способов замораживания, укладки, вида тары и упаковки.

Мороженую рыбу семейства осетровых (глазированную и неглазированную) укладывают в штабеля, накрывают водовпитывающим материалом, на который намораживают ледяную корку (глазурь). При глазировании рыбы, особенно подверженной прогорканию (сельдь и др.), в глазирующий раствор могут быть введены вещества, обладающие антиокислительным действием (бутилгидрооксианизолы, пропиловые эфиры галловой кислоты, -токоферол, аскорбиновая кислота и ее натриевые и калиевые соли, бутилокситолуол, коптильная жидкость МИНХа и др.).

Установлено, что глазирование позволяет увеличить срок хранения некоторых видов рыб на 4 — 6 мес. Прогрессивным методом является хранение рыбы, замороженной в альгиновых гелях (полисахариды, получаемые из некоторых видов морских водорослей). Альгинаты растворимы в воде и при низких концентрациях образуют растворы с высокой вязкостью, что позволяет получать на поверхности рыбы защитный слой геля. На поверхности рыбы, погруженной в раствор геля, после замораживания формируется плотный слой, полностью изолирующий продукт от воздействия кислорода, а так как температура замораживания геля примерно на 3 °С ниже температуры замораживания рыбы, то при размораживании гель легко отделяется, причем кожа рыбы не повреждается.

При использовании полученной из альгинатов глазури полностью исключаются естественные потери рыбы при хранении.

Для сохранения нежирной рыбы эффективно нанесение защитной пленки из термопластичных восков (парафина), смешанных с невосковыми веществами. Эти покрытия паро- и воздухонепроницаемы, а при хранении при низких температурах не растрескиваются. Покрытия наносят посредством погружения замороженной рыбы в расплавленный раствор с температурой 60 °С.

Упаковка мороженой рыбы под вакуумом позволяет увеличить срок ее хранения на 3 — 4 мес, сократить потери массы, обеспечить эффективную технологию реализации рыбы потребителю.

В целом срок хранения мороженой рыбы зависит от ее вида и химического состава, исходного состояния, способов разделки и режимов замораживания, вида упаковки, температурно-влажностного режима и других факторов. Так, понижение температуры хранения тунца до -50 °С и ниже позволяет хранить рыбу неограниченно долго, причем качество ее практически не изменяется.

В особых случаях рыбные товары замораживают и хранят при более высокой температуре. Так, рыбу слабо- и среднесоленую, пряную и маринованную хранят в заливных бочках при температуре -6...-8 0С и относительной влажности 85 — 90 % не более 21 сут, при -3 °С 14 сут.

Соленую рыбу в сухотарных бочках и ящиках хранят: при -6…-8 °С до 14 сут, при -3...-6 °С 7 сут; рыбу горячего копчения при -18 °С не более 30 сут, при -10...-12 °С 21 сут, при -4...-6 °С 14 сут.

Рыбу спецразделки следует хранить при относительной влажности воздуха 90...95 % и температуре -18 °С в течение 6 мес, рыбное филе — 5 мес. Рыбный фарш пищевой и фарш пищевой и минтая могут находиться на хранении при температуре -18 °С 3 мес с момента выработки.

Икру осетровых рыб в ястыках хранят при температуре не выше -18 0С не более 4 мес, икру зернистую осетровых рыб баночную при температуре -2...-4 °С — 2...2,5 мес, икру зернистую осетровую пастеризованную 8 мес, икру осетровую паюсную в банках и бочках — до 8 мес. Икру пробойную слабосоленую в банках и бочках при температуре -2...-6 0С хранят до 5 мес; среднесоленую в бочках — до 7 мес.

Нерыбные морепродукты хранят при относительной влажности воздуха 90 — 95 % и температуре не выше -18 °С (с момента выработки): сыро-, вареномороженые мидии и морские гребешки 3 мес; крабы 3,5 мес; лангусты и омары 4 мес; креветки 6 мес; криль и трепанги 12 мес; мороженые изделия из осьминога 10 мес; из кальмара разделанного 6 мес, из неразделанного 4 мес.

Яичные продукты следует хранить только в замороженном состоянии, упакованными в банки, картонные и пластиковые ящики с вкладышами из полиэтиленовой пленки. Они поступают на хранение с температурой не выше -8 °С (в центре банки, блока); при температуре -12 °С и относительной влажности воздуха 80 — 85 % срок их хранения до 8 мес, а при -18...-25 °С до 10—15 мес.

Мороженое всех видов (кроме мягкого) хранят при температуре не выше -18 0С. Качество мороженого при хранении зависит от колебаний температурного поля камеры, которые не должны превышать ±1 °С. Сроки хранения мороженого разных видов приведены в табл. 10.

Таблица 10

Сроки хранения мороженого

Мороженое

Срок хранения, мес

Молочное:

весовое

1

фасованное

1,5

Сливочное:

весовое

2

фасованное

2

Пломбир:

весовой

3

фасованный

2

Плодово-ягодное и ароматическое

1,5

Сроки хранения сливочного масла зависят от его вида, способа выработки, упаковки, условий хранения. Сливочное масло хранят по складским партиям (маркам). Каждую партию укладывают в отдельный штабель по видам и сортам. Сроки хранения сливочного масла в монолитах в зависимости от температуры воздуха в камере приведены в табл. 11.

Таблица 11

Сроки хранения сливочного масла в монолитах, мес

Сливочное масло

Температура, °С

-12

-15

-18 и ниже

Сладкосливочное:

несоленое

9

10

12

соленое

6

6

7

Кислосливочное несоленое и соленое

6

6

6

Вологодское

13

1,5

1,5

Шоколадное

4

5

5

Любительское

4

4

6

Крестьянское

1

2

3

Сроки хранения несоленого, соленого, любительского и крестьянского масла, получившего при приемке на холодильнике оценку по вкусу и запаху 39 — 40 баллов, сокращаются на 2 — 3 мес; масло с оценкой 37 — 38 баллов хранению не подлежит.

Сливочное масло, фасованное в виде брусков перед закладкой на хранение, замораживают при температуре -18 °С в течение 2 сут. Сроки хранения такого масла при температуре -12 °С не должны превышать 5 сут упакованного в пергамент и 15 сут упакованного в кодированную фольгу. Температура фасованного масла при отпуске с холодильника в торговую сеть не должна превышать -6 °С.

Масло топленое в бочках и флягах хранят при температуре воздуха от -6 до -12 °С 3 мес, от -12 °С и ниже 6 мес.

Для соблюдения очередности и сроков реализации масла необходимо вести товароведческие карты в виде схематических планов размещения их партий в каждой камере. В карте указывают номер партии, поставщика, вид и сорт масла, дату выработки, число единиц упаковки и срок хранения.

Относительную влажность воздуха в камере хранения масла на холодильнике поддерживают в пределах 85 — 90 % и контролируют раз в декаду, а температуру воздуха в камере измеряют два раза в сутки.

Запрещается совместное хранение масла со следующими продуктами: рыбой и рыбопродуктами, колбасными изделиями и копченостями, сырами сычужными всех видов и колбасным копченым сыром, фруктами и овощами.

Сроки хранении жира и маргарина зависят от их вида, упаковки и температуры хранения (табл. 12, 13).

Хранение подмороженных продуктов. Подмороженное мясо экономически эффективно хранить в штабелях высотой 1,5 — 2 м, укладывая говяжьи полутуши в 5 —6 рядов, а свиные и бараньи — в 7 —8 рядов.

Подмороженное мясо перевозят в авторефрижераторах и поездах с машинным охлаждением при температуре около -2 °С до 7 — 9 сут, хранят на распределительных холодильниках до 7 сут при температуре -2 °С и относительной влажности воздуха 92 — 95 %.

Для увеличения сроков хранения, сохранения качества и снижения усушки целесообразно использовать упаковку мяса в отрубах в термоусадочные пленки с вакуумированием. Это замедляет окислительные процессы, предотвращает развитие микроорганизмов, помогает хорошо сохранить естественный цвет и в целом увеличивает сроки хранения в два раза.

Таблица 12

Сроки хранения мороженых животных топленых жиров

(со дня выработки), мес

Жир

Температура, °С

-5...-8

-12 и ниже

Говяжий, бараний, свиной

в ящиках и бочках

6

12

Говяжий, бараний, свиной

в герметичной таре:

в металлических

банках

24

24

в мелкой фасовке

2

2

Таблица 13

Сроки хранения мороженого маргарина (со дня выработки), мес

Маргарин

Температура, °С

0...-9

-10...-20

Нефасованный Фасованный:

в пергамент

в кашированную фольгу

75

45

60

90

60

75

Подмороженную птицу хранят при температуре -2 °С и относительной влажности воздуха 95 % в течение 25 — 30 сут (с учетом транспортировки и реализации). Упаковка с вакуумированием в термоусадочную пленку позволяет значительно снизить интенсивность гидролитических и окислительных процессов. Способ транспортировки и хранения птицы в подмороженном состоянии считается экономически выгодным, так как требует в три раза меньше затрат, чем замораживание, а птица по внешнему виду не отличается от охлажденной, имеет естественную окраску.

Подмороженную рыбу укладывают в ящики, хранят и транспортируют при температуре -2 °С. При хранении и транспортировке возможно и экономически целесообразно использовать естественный холод. При кратковременном и незначительном колебании температуры (от 0 до -5 °С) и плотной укладке ящиков в штабеля температура основной массы рыбы практически постоянна, изменение качества не происходит.

Относительная устойчивость температуры подмороженной рыбы благодаря большой аккумуляции холода позволяет осуществлять ее производство в промышленном масштабе и перевозку на дальние расстояния. Продолжительность транспортировки до 5 — 7 сут, срок хранения с момента выработки 12 — 15 сут, со времени вылова 20 — 25 сут.

15.6. Изменение продуктов животного происхождения

при холодильном хранении

Изменение ферментативной системы. В процессе холодильного хранения мяса решающую роль при его созревании играет протеолиз, который катализируется катепсинами — группой протеолитических ферментов, гидролизующих пептидные связи белков и полипептидов. Они сосредоточены в лизосомах, где находятся также гидролазы — дезоксирибонуклеаза, рибонуклеаза, кислая фосфатаза, эстераза, гликозидаза и др.

Лизосомы, как и другие клеточные органоиды, относятся к легко повреждаемым клеточным структурам. При этом ферменты органоидов обычно не теряют активности. При разрушении мембран лизосом они контактируют с соответствующими субстратами и катализируют их расщепление. Аналогично ведут себя и ферменты, входящие в состав мембран клеточных органоидов, например митохондрий и эндоплазматического ретикулума, хотя разрушение этих мембран приводит к расстройству функций ферментативных систем в целом. Вместе с тем, несмотря на сохранение активности каждым ферментом, нарушается строгая последовательность расположения ферментов, входящих в целостную структуру единых ферментных комплексов.

Митохондриальное окислительное фосфорилирование начинает нарушаться, как только работающие цитохондрии вступают в контакт с разрушенными лизосомами, получая тем самым возможность реагировать с соответствующими структурами. Наблюдаемое на начальных стадиях автолиза мышечной ткани повышение активности гидролаз сменяется ее снижением. Прежде всего уменьшается активность кислой фосфатазы, затем дезоксирибонуклеа-зы и в последнюю очередь катепсинов.

Однако поведение этих ферментов при различных режимах холодильной обработки и хранения мяса трудно спрогнозировать вследствие значительного количества взаимовлияюших факторов в недостаточной их изученности. Так, в предубойный период животные подвергаются воздействию целого ряда различных по силе и времени стрессовых факторов (нарушение кормления, транспортирование и др.), поэтому реакция клеточных структур также может быть различной. Вследствие этого в тканях животных уже в предубойный период может формироваться различный исходный ферментативный фон, от которого и будут зависеть дальнейшие интенсивность и направленность развивающихся в мясе биохимических и физико-химических процессов во время его обработки и хранения.

Общее правило гласит, что с понижением температуры активность ферментов уменьшается. Скорость реакций, которые катализируют большинство ферментов V, можно определить по уравнению Аррениуса:

V = V0 e–Е / (RТ),

где V0 — константа скорости (постоянная величина), не зависящая от температуры; е — экспоненциальная функция; Е — энергия активации; R — газовая постоянная; Т — абсолютная температура.

Однако не все ферменты подчиняются этой зависимости. Некоторые полностью утрачивают активность при -20 0С, тогда как другие ферментативные реакции протекают даже при -60 °С. Таким образом, по мере понижения температуры вместо ожидаемого спада активности ферментов в отдельных случаях наблюдается ее рост.

Ряд ферментов проявляет высокую активность при низких отрицательных температурах. Так, липаза и пероксидаза активны при -29 °С, дегидрогеназа ниже -21 0С. Каталаза, тирозиназа и пероксидаза более активны в замороженном продукте, чем в переохлажденном. Для этих ферментов существенное значение имеет происходящий при замораживании переход среды из жидкой фазы в твердую. Одни исследователи считают, что ускорение реакций в замороженных растворах — результат каталитического действия твердых поверхностей, в том числе и структурированной воды; другие полагают, что при замораживании растворов скорость реакции замедляется в соответствии с уравнением Аррениуса; в то же время по мере вымерзания воды увеличивается концентрация реагирующих веществ в жидких включениях, что соответственно повышает скорость реакций (концентрационный эффект). Эти два фактора по-видимому, и определяют результирующую действительную скорость ферментативных реакций в замороженных растворах.

Особенности протекания ферментативных реакций с понижением температуры определяются также изменениями физико-химических показателей среды и свойств растворенных веществ (вязкость и рН среды, степень ионизации групп ферментов и субстратов и др.). Активность ферментов зависит и от продолжительности воздействия на них низких температур.

Изменение растворимости белков. С одним из важнейших свойств мяса – нежностью — тесно связана растворимость белков. Изучение растворимости белков при хранении мяса в охлажденном (2 °С) и переохлажденном (-2 °С) состоянии показало, что максимальная растворимость фибриллярных белков свойственна парному мясу. Сразу же после его охлаждения растворимость белков снижается. При этом в охлажденном мясе минимум растворимости белков приходится на 1—2-е сутки, а в переохлажденном — на 4 —5-е, что соответствует периоду максимального развития послеубойного окоченения. Растворимость белков охлажденного мяса при его хранении до 12 сут составляет 81 — 85 % по отношению к растворимости белков парного мяса, а переохлажденного и хранившегося до 20 сут - 77-81 %.

Физико-химические изменения мышечной ткани рыб при замораживании заключаются в дополнительном разрушающем воздействии на них кристаллов льда, а также в денатурации мышечных белков под действием солевых растворов, образующихся при вымораживании воды в тканях.

Данные экспериментальных исследований по определению растворимости мышечных белков рыб указывают на ее понижение при холодильной обработке, причем наибольшие изменения происходят в белках актомиозинового комплекса, а при длительном хранении — и в саркоплазматических. Постепенное понижение растворимости актомиозина отмечается при последующем после замораживания периоде холодильного хранения рыбы.

При холодильном хранении и замораживании чистых растворов миозина происходит агрегация молекул белка. Обычно этому процессу предшествует денатурация белка. Данные о молекулярной массе, константах седиментации и скорости диффузии образующихся при замораживании и холодильном хранении белковых частиц миозина свидетельствуют о структурных изменениях этого белка. По некоторым данным, в процессе холодильной обработки рыбы возможно не только понижение, но и повышение растворимости актомиозина. Так, в мороженой балтийской сельди растворимость актомиозина в мышечной ткани увеличивалась даже во время окоченения.

Изменение липопротеидных комплексов и аминокислотного состава. Важную роль в процессе холодильного хранения играют липопротеидные комплексы (ЛПК) мышечной ткани мяса и рыбы, липопротеиды составляют основу клеточных мембран, участвуя в регуляции активности находящихся в мембранах ферментов, а также в механизмах транспортировки многих веществ. Нативная структура мембранных ЛПК очень чувствительна к недостаточному энергообеспечению, которое немедленно возникает в послеубойный период.

Во время хранения мяса создаются благоприятные условия для вторичного взаимодействия липидов с белками. Это происходит потому, что нативные ЛПК при хранении быстро разрушаются, структурная упорядоченность клеточных мембран утрачивается, пространственная разграниченность химических компонентов клеток нарушается. Во взаимодействие с белками вступают как полярные и нейтральные жиры, так и продукты их распада и окисления. С липидами взаимодействуют также измененные, частично или полностью денатурированные белки и продукты их полимеризации. На образование вторичных ЛПК влияют температура, рН среды и другие факторы.

Таким образом, при хранении продуктов образуется большое количество вторичных ЛПК, различающихся природой, прочностью связи составных элементов, растворимостью, аминокислотным составом, степенью переваримости и рядом других свойств, формирующих качество. Взаимодействие между липидами и белками происходит в продуктах и при хранении в замороженном состоянии.

Результаты исследования мяса и рыбы на содержание и стабильность ЛПК при хранении в замороженном состоянии показали, что процесс разрушения и образования липопротеидных комплексов имеет волнообразный характер. Кроме количества также волнообразно изменялись растворимость различных белковых фракций мышечной ткани, содержание сульфгидрильных и дисульфидных групп в белках, а также активность ряда ферментов.

О начавшихся в химических компонентах мышечной ткани изменениях можно судить по содержанию низкомолекулярных летучих веществ, которые в большинстве случаев являются продуктами распада высокомолекулярных соединений и активно участвуют в формировании вкуса и аромата продуктов. Так, по содержанию аминокислот в мясе можно судить о скорости и глубине протеолиза, а также направленности автолитических изменений, протекающих в мышечной ткани во время обработки и хранения мяса. При холодильном хранении мяса в процессе автолиза содержание свободных аминокислот возрастает, а скорость их образования в основном зависит от активности катепсинов. Так, в следствие того что в мышцах большинства рыб активность катепсинов выше, чем в мышцах животных, в мышцах первых накапливается гораздо больше свободных аминокислот.

Динамика изменения содержания аминокислот при хранении мяса кроме их накопления в результате протеолиза определяется также их распадом в результате декарбоксилирования и дезаминирования с освобождением аммиака. Активность оксидаз и декарбоксилаз, катализирующих эти реакции, наиболее высока у парного мяса и в начальный период охлаждения, тогда как повышение активности катепсинов, вызывающее накопление аминокислот, происходит позднее, по мере высвобождения их из разрушающихся лизосом. Различием в скорости этих ферментативных процессов можно объяснить первоначальное понижение и последующее увеличение содержания свободных аминокислот в процессе хранения мяса.

Реакции декарбоксилирования аминокислот приводят к образованию аминов в мясе и рыбе, которые являются нестойкими соединениями и быстро разрушаются.

Качественный состав аминокислот в процессе хранения продукта определяется многими факторами и зависит от активности различных ферментов мышечной ткани, катализирующих протеолиз в целом и индивидуальные превращения аминокислот, от аминокислотного состава расщепляемых белков, их количества и степени атакуемости ферментами, изменения рН, температуры и других взаимосвязанных факторов.

Наиболее полно изучено изменение нуклеотидов (АТФ, АДФ, АМФ). По мере хранения мяса количество фосфорилированных нуклеотидов довольно быстро понижается, а гипоксантина возрастает. Скорость распада нуклеотидов зависит от температуры и продолжительности хранения. Спонтанный распад АТФ протекает до образования АМФ — относительно устойчивого продукта, дальнейшие превращения которого вплоть до образования гипоксантина катализируются целой группой ферментов.

Из низкомолекулярных азотсодержащих соединений в мясе находят аммиак, летучие амины — метиламин, диметиламин, а в рыбе, кроме того, триметиламин, триэтиламин, изобутиламин. Из летучих соединений около 99 % приходится на долю аммиака. Быстрое накопление аммиака в мясе в процессе хранения может указывать на развитие в нем микроорганизмов. Понижение температуры хранения мяса задерживает развитие микроорганизмов, и накопление аммиака происходит медленнее.

Изменение окислительно-восстановительной системы. Во время хранения мяса, птицы и рыбы происходят волнообразные изменения элементов окислительно-восстановительной системы, следствием чего является существенное снижение содержания аскорбиновой кислоты и увеличение количества ее окисленных форм - дегидроаскорбиновой и дикетогулоновой. Аскорбиновая кислота предохраняет от окисления белки, содержащие HS-группы, которые определяют устойчивость последних к замораживанию. Сохраняемость аскорбиновой кислоты увеличивается с понижением температуры.

В послеубойный период в парном мясе резко снижается количество кислорода, и его концентрационный градиент смещается в направлении от сосудов к тканям. Это определяет соотношение различных форм миоглобина и цветовые оттенки мяса по глубине (на разрезе). Продолжающееся в послеубойный период (не более суток) поглощение кислорода клетками ткани без одновременной его подачи по сосудам приводит к понижению содержания окисленной формы миоглобина до 15 % и повышению содержания восстановленной формы до 75 %. В дальнейшем существенное снижение аэробного обмена вызывает уменьшение потребления кислорода клетками, однако в поверхностных слоях его содержание может возрастать вследствие диффузии из воздуха. С увеличением срока хранения начинает быстро увеличиваться количество метмиоглобина. Это происходит в результате денатурационных изменений белков, а также истощения окислительно-восстановительных систем мышечной ткани в целом.

Изменения липидов, входящих в состав тканей, связаны с изменениями других компонентов, в их основе лежат важнейшие химические и биохимические процессы.

Основными процессами, которые определяют изменения липидов при обработке и хранении мяса и жиров, являются гидролиз и окисление. Глубина и скорость изменения состава и свойств липидов в этих процессах играют первостепенную роль в формировании таких важных показателей качества мясных и жировых товаров, как цвет, запах и вкус. Процессы изменения липидов достаточно сложны, происходят они в результате химических, биологических и ферментативных превращений, часто протекающих параллельно, но приводящих, как правило, к образованию одних и тех же промежуточных и конечных продуктов (перекисей, свободных жирных кислот, альдегидов, кетонов, продуктов полимеризации и др.). Способность жиров соединяться с кислородом зависит от степени ненасыщенности жирных кислот, наличия сопутствующих веществ, являющихся активаторами или ингибиторами окисления, следов тяжелых металлов, тепла, света и т.д. При хранении некоторых продуктов способность липидов вступать в реакцию усиливается вследствие замедления биохимических процессов, разрушения структуры клеток и появления в результате этого новых реагентов. Разнообразие реакций взаимодействия липидов с другими составными компонентами клеток по мере хранения продуктов возрастает, поскольку продукты ферментативного расщепления липидов реагируют с ними весьма специфично.

Скорость процессов гидролиза и окисления липидов определяется активностью липолитических ферментов, которая в значительной степени зависит от температуры. Так, интенсивность гидролиза уменьшается с понижением температуры хранения мяса. Установлено, что активность липолитических ферментов свинины ниже, чем рыбы, мяса крупного рогатого скота и домашней птицы, что объясняется видовыми различиями и функциональными особенностями исследованных мышц. Об интенсивности гидролиза судят главным образом по содержанию свободных неэтерифицированых жирных кислот (НЭЖК). Количество этих кислот в говядине, замороженной через 2 ч после убоя и хранившейся при -10, -18 и -30 °С, увеличивается по-разному. Так, за 12 мес хранения при температуре -10 0С содержание НЭЖК возросло в 21,6 раза по сравнению с исходным, при -18 °С — в 13,5 и при -30 °С — в 3,3 раза (определения были проведены на основании изменения кислотного числа жира). Известно, что НЭЖК — один из факторов, инициирующих процесс денатурации, установлена также тесная связь между ее интенсивностью и степенью накопления НЭЖК в белках рыбы, мяса и птицы.

Если о скорости денатурации белков судить по степени уменьшения их растворимости, то можно предположить, что при холодильном хранении мяса и рыбы денатурируют в основном миофибриллярные белки, а ферменты, вызывающие эти изменения, сохраняют активность в течение продолжительного времени хранения продукта и при отрицательных температурах.

Общий уровень накопления НЭЖК и их качественный состав при холодильном хранении продуктов животного происхождения зависят от состава тканевых липидов, уровня и продолжительности сохранения активности липолитических ферментов, источника образования НЭЖК, типа мышц, видовых различий, условий хранения и других факторов.

Качество и количество НЭЖК, накапливающихся в результате гидролиза липидов, оказывают существенное влияние на скорость и глубину их последующего окисления. Чем выше скорость накопления и степень их ненасыщенности, тем интенсивнее протекает процесс окисления, и окислительная порча такого жира наступает раньше. Именно этим во многом определяются различия в сроках хранения рыбы, птицы, мяса и мясопродуктов, причем они неодинаковы даже для одного вида продукта, а так как процессы окисления жиров относят к типу цепных реакций, то по мере увеличения сроков хранения мяса и рыбы степень окисления увеличивается, что определяется по накоплению перекисей, а также вторичных продуктов окисления. Последние могут принимать участие в реакциях взаимодействия с белками.

Взаимодействие переоксидных радикалов жирных кислот с бeлками ведет к образованию различного рода полимеров — белков и перекисей жирных кислот либо (если перекисные радикалы жирных кислот инициируют образование свободных радикалов в белках) полимеров самих белков. Возможно также более глубокое воздействие пероксидных радикалов липидов на белки, вызывающее разрушения ряда аминокислот в их молекуле.

Продукты окисления жирных кислот могут участвовать в образовании липопротеидных комплексов, которые в отличие от комплексов белков с жирными кислотами еще менее растворимы и устойчивы к гидролизу.

Таким образом, взаимодействие белка с продуктами окисления жирных кислот может сопровождаться значительным изменением его свойств. Полная его нерастворимость, способность к образованию полимеров и устойчивость к расщеплению (гидролизу) протеолитическими ферментами существенно снижают пищевую ценность и качество продукта в целом.

Образующиеся при окислении жирных кислот первичные и вторичные продукты вовлекают в этот процесс и другие компоненты мышечной ткани. Претерпевают изменения многие витамины, каротины, пигменты, ароматические вещества. Эти процессы приводят к изменению запаха, вкуса, цвета мяса и рыбы, понижению их биологической ценности.

При хранении сливочного масла в нем протекают физические, химические, биохимические и микробиологические процессы. Сливочное масло отличается от других жиров животного происхождения большим разнообразием входящих в его состав жирных кислот и высоким содержанием воды. В нем имеются в большом количестве насыщенные низкомолекулярные жирные кислоты, ненасыщенные жирные кислоты и вода (25 % и более), в значительной степени определяющая консистенцию и стойкость продукта. В сливочном масле летней выработки больше естественных антиоксидантов и других биологически активных соединений. При его хранении могут происходить нежелательные изменения, вызванные окислением молочного жира, которое обычно предшествует его гидролизу, но может происходить и одновременно с ним.

Исследование качества масла, хранившегося при -10, -18 и -25 °С в течение 7 мес, показало, что кислотное число, характеризующее глубину гидролитических процессов, возросло к концу хранения в 1,2— 1,6 раза. При этом липаза, катализирующая процесс, отличалась высокой активностью при всех режимах хранения. В то же время интенсивность окислительных процессов, зависящая от активности липоксигеназы, замедлялась по мере снижения температуры. Нарастание содержания пероксидных соединений происходит неравномерно: в начале хранения их количество Увеличивается, к 4-му месяцу — понижается, а к 7-му — вновь возрастает. Увеличение содержания пероксидных соединений в первые месяцы хранения происходит за счет кислорода, проникающего через упаковку, а также за счет кислорода, получаемого из оксидов. При этом может выделяться активный кислород, способный дальше окислять жирные кислоты с образованием пероксидных соединений.

Гидролиз триглицеридов и фосфатидов протекает ступенчато: в начале расщепления образуются диглицериды, затем моноглицериды, при этом чем меньше верифицирован жир, тем быстрее он гидролизуется. Глицериды низкомолекулярных жирных кислот атакуются липазой легче, чем высокомолекулярных. Следовательно, в сливочном масле условия для интенсивного гидролиза и быстрого накопления НЭЖК достаточно благоприятны, причем поскольку НЭЖК окисляются легче, чем их эфиры, ускоряется процесс окисления в целом.

Раннее образование и интенсивное накопление низкомолекулярных НЭЖК могут вызвать ухудшение вкуса и запаха еще до окисления жирных кислот.

Исследования гидролитических процессов в липидах сливочного масла при -10 и -18 °С показали, что они протекают весьма активно, причем интенсивность гидролиза и скорость нарастания НЭЖК при -18 0С больше, чем при -10 °С (аномальный гидролиз сливочного масла). По органолептическим свойствам масло, хранившееся при -10 0С, оказалось лучше масла, температура хранения которого была -18 и даже -27 °С. Это явление объясняется возникающими при хранении масла различиями в скорости образования и окисления НЭЖК. В результате продолжающегося при отрицательных температурах ферментативного гидролиза молочного жира накопление НЭЖК происходит весьма интенсивно, скорость же процесса окисления по мере понижения температуры замедляется. При замедлении процесса окисления время сохранения жирных кислот в неокисленном состоянии увеличивается, в результате общее содержание НЭЖК при более низкой температуре хранения оказывается выше.

Активность липолитических ферментов тесно связана с фазовым переходом воды в лед. Так как процесс кристаллизации воды в масле начинается, как правило, при температуре ниже -10 °С, то и процесс активации ферментов возникает в районе этой температуры, чем и объясняется накопление НЭЖК при более низкой температуре.

Одним из наиболее часто встречающихся видов порчи сливочного масла является штафф — результат физико-химических изменений, проявляющийся в появлении на поверхности масла темноокрашенного слоя с неприятным горьковатым или приторно-едким вкусом, своеобразным затхлым или гнилостным запахов В основе этого явления — развивающиеся на фоне обезвоживания поверхностного слоя масла процессы полимеризации глицеридов и окисления молочного жира. Интенсивность образования штаффа и степень его выраженности зависят от качества сырья, способа производства масла, условий и сроков хранения, упаковки. Скорость его образования велика, и при температуре -10 °С штафф образуется уже через 2 нед.

При хранении свиного жира интенсивность процессов окисления уменьшается по мере снижения температуры, а процессы гидролиза протекают относительно медленно. Интенсивность образования карбонильных соединений, содержание которых в целом и определяет изменение качества, в значительной степени зависит от предшествующих процессов образования НЭЖК и первичных пероксидов.

Углеводы содержатся в животных тканях в незначительных количествах, но они легко расщепляются, наиболее активны в метаболическом отношении и особенно чувствительны к изменяющимся условиям функционального состояния мышечной ткани.

Распад углеводов в мышечной ткани в послеубойный период протекает весьма интенсивно: вначале он аналогичен прижизненному механизму окисления углеводов; по прекращении кровообращения и поступления кислорода к тканям окисление продолжается за счет кислорода миоглобина мышц. Этот кислородный резерв невелик, и в мышцах быстро наступает состояние кислородной недостаточности. В результате распад из аэробного переходит в анаэробный, который заканчивается образованием молочной кислоты и понижением рН мышечной ткани. В то же время превращения белков и жиров в этот период протекают с отставанием.

Поскольку процессы биосинтеза белков, жиров и углеводов вследствие распада макроэргических соединений практически прекращаются (по этой же причине прекращается и аэробное окисление этих веществ), лишь способные к анаэробному расщеплению углеводы продолжают активно распадаться. Быстро наступающие изменения рН мышечной ткани, обусловленные превращениями углеводов, являются начальным звеном в последовательной цепи дальнейших превращений составных компонентов мяса.

Следовательно, углеводы создают общий фон, на котором развиваются процессы распада белков и жиров. Состоянием этого фона определяется не только интенсивность дальнейших изменений составных компонентов мяса, но и их направленность. Тем самым Углеводы участвуют в формировании важнейших потребительских свойств мяса. Благодаря высокой реакционной способности они легко вступают во взаимодействие с другими компонентами мяса, образуя ряд соединений, в том числе и низкомолекулярных, которые определяют вкус и запах продукта. В формировании последних принимают участие моносахариды и их производные.

15.7. Холодильное хранение пищевых продуктов у потребителя

При соблюдении всех требований к производству, хранению и транспортировке пищевая ценность продуктов, законсервированных с помощью холода, сохраняется, и они, пройдя все звенья холодильной цепи, попадают к потребителю в отличном состоянии.

Дальнейшее качество продукта зависит от того, в каких условиях он хранится у потребителя.

При продаже в розничной сети термическое состояние продукта должно находиться на уровне, определяющем оптимальные условия хранения. Так, температура скоропортящихся продуктов должна быть не выше 6 0С, а замороженных (предназначенных для хранения в домашних условиях) по рекомендациям Международного института холода — не выше -15 0С. Такие продукты могут быть использованы не только для непосредственной кулинарной обработки, но и для хранения у потребителя в течение рекомендуемых сроков при определенных режимах и наличии соответствующей холодильной техники.

Во время доставки к месту потребления продукты подвергаются воздействию окружающей среды, причем основное значение имеет температурный фактор, поэтому целесообразно пользоваться специальными средствами транспортирования. Диапазон таких средств в зарубежных супермаркетах, торгующих охлажденными и морожеными продуктами, достаточно разнообразен — от дешевых (одноразовых) термоизолированных бумажных сумок до термоизолированных пенополиуретановых контейнеров и потребительских контейнеров с термоэлектрическим охлаждением различного назначения и объема. При отсутствии таких средств время доставки должно быть максимально сокращено, продукты следует завернуть в несколько слоев упаковки и поместить в центре среди других покупок, так как даже незначительные изменения температурного режима резко ограничивают потенциальный срок их хранения у потребителя.

При хранении продуктов в домашнем холодильнике основное внимание следует уделять их рациональному размещению. Решение этого вопроса упрощается при наличии современного суперхолодильника, имеющего несколько камер (зон) хранения продуктов с управлением микропроцессором. При использовании одно-, двухкамерных холодильников устаревших конструкций необходимо соблюдать некоторые правила, позволяющие не только сохранить качество продуктов, но и снизить энергопотребление холодильного агрегата, увеличить его емкость, уменьшить усушку. Для этого подбирают специальную посуду (лотки, банки, коробки, пакеты и др.) наиболее удобной (квадратной и прямоугольной) формы, позволяющую расположить продукты максимально плотно. Желательно также, чтобы продукт занимал не менее 80 % емкости посуды.

При хранении охлажденных продуктов необходимо рационально использовать весь диапазон температур, естественным путем формирующийся в камере холодильника. Так, градиент температур в работающем холодильнике может достигать 8 — 9 °С. Минимальная температура (0...-2 °С) создается непосредственно под низкотемпературным отделением и рядом с испарителем. В нижней части холодильной камеры температура может достигать 6 — 7 °С. Охлажденные мясо, птицу, рыбу для кратковременного хранения желательно размещать на верхней полке. Там же хорошо сохраняются сыры, сливочное масло и большинство жиров. Фрукты и овощи, напротив, рекомендуется хранить в изолированных емкостях, установленных в нижней части холодильной камеры. Заполняя емкости плодоовощной продукцией, необходимо сгруппировать ее по видам (овощи, фрукты, ягоды, зелень), так как режимы их хранения различны. Соленья и маринады достаточно хорошо сохраняются на нижней полке холодильника. Там же в течение непродолжительного времени (от нескольких часов до 2 сут) можно хранить и кулинарно обработанные блюда текущего потребления. На внутренней стороне дверцы холодильника имеются, как правило, специальные формы и отделения для хранения продуктов.

Продукты, имеющие острые, специфические запахи (рыба, сыр, копчености и др.), а также легко их воспринимающие (сливочное масло, творог, сметана, кремы и др.), следует хранить в герметичной посуде или упаковке. Применение такой упаковки в целях снижения усушки предпочтительно практически для всех продуктов.

Замороженные продукты хранят в низкотемпературном отделении (-18 0С и ниже) в соответствующей герметичной упаковке во избежание излишнего обезвоживания. Непродолжительное время замороженные продукты можно хранить в низкотемпературном отделении при температуре не выше 12 °С.

Замороженные продукты необходимо хранить порциями, так как срок хранения размороженных и повторно замороженных продуктов сокращается в несколько раз.

Рекомендуемые сроки хранения мясопродуктов при температуре в холодильной камере 4 °С:

мясо охлажденное любой жирности (говяжье, свиное, птица), полуфабрикаты, печень, почки — до 24 ч;

мясной фарш — до 8 ч;

мясные изделия и блюда готовые, термообработанные — до 48 ч.

В морозильном отделении при температуре не выше -18 °С можно хранить:

нежирное мясо (говядину и баранину) крупными кусками (по 0,5—1 кг) — до 10 мес, мелкими — до 7 мес, в виде фарша, печень, почки — до 6 мес;

мясо и мясопродукты натуральные из свинины крупными кусками — до 5 мес, мелкими — до 4 мес, фарш, котлеты — до 3 мес;

мясо птицы нежирное — до 6 мес, жирное — до 4 мес.

Свежую рыбу и другие морепродукты можно хранить в холодильнике не более суток при обязательной тепловой кулинарной обработке перед употреблением.

Рыбу и морепродукты в замороженном виде при температуре -18 °С хранят нежирные в течение 4 мес, жирные — 2 мес.

Соленая и маринованная рыба в герметично укупоренной таре может храниться при 0 — 4 0С в течение 4 мес, а рыба горячего копчения при таком же режиме — не более 2 сут.

Молоко и молочные продукты следует хранить в соответствии с рекомендациями на упаковке.

Срок хранения сливочного масла при 0 — 4 °С и текущем его потреблении 15 — 20 дней. Особого внимания требует хранение сыра, так как при повышенной влажности без упаковки он на 4 — 5-сутки может заплесневеть, а в бумажной упаковке быстро усыхает.

Яйца в домашнем холодильнике хранят при температуре от 0 до 6 0С в течение 15 — 20 сут, периодически осматривая их и отмечая дефекты, пороки, повреждения.

Быстрозамороженную плодоовощную продукцию в низкотемпературном отделении при -18 °С можно хранить от нескольких месяцев до года в зависимости от ее вида.

При хранении охлажденной плодоовощной продукции следует придерживаться следующих правил (табл. 14).

Рекомендуемые режимы и сроки хранения рассчитаны на то, что размещаемые на хранение в бытовом холодильнике продукты имеют высокое качество.

Таблица 14

Режимы хранения охлажденных плодов и овощей

в бытовом холодильнике

Продукт

Рекомендуемая температура хранения, °С

Продолжительность

хранения, нед

Апельсины

5-10

6-12

Баклажаны

7-10

10*

Перец сладкий

7

2-3

Огурцы

7-10

2-3

Томаты красные

7-10

1-2

Абрикосы

-0,5

2

Черника, голубика

-0,5

3-6

Вишня, черешня

1

2-4

Виноград

-1

4-12

Сливы

0,5

2-7

Малина

0

3-5*

Клубника

0

1-5*

Капуста

0

4-12

Морковь

0

12-20

* Продолжительность хранения в днях

ГЛАВА 16

ОТЕПЛЕНИЕ И РАЗМОРАЖИВАНИЕ

16.1. Технология отепления и размораживания

Перед употреблением охлажденные, подмороженные и замороженные продукты подвергают обработке, целью которой является доведение их до состояния, близкого к исходному.

Отепление и размораживание — заключительные операции в непрерывной холодильной цепи, осуществляемые непосредственно перед выпуском пищевых продуктов в розничную торговлю, промышленной или кулинарной обработкой.

Цель этих операций — приведение продукта в состояние, удобное для дальнейшего использования и как можно более близкое к состоянию, свойственному натуральному продукту высокого качества. Учитывая, что отепление — это процесс, обратный охлаждению, а размораживание — процесс, обратный замораживанию, стремятся достичь максимальной обратимости этих процессов.

Отепление. Представляет собой процесс постепенного повышения температуры охлажденных продуктов до уровня окружающего воздуха при максимально полном сохранении их качества.

Отепление позволяет предотвратить отпотевание продуктов (конденсация влаги из воздуха на их более холодную поверхность) при переходе из холодной среды в теплую и соответственно обсеменение поверхностей микрофлорой из воздуха.

Некоторые продукты не нуждаются в отеплении, так как конденсирующаяся на них при повышении температуры влага не причиняет им вреда (соленые рыбные товары, сливочное масло и др.). Не нуждаются в отеплении и продукты в герметичной упаковке при условии их быстрого употребления.

Для таких же продуктов, как плоды, овощи, баночные консервы, отепление необходимо.

Обычно отепление проводят в воздушной среде, регулируя количество водяных паров и по возможности обеспечивая стерильность.

Отепление продуктов, осуществляемое в результате теплообмена с нагретым воздухом, следует проводить так, чтобы избежать на их поверхности точки росы. В то же время сухой воздух вызывает значительную усушку продукта, что также нежелательно. Поэтому при отеплении влагосодержание и скорость движения воздуха по мере повышения температуры поверхности продукта регулируют так, чтобы обеспечить хороший теплообмен, избежать перегревания поверхности продукта и приблизить состояние воздуха при температуре поверхности продукта к состоянию насыщения водяными парами. Отепление заканчивается, когда температура поверхности продукта становится такой, что при перемещении его в новые условия исключается поверхностная конденсация влаги.

Проводят отепление в камерах, оборудованных установками или устройствами для кондиционирования воздуха. Кондиционеры, обеспечивающие необходимые параметры циркулирующего воздуха, оборудованы последовательно включенными воздухоохладителем и калорифером. Воздух из камеры при помощи вентилятора поступает в кондиционер, где охлаждается и подсушивается в воздухоохладителе до необходимого влагосодержания, затем проходит калорифер, подогревается до постоянного влагосодержания и вновь направляется в камеру отепления. Здесь он отдает теплоту продукту, повышая его температуру, а сам охлаждается и несколько увлажняется.

Во время отепления ускоряются физические, физико-химические, биохимические, микробиологические процессы в продукте. Для торможения микробиологических процессов воздух в камерах подвергают фильтрации, озонированию, УФ-облучению, а также используют другие способы обеззараживания воздуха.

Техника отепления различных продуктов в основном одинакова. Их размещают так, чтобы была обеспечена свободная циркуляция воздуха. Продукты в упаковке укладывают в штабеля в шахматном порядке с прокладкой реек между рядами; без упаковки — располагают в том же порядке, как при хранении, — на подвесных путях и стеллажах. Отепление продуктов с резкими специфическими запахами вместе с другими продуктами недопустимо.

Для отепления продукта должна быть подведена теплота, количество которой равно расходу холода при охлаждении того же продукта в том же количестве и в одинаковом по величине температурном интервале. Теплота, подводимая к продукту при отеплении в воздухе, расходуется не только на его нагревание, но и на испарение влаги с его поверхности.

Продолжительность отепления зависит от размеров продукта, вида тары, упаковки, их теплофизических свойств, температуры и скорости движения воздуха, начальной и конечной температур продукта.

На практике плоды и овощи при отеплении перемещают из холодильной камеры в коридоры или в специальную камеру, где температура воздуха постепенно повышается, и через 12 — 15 ч — в помещения с температурой 18 — 20 0С.

Отепление переохлажденных плодов и овощей продолжается от нескольких суток до нескольких недель. Только такой режим позволяет достичь максимальной обратимости процесса и обеспечить высокое качество.

Размораживание. Технологический процесс превращения льда, содержащегося в мороженых продуктах, в жидкую фазу называют размораживанием. Это заключительный технологический процесс холодильной обработки, в течение которого происходит повышение температуры замороженного продукта. Процесс размораживания по теплофизической сущности можно рассматривать как обратный замораживанию.

При размораживании температуру продуктов повышают до криоскопической или выше ее в зависимости от целей. Его проводят для придания продуктам свойств, близких к свойствам незамороженных (свежих) продуктов.

После размораживания некоторые продукты подвергают дальнейшей переработке (мясо, рыба), используют для производства других продуктов (яичный меланж, овощи, творог) или употребляют как готовые (ягоды, зелень, кулинарные изделия, вторые замороженные блюда и т.д.). В первых двух случаях конечная температура продуктов в среднем составляет от -1 до +1 0С. При размораживании продуктов, не требующих подогрева перед употреблением (ягоды, плоды, зелень), их нагревают до температуры окружающей среды, а продуктов, которые необходимо подогреть перед употреблением (кулинарные изделия, вторые замороженные блюда), — до 70 °С. Процессы размораживания и подогрева замороженных блюд и кулинарных изделий до температуры готовности могут осуществляться отдельно или быть совмещены в один процесс. При размораживании продуктов, для которых необходима полная кулинарная обработка (полуфабрикаты, рыбные филе и палочки, овощи), в большинстве случаев процесс совмещают с варкой, конечная же температура обработки должна быть равна температуре, при которой продукты полностью готовы к употреблению.

Размораживают почти все мороженые продукты, кроме тех, которые могут быть реализованы в мороженом виде (мясо, рыба, мороженое и др.). Однако перед поступлением в торговую сеть продукты размораживать не рекомендуется, так как даже при непродолжительном хранении в размороженном состоянии может ухудшиться их товарный вид.

Размораживание быстрозамороженных продуктов в мелкой фасовке, как правило, совмещают с кулинарной обработкой.

16.2. Классификация и анализ способов размораживания

пищевых продуктов

В отличие от отепления, которое проводят исключительно воздухом с контролируемыми параметрами, размораживание возможно в различных средах и при использовании разнообразных источников теплоты.

Предприятия пищевой промышленности применяют несколько способов размораживания, при которых теплоносителями являются воздух, паровоздушная среда, вода и рассол. Существуют также способы размораживания с помощью ультразвука, инфракрасных лучей, электрического тока высокой, сверхвысокой и промышленной частот и под вакуумом.

Способы размораживания могут быть разбиты на три основные группы.

Первая группа — способы, основанные на использовании теплопередающей среды (теплоносителя) с различными теплофизическими свойствами, при которых происходит конвективный нагрев паровоздушной смесью, жидкостью, насыщенными парами воды и т.д.

Вторая группа — способы, в основе которых нагрев путем преобразования энергии различных видов в тепловую непосредственно в обрабатываемом продукте. К таким видам энергии относятся энергия электрического поля различной частоты и энергия ультразвуковых колебаний. С использованием энергии переменного электрического поля нагрев продукции при определенных условиях может осуществляться равномерно по всему объему, т. е. происходит безградиентный нагрев.

Третья группа — комбинированные способы, использующие одновременно конвективный и безградиентный нагрев. Может использоваться воздушный, микроволновый, вакуумный, электроконтактный и другие виды нагрева.

При размораживании в электрическом поле в основном используются три способа: с применением микроволнового, диэлектрического и электроконтактного нагрева.

При микроволновом размораживании одновременному и равномерному нагреву с помощью электромагнитного поля СВЧ подвергаются все частицы продукта (если продукт однороден и распределение поля равномерное), и процесс теплопроводности отсутствует. В связи с этим микроволновое размораживание обладает самой высокой степенью равномерности нагрева продуктов по всему объему.

Степень равномерности тем выше, чем больше однородность состава продукта и количество содержащейся в нем воды. При микроволновом размораживании продукты можно обрабатывать упаковочных материалах, если они обладают соответствующими диэлектрическими свойствами (полиэтилен, полистирол, ламинированный картон).

Диэлектрическое и электроконтактное размораживание с применением токов высокой и промышленной частот применяют значительно реже, чем микроволновое.

На практике чаще всего применяют способы размораживания с применением поверхностного нагрева как легко осуществимые, в меньшей степени — комбинированные, реже — с применением объемного нагрева. При применении объемного нагрева процесс происходит значительно быстрее, но характеризуется повышенным расходом энергии — в 8—10 раз больше, чем при размораживании с применением поверхностного нагрева. Кроме того, установки размораживания с применением объемного нагрева сложны по конструкции и требуют высококвалифицированного обслуживания.

Ниже приведены способы размораживания, применяемые при обработке различных пищевых продуктов.

Мясные полутуши размораживают в основном в воздушной среде. При температуре среды 16 — 22 °С и скорости движения воздуха 1 — 2 м/с продолжительность процесса 12— 16 ч. При этом относительную влажность воздуха поддерживают на уровне 90 —95 %. Этот способ получил широкое распространение на мясоперерабатывающих предприятиях из-за небольшой продолжительности процесса и сокращения потерь массы продукта (приблизительно на 25 — 30 %) по сравнению со способами размораживания мяса при пониженных температурах воздушной среды (6 — 8 °С).

Разработаны также способы двух- и трехстадийного размораживания мясных полутуш, предусматривающие переменные режимы обработки. При двухстадийном размораживании применяют повышенную температуру воздушной среды на первой стадии обработки t1 = 30 — 35 °С. При этом относительная влажность воздуха 1 = 85 — 90 %, а скорость его движения 2 — 2,5 м/с. При достижении на поверхности мяса температуры, равной температуре точки росы циркулирующего воздуха, размораживание осуществляют при температуре t2 = 20 — 22 °С и относительной влажности 2 = 90 — 95 %. При этом скорость воздушной среды может оставаться постоянной или снижаться до 0,2 — 0,3 м/с.

При трехстадийном размораживании мясных полутуш в начале процесса также применяется повышенная разность температур между воздухом и поверхностью мяса (до 50 — 60 °С). При этом относительная влажность воздуха достаточно низкая — не превышает 60 %, а его циркуляция интенсивная — 4 — 5 м/с. И все же на первой стадии размораживания обычно не удается избежать конденсации влаги на поверхности полутуш. Однако влага из воздуха вследствие интенсивной циркуляции испаряется относительно (продолжительность периода конденсации не превышает 1 — 1,5 ч). Первая стадия заканчивается при достижении на поверхности мяса температуры, равной криоскопической. На второй стадии температура воздуха остается повышенной, а скорость его движения уменьшается до 2 — 2,5 м/с. На третьей стадии при достижении на поверхности мяса температуры, равной температуре точки росы циркулирующего воздуха, его температуру поддерживают на уровне 20 0С, а относительную влажность повышают и поддерживают в пределах 90 — 95%. На этой стадии происходят собственно размораживание и выравнивание температур во всем объеме полутуш.

Способы обработки с применением переменных режимов воздушной среды позволяют сократить продолжительность процесса размораживания не менее чем на 30 — 40 %, а также уменьшить потери массы продукта в 1,5 раза или полностью их ликвидировать.

Размораживание мясных полутуш в воздушной среде с использованием ультрафиолетового излучения дополнительно уменьшает бактериальную обсемененность мяса. Бактерицидный эффект ультрафиолетового излучения зависит от параметров воздушной среды. При относительной влажности среды выше 60 % бактерицидный эффект несколько снижается, что объясняется частичным отражением ультрафиолетовых лучей от образующейся на поверхности полутуш пленки воды. Несмотря на это, эффект от применения источников ультрафиолетового излучения при размораживании мяса в воздушной среде неоценим, особенно для мясоперерабатывающих заводов и комбинатов, где все мясное сырье (мясные полутуши, четвертины, отрубы, блоки) подвергается размораживанию.

Обычно бактериальная обсемененность поверхности мяса, размороженного в воздушной среде при контролируемых параметрах с применением ультрафиолетового излучения, в десятки — сотни (а в отдельных случаях даже в тысячи) раз меньше бактериальной обсемененности замороженного мяса, поступившего на размораживание.

Известен также способ размораживания мясных полутуш, четвертин и отрубов в вакууме. Он основан на использовании скрытой теплоты конденсации пара при температурах, не вызывающих каких-либо изменений на поверхности мяса. При размораживании температуру среды поддерживают на уровне от 15 до 20 °С, давление — не более 2,8 кПа. Одно из основных достоинств размораживания в вакууме — относительно высокий коэффициент теплоотдачи. Если при размораживании мяса в воздушной среде коэффициент теплоотдачи а в среднем составляет 15 — 45 Вт/(м2·К), то при размораживании в вакууме а не ниже 100 — 200 Вт/(м2 · К). Это объясняется повышенными значениями при конденсации водяного пара в вакууме. Пар при вакуумном размораживании получают в специальном парообразователе. Температура пара, образующегося в вакууме, соответствует равновесному его давлению, поэтому при поддержании заданного давления среды автоматически поддерживается заданная температура продукта. При этом достигается равномерное размораживание и отсутствуют потери массы.

На практике способ размораживания мясных полутуш и четвертин в вакууме пока не применяется.

Мясные блоки размораживают в воздушной среде, с применением жидких сред и в вакууме. Конечная температура размороженных мясных блоков в среднем составляет от -3 до 0 °С.

Наибольшее распространение на мясоперерабатывающих предприятиях получили способы размораживания в воздушной среде. При этом параметры среды составляют: t = 8—16 °С, = 90 —95 %, v = 0,5 — 2 м/с. Продолжительность размораживания блоков толщиной 120 мм при указанных параметрах среды не превышает 20 ч.

Значительно реже применяют размораживание мясных блоков в жидких средах и вакууме. При размораживании в жидких средах чаще всего применяют воду, погружая продукт в нее или орошая его разбрызгиваемой водой. Блоки размораживают в упакованном виде в полимерных мешках для исключения непосредственного контакта с водой и сохранения качества.

Для размораживания мясных блоков в вакууме применяют те же параметры среды, что и при размораживании мясных полутуш и четвертин. В этом случае продолжительность процесса сокращается в 1,5 — 2 раза по сравнению с продолжительностью размораживания блоков в воздушной среде.

Мясные блоки размораживают также в электрическом поле с применением микроволнового нагрева.

Тушки птицы размораживают в воздушной и жидких средах и в вакууме. В воздушной среде их размораживают с применением режимов, аналогичных режимам обработки мясных блоков. Продолжительность процесса при t =15 °С, = 90 % и v = 2 м/с в среднем составляет 4 ч. При размораживании тушек птицы (в упакованном виде) водой применяют способы обработки погружением или орошением. При погружении рекомендуется скорость циркуляции воды не более 0,3 м/с. Температура воды при погружении и орошении обычно не превышает 25 °С.

Наилучшее качество достигается при размораживании погружением в воду температурой от 5 до 15 0С. Продолжительность процесса в среднем равна 2 — 3,5 ч.

Блоки сливочного масла размораживают в воздушной среде при температуре 10 — 12 °С и относительной влажности воздуха 55 — 60 % за 4 — 5 сут. При этом относительно быстро испаряется иней с поверхности упаковки блоков и продукт предохраняется от плесневения.

Блоки творога размораживают в воздушной среде, а также с помощью жидких теплоносителей, циркулирующих через теплопередающую стенку. В воздушной среде творог размораживают при относительно высоких температуре (от 35 до 40 °С) и скорости движения воздушного потока (3 — 4 м/с) во избежание ухудшения качественных показателей (особенно в поверхностном слое), которое происходит при медленном размораживании. При размораживании с применением жидких теплоносителей (через теплопередающую стенку) применяют воду или рассол, подогретые до 40 — 50 0С. Конечная температура творога в среднем составляет 0 °С.

Рыбу размораживают в воздушной среде, жидких средах, электрическом поле и в вакууме. Конечная температура рыбы после размораживания в среднем равна 0 °С. При размораживании в воздушной среде поддерживают температуру от 8 до 10 °С, относительную влажность 90 — 95 %. Во избежание порчи продукта продолжительность размораживания рыбы в воздушной среде не должна превышать 24 — 28 ч. Известны также способы размораживания рыбы, герметично упакованной в пакеты, воздухом, диоксидом углерода или азотом под избыточным давлением до 1,8 МПа.

Наиболее широкое распространение получили способы размораживания рыбы водой. По сравнению с воздухом у воды как теплоносителя есть преимущества: относительно большая теплоемкость позволяет сократить расходы воды, а высокие коэффициент теплопроводности и плотность способствуют увеличению коэффициента теплоотдачи от теплопередающей среды к размораживаемому продукту. При этом продолжительность процесса сокращается не менее чем в 3 — 5 раз по сравнению с размораживанием рыбы в воздушной среде. Для интенсификации процесса обработки водой дополнительно применяют различные методы механического воздействия на размораживаемые продукты (покачивание, вибрация, удар, барботирование воды сжатым воздухом). Недостатки — некоторое ухудшение качества продукта в результате непосредственного контакта с циркулирующей водой, загрязнение окружающей среды водорастворимыми белками и относительно большой расход воды.

При размораживании блоков рыбы в электрическом поле применяют микроволновый, диэлектрический и электроконтактный нагрев.

Плоды и овощи размораживают в воздушной среде при температуре около 15 0С. Продолжительность процесса в среднем составляет 3 ч. Для быстрого размораживания плодов применяют также заливку их горячим сиропом или желе, имеющим температуру около 70 °С, при этом продолжительность размораживания до температуры окружающей среды не превышает 30 мин. Размороженные таким способом плоды полностью готовы к употреблению, их аромат и выделяющиеся соки максимально сохраняются.

Известны также способы размораживания плодов, замороженных в полиэтиленовых пакетах, предусматривающие микроволновый нагрев, а также нагрев погружением в теплую воду, если продукты предназначены для использования при производстве компотов.

Замороженные блюда перед употреблением размораживают и подогревают до 70 °С. В зависимости от вида блюд и упаковки применяют размораживание и подогрев в кипящей воде, в потоке горячего воздуха, имеющего естественную или принудительную циркуляцию, и микроволновый нагрев.

16.3. Устройства для размораживания сырья и продуктов питания

Размораживание полутуш. Камеры и туннели для размораживания мясных полутуш конструктивно выполняют аналогично камерам и туннелям охлаждения. Отличие заключается в оборудовании, предназначенном для тепловлажностной обработки воздуха. Исключение составляют камеры с воздушно-радиационной системой, применяемые только для охлаждения и замораживания мясных полутуш. Для размораживания мясных полутуш применяют также камеры с боковым и нижним воздухораспределением (рис. 20).

В качестве оборудования для тепловлажностной обработки воздуха при размораживании мясных полутуш применяют отдельные устройства для нагревания и увлажнения воздуха, а также единые воздухообрабатывающие агрегаты, предназначенные для централизованной подготовки воздуха. Для нагревания воздуха применяют паровые и водяные воздухонагреватели. Регулирование теплопро-изводительности паровых воздухонагревателей не обеспечивает заданной точности поддержания температурного режима размораживания, поэтому предпочтительна установка водяных воздухонагревателей, имеющих не менее двух-трех секций подогрева для более гибкого регулирования температурного режима на различных стадиях размораживания.

Рис. 20. Схемы камер размораживания полутуш с боковым (а) и нижним (б) воздухораспределением:

1 — камера размораживания; 2 — боковой воздухораспределительный канал;

3 — приточный воздуховод; 4 — центробежный вентилятор; 5 — воздухообрабатывающий агрегат; 6 — нижний воздухораспределительный канал

Для увлажнения воздуха применяют форсунки тонкого распыления воды, устанавливаемые непосредственно в камерах размораживания, а также паровые увлажнители, подающие пар в камеру увлажнения воздухообрабатывающего агрегата, приточный воздуховод, воздухораспределительные каналы или в воздушную струю, выходящую из распределительных устройств. При увлажнении воздуха водой применяют пневматические форсунки, осуществляющие тонкое распыление, при котором разбрызгиваемая вода испаряется без остатка. Воду подводят от общей водопроводной магистрали предприятия, а сжатый воздух — от воздушного компрессора. Обычно расход сжатого воздуха одной форсункой составляет (0,97 — 1,25)10-3 кг/с при избыточном давлении 100 —150 кПа. Производительность одной форсунки по воде равна (0,6—1,3) 10-3 кг/с и зависит от ее конструкции и диаметра выходного отверстия.

При увлажнении воздуха паром применяют неавтономные паровые увлажнители, выполненные в виде перфорированных трубопроводов и потребляющие пар от паровой магистрали предприятия или парогенератора, и автономные паровые увлажнители, вырабатывающие пар с помощью терморадиационных излучателей (терморадиационные увлажнители). Во избежание попадания конденсата в зону размещения продукта паропроводы прокладывают с уклоном 0,005 в сторону, противоположную движению пара. В качестве воздухообрабатывающих агрегатов применяют неавтономные секционные, автономные шкафные и также агрегатные кондиционеры.

Размораживание блоков различных продуктов. Для размораживания мясных, молочных и рыбных блоков в основном применяют аппараты погружного и оросительного действия, использующие погружение продуктов в ванну с водой или орошение их водой. В некоторых устройствах орошение водой сопровождается обдувом размораживаемых продуктов воздушным потоком.

Так, при размораживании рыбы водой в аппаратах погружного типа применяют проточную и непроточную воду, а также рассол. При использовании проточной воды рыба одновременно промывается. Отношение массы рыбы к массе непроточной воды в среднем должно составлять не менее 1 : 4 или 1 : 5.

Ванны оснащены решетками с параллельными прутьями, через которые рыба, отделившаяся от блока, поступает на рабочий транспортер и удаляется из устройства.

В аппаратах погружного типа, предназначенных для размораживания блоков рыбы рассолом, одновременно осуществляется ее посол. В них обрабатывают рыбу, направляемую на производство копченых изделий (тюлька, килька и т.д.). Для интенсификации процесса аппарат оборудован вибратором, а для механического отделения рыбы от блоков и подачи ее к транспортеру выгрузки — лопастными вертушками.

Аппараты оросительного типа могут быть с горизонтальным и вертикальным расположением транспортеров для перемещения продукта. В первом случае горизонтально расположенные транспортеры имеют небольшой наклон в сторону, противоположную перемещению продукта. Это создает противоточное движение продукта и пленки стекающей воды и способствует интенсификации процесса. В аппаратах оросительного типа с вертикальным расположением транспортера он выполнен зигзагообразно, продукт движется снизу вверх, а разбрызгиваемая вода — сверху вниз.

Аппараты оросительного типа характеризуются наибольшей скоростью размораживания, но отличаются значительным расходом воды. Для уменьшения ее расхода на тепловую обработку продукта применяют аппараты оросительно-погружного типа с барботированием воды паром и сжатым воздухом. В аппарате оросительно-погружного типа, оборудованном транспортером с кассетами и вибролотком, блок мороженой рыбы с загрузочного стола подает в кассету верхнего транспортера. Кассеты изготовлены разборными в виде скобообразных кронштейнов. В момент поступления блока кронштейны кассеты раскрыты. При переходе цепи транспортера на прямолинейный участок кассета закрывается, блок из горизонтального положения переходит в вертикальное. На прямолинейном участке транспортера блоки в кассетах подвергаются интенсивному орошению водой, подаваемой из орошающего устройства. Орошающее устройство снабжено конусными обтекателями с каплеобразными вершинами, способствующими образованию водяной пленки по периметру блоков. Обтекатели выполнены подвижными для регулирования расхода подаваемой воды. При повороте транспортера кассеты с блоками поворачиваются относительно первоначального положения на 180°. В этом положении блоки продолжают орошаться водой до Перемещения на криволинейный участок транспортера. При движении кассет по криволинейному участку кронштейны откидываются, блоки выпадают на нижний транспортер. Если блок остался в кассете, упоры выталкивателя сбрасывают его на вибролоток. Там он распадается. Дополнительно тепловой обработке рыба подвергается на нижнем транспортере, который погружен в ванну с водой.

Аппараты оросительно-погружного типа изготавливают также с двумя зонами орошения: с температурами 35 — 40 и 18 — 20 °С. Каждая зона имеет свою ванну, оборудованную цепным конвейером с вибратором, а также системой циркуляции и подогрева воды до заданной температуры. Цепной конвейер оснащен перфорированными ковшами, в которые загружают мороженую рыбу. Вибрация ковшей способствует более интенсивному распаданию размораживаемых блоков.

При размораживании продуктов в воздушной среде применяют камеры и аппараты периодического или непрерывного действия.

На рис. 21, а приведена схема аппарата туннельного типа с продольным движением воздушного потока.

Для ускорения размораживания рыбы в воздушной среде применяют интенсивную циркуляцию (идо 4 — 5 м/с), повышенную влажность, вибрацию, а также повышенное давление. Кроме того, применяют установку электронагревательных элементов непосредственно в зоне размещения продукта (совместный теплообмен конвекцией и излучением), а также наложение поля токов сверхвысокой частоты (микроволновый нагрев).

Установки с применением принудительной циркуляции воздуха и электро- или микроволнового нагрева применяют, как правило, для размораживания и одновременного нагревания продуктов.

Рис. 21. Схемы аппаратов для размораживания рыбы в воздушной среде:

а — туннельного типа; б — камерного типа; 1 — корпус; 2 — направляющий канал; 3 — вентилятор; 4 — паровой увлажнитель; 5 — поверхностный воздухонагреватель; 6— конвейер; 7— полки с продуктом; 8 — электронагревательные элементы

Для размораживания и одновременного нагревания рыбного филе потоком воздуха и электронагревательными элементами применяют аппараты камерного типа (рис. 21, б), в которых осевой вентилятор подает горячий воздух к продукту через сетчатые полки. На полках размещают противни с продуктами, а нагревательные элементы устанавливают в воздушном канале и между полками.

Известны также аппараты комбинированного типа, в которых рыбу размораживают воздухом и водой. Брикеты мороженой рыбы вначале движутся в зоне обдува воздушным потоком в течение 5 — 15 мин, затем в течение 30 — 35 мин проходят через зону интенсивного орошения водой, после орошения они погружаются в ванну с водой и перемещаются в ней в течение 20 — 30 мин; при этом осуществляется барботирование воды сжатым воздухом и паром, в результате создается максимальный эффект кавитации воды и достигается ускорение процесса не менее чем вдвое по сравнению с размораживанием в неподвижной воде.

Установки для размораживания продуктов токами сверхвысокой и высокой частот представляют собой аппараты туннельного типа, в состав которых входят ленточный транспортер для перемещения продукта и устройства для получения СВЧ- и ВЧ-энер-гии. При прохождении через продукт электромагнитных волн происходит частичное поглощение энергии волны и преобразование ее в тепловую энергию. Конечную температуру размораживаемого продукта можно регулировать подачей определенного количества СВЧ- и ВЧ-энергии в рабочую камеру туннеля с помощью регулирующего устройства, но более удобно регулирование времени выдержки путем изменения скорости движения конвейера.

Установка для размораживания продуктов в вакууме (рис. 22) состоит из герметичной камеры с откидными крышками, вакуум-насоса, ванны с водой и линии подачи пара. Давление в камере около 2,4 кПа (при 20 °С) создается двухступенчатым водокольцевым вакуум-насосом. Для создания давления примерно 0,93 кПа (при 6 °С) применяют воздушный эжектор, соединенный с вакуум-насосом, 0,83 кПа (при 4 °С) — паровой эжектор. Насыщенную паровую среду в камере создают путем подогрева воды в ванне паром или путем прямой подачи (инжекции) пара в камеру. В результате размораживание осуществляют в среде насыщенного пара при указанном выше давлении и температуре не более 20 °С, относительной влажности воздуха 100%. При таких параметрах создаются равномерные условия тепловой обработки продуктов и отсутствуют явления перегрева, которые могут иметь место при размораживании в воздушной среде. Достигается также ускорение процесса по сравнению с размораживанием в воздушной среде. Например, блоки трески толщиной 100 мм размораживают за 4,5 ч (при 20 °С), а в воздушной среде — за 6 — 8 ч в зависимости от скорости движения воздуха.

Рис. 22. Схема аппарата для размораживания продуктов в вакууме:

1 — герметичная камера; 2 — тележки с продуктом; 3 — предохранительный клапан; 4— вакуум-линия; 5— откидная крышка; 6 — поддон; 7 — линия подачи пара

Размораживание и подогрев упакованных быстрозамороженных пищевых продуктов. Применяют аппараты тепловой обработки в воздушной, газовой, паровоздушной и паровой средах и с инфракрасным и микроволновым нагревом. Продукты обрабатывают в упаковочных материалах, устойчивых к отрицательным и высоким положительным температурам (до 200 °С). Аппараты для указанной тепловой обработки могут быть периодического и непрерывного действия, выполненные в виде камер, туннелей, шкафов и печей.

Обработка продуктов осуществляется с принудительной циркуляцией теплопередающей среды или без нее.

В аппаратах с принудительной циркуляцией теплопередающей среды теплота продукту передается конвекцией (воздушная и паровоздушная среда), а также конвекцией и радиацией (воздушная среда; нагрев среды и продукта осуществляется электронагревательными элементами, лампами инфракрасного излучения, устройствами микроволнового нагрева, теплопередающими трубками, внутри которых циркулирует теплоноситель). Применение принудительной циркуляции воздушной и паровоздушной сред способствует ускорению процесса на 40 % и более, поэтому в промышленном производстве аппараты с принудительной циркуляцией применяют гораздо чаще, чем с естественной.

Наиболее широко применяются аппараты с микроволновым нагревом. В связи со значительной скоростью процесса такие аппараты оборудуют устройством цикличного управления системой нагревания для выравнивания температуры по объему обрабатываемых продуктов, а также исключения перегрева их поверхности. Достоинства аппаратов — компактность, доступность автоматизации, хороший товарный вид размороженных продуктов. Недостаток — повышенный расход электроэнергии и сложность электронной системы управления. Кроме того, чтобы достичь равномерности размораживания, желательно закладывать в них продукты только правильной геометрической формы.

Схемы аппаратов для размораживания и подогрева продуктов в паровоздушной среде (рис. 23) имеют теплоизолированный корпус, который оборудован вертикальным (см. рис. 23, а) или горизонтальным (см. рис. 23, б) направляющим каналом для создания заданного направления циркуляции паровоздушной среды. Необходимое количество пара подается в воздушную среду с помощью ванны с водой, оборудованной нагревательными элементами. Заданные параметры циркулирующей среды поддерживаются путем программного включения устройства для нагревания, установленного в направляющем канале, и нагревательных элементов, установленных в ванне с водой.

Аппараты для размораживания и подогрева продуктов в воздушной среде с использованием принудительной циркуляции и электрообогрева оборудуют импульсной

Рис. 23. Схемы аппаратов для размораживания и подогрева готовых замороженных блюд и кулинарных изделий:

а, б — в паровоздушной среде; в — с комбинированным энергоподводом; А, Г — зоны микроволнового нагрева; Б — зона циркуляции теплоносителя; В — зона инфракрасного излучения; 1 — направляющий канал; 2 — теплоизолированный корпус; 3 — нагревательный элемент; 4 — вентилятор; 5 — стеллажи; 6 — ванна с водой; 7— продукт; 8, 10 — заслонки; 9 — волновод; 11 — трубопровод подачи теплоносителя; 12 — лампы инфракрасного излучения; 13 — рабочий канал; 14— ленточный конвейер

системой энергоподвода. Длительность циклов подачи энергии и интервалов между импульсами контролируется автоматическими средствами по заданной программе. Программа управления энергоподводом изменяется в зависимости от толщины и свойств продукта. При включении нагревательных элементов температура поверхностного слоя продуктов быстро повышается. В периоды, когда нагревательные элементы, расположенные в зоне размещения продукта, отключены, теплота передается от поверхностных слоев продукта к внутренним, и температура поверхностных слоев понижается, несмотря на то, что температура воздуха в камере поддерживается на заданном уровне. Чтобы предотвратить повышение температуры продукта, аппараты дополнительно оборудуют охлаждающей системой, позволяющей более точно регулировать температуру воздуха. Кроме того, охлаждающая система позволяет хранить замороженные продукты при отрицательной температуре, а размороженные — при низкой положительной температуре (4 — 6 °С).

Аппараты для размораживания и подогрева продуктов в воздушной среде с использованием принудительной циркуляции и электрообогрева также выполняют в виде аппаратов конвейерного типа. В них предусматривают программное управление конвейером, позволяющее регулировать продолжительность тепловой обработки продуктов, при этом устройства для подвода теплоты (трубчатые нагревательные элементы или кварцевые излучатели) располагают над и под конвейером. Теплота от верхних нагревателей поступает через экран и передается продукту сверху, а от нижних — через ленту конвейеров, причем нагреватели, расположенные над конвейером, размещают на различной высоте от продуктов в зависимости от их вида и необходимой интенсивности тепловой обработки.

Для размораживания и подогрева готовых к употреблению пищевых продуктов и замороженных блюд применяют также аппараты с позонной обработкой. Продукты подвергают тепловой обработке последовательно в различных зонах путем микроволнового нагрева, инфракрасного излучения и циркуляции теплоносителя. Аппараты разделены на рабочие зоны А, Б, В и Г (см. рис. 23, в). I Размораживаемый продукт движется по рабочему каналу на ленточном конвейере. Лента конвейера изготовлена из материала, пропускающего сверхвысокочастотное электромагнитное излучение.

В зоне А продукт размораживается с помощью высокочастотной энергии. Во время обработки продукта в зоне А доступ в нее перекрывается заслонками, что предотвращает утечку электромагнитной энергии. В зоне Б заданная температура поддерживается с помощью жидкого теплоносителя, в зоне В — лампами инфракрасного излучения. Последняя стадия тепловой обработки происходит в зоне Г, выполненной аналогично зоне А. В зависимости от вида продуктов и заданной конечной температуры их обработку можно производить не во всех зонах, а выборочно.

16.4. Изменения, происходящие в продуктах питания

в процессе размораживания

При замораживании и последующем хранении продукты под влиянием различных процессов претерпевают изменения, часто необратимые, поэтому исходные их свойства при размораживании восстанавливаются не полностью.

Размораживание протекает медленнее замораживания при одной и той же разнице температур, что связано с тем, что условия теплопередачи различны для льда и воды. Для обеспечения фазового перехода льда в воду необходим приток очень большого количества теплоты. В то же время теплопроводность льда в 4 раза больше теплопроводности воды. При замораживании сначала замерзают поверхностные слои, их теплопроводность увеличивается, повышается теплообмен, что и ускоряет процесс замораживания. При размораживании, напротив, в первую очередь размораживаются поверхностные слои, что приводит к резкому снижению теплопроводности и теплообмена и соответственно уменьшению скорости самого процесса. Так, если время замораживания продукта составляет 28 мин, то размораживания — около 52. Замедление процесса в основном приходится на самый критический диапазон температур (в районе точки плавления льда). При размораживании (особенно крупных объектов) это связано с перекристаллизацией, что может вызвать дополнительное повреждение тканей.

На качество размороженного продукта существенно влияют скорость и конечная температура замораживания: качество продуктов, быстро замороженных при низких температурах (-30 °С и ниже), сохраняется лучше, чем при медленном замораживании. Для сохранения высокого качества быстрозамороженный пищевой продукт необходимо так же быстро разморозить.

Воздействие процессов замораживания и размораживания на качество продуктов в размороженном состоянии исследователи объясняют с позиций теории кристаллизации воды. Скорость замораживания — решающий фактор, влияющий на количество, размеры и равномерность распределения кристаллов льда в тканях. От размеров кристаллов зависит степень сохранения целостности естественной структуры тканей. Если кристаллы льда невелики и их размещение примерно соответствует естественному распределению жидкости в мышечной ткани, то коллоидные системы продуктов не претерпевают значительных изменений и полнее восстанавливаются после размораживания.

Степень разрушения структурных элементов тканей зависит также от глубины автолитических процессов в момент замораживания. Кроме того, при хранении происходят увеличение кристаллов льда, дальнейшее углубление автолитических процессов, «старение» белковых коллоидных систем и мембран клеток.

Изменения коллоидной структуры тканей, вызываемые перераспределением воды и увеличением концентрации жидкой фазы при замораживании, отражаются на величине влагосвязывающей способности после размораживания. Она тем больше, чем выше скорость и ниже температура замораживания.

Основными факторами, вызывающими образование и обильное вытекание клеточного сока при замораживании-размораживании, являются денатурация белков в результате отделения воды от белковой субстанции; рост концентрации минеральных веществ в растворах, содержащихся внутри и вне волокон; механическое воздействие кристаллов льда на стенки мышечных волокон и соединительнотканные межволоконные прослойки и т.д.

Степень воздействия этих факторов определяется скоростью кристаллообразования и глубиной фазового превращения воды. Максимальное количество воды переходит в лед при замораживании продуктов при температуре от -1 до -5 °С. В связи с этим интенсивность теплообмена при прохождении температурной зоны от -1 до -5 °С при замораживании и от -5 до -1 0С при размораживании имеет большое значение для получения продукта высокого качества. Чем быстрее пройден этот температурный интервал при замораживании и размораживании продуктов с тканевой структурой, тем меньше сока вытечет из размороженного продукта, тем лучше будет его качество.

Изменения, происходящие в пищевых продуктах на всех этапах холодильной обработки (охлаждение, замораживание, хранение), становятся заметными только в размороженном виде и проявляются в вытекании клеточного сока, его количестве и составе. Естественно, характер и глубина изменений зависят как от условий холодильной обработки, так и от способа и скорости размораживания.

Чтобы восстановилось содержание влаги в ткани, она должна сначала пройти фазовое превращение (лед —вода), затем проникнуть и восстановиться в тех белковых субстанциях и коллоидных системах, из которых она диффундировала в межклеточное и межволоконное пространства при замораживании и хранении с помощью диффузионно-осмотических сил. Способность белковых субстанций и коллоидных систем поглощать и связывать влагу определяется их биологической активностью, которая зависит от режимов холодильной обработки продуктов, включая и размораживание.

В начальный период медленного размораживания мышечная ткань оказывается под воздействием концентрированных солевых растворов, что вызывает частичную денатурацию белков и разрушение коллоидных систем. Последние способствуют, в свою очередь, образованию и вытеканию сока после размораживания и во время последующей обработки. Кроме того, при медленном размораживании быстрозамороженных продуктов сначала происходит укрупнение кристаллов льда, которое сопровождается повреждением структуры ткани и способствует вытеканию сока из продуктов.

При быстром размораживании действие концентрированных растворов менее выражено, поэтому наблюдается лишь незначительное выделение сока. В то же время сочетание быстрого размораживания с медленным замораживанием в значительной степени снижает качество продукта.

Интенсификация процесса размораживания путем увеличения разницы температур за счет применения более теплой среды может привести к возникновению местных перегревов поверхности, что отрицательно сказывается на качестве продукта. При повышении температуры может также произойти микробиальная порча поверхностных слоев продукта до размораживания внутренних слоев.

Для пищевых продуктов с тканевой структурой (мясо, рыба, птица) наиболее важным показателем обратимости свойств при размораживании является потеря сока. Это внешний признак денатурации белковых веществ. Основной компонент сока — вода, которая не поглощается продуктом при размораживании, а также вода, выделяющаяся из продукта под воздействием сжатия. Выделение сока из продуктов может сопровождаться значительными потерями растворимых веществ — витаминов, ферментов, минеральных веществ, белков саркоплазмы и др.

Потери сока при размораживании мяса зависят от его вида. Так, максимальные потери отмечаются в говядине, меньшие — в телятине и баранине, минимальные — в свинине. При этом потери сока мясом более высокого качества при размораживании, как правило, ниже, чем низкокачественного. В целом количество мясного сока составляет около 5 % общего количества замороженного мяса, у не полностью созревшего мяса оно может увеличиваться до 40 %. Однофазное замораживание, проводимое до начала развития процессов посмертного окоченения, замедляет развитие гликогенолиза и сжатия при размораживании, связанного с повышенным выделением сока.

Потери сока при размораживании мяса птицы зависят от физиологического состояния мышц в момент замораживания, они максимальны на стадии окоченения и менее значительны на других стадиях. Имеет значение и скорость замораживания. При медленном замораживании в воздухе потери увеличиваются в 3 раза по сравнению с иммерсионным методом.

Потери сока при размораживании рыбы подчиняются тем же закономерностям, что и при размораживании мяса, но в целом они выше. Величина потерь зависит от вида рыбы, ее формы, жирности, расположения мышц в тушке и др.

Качество размороженных плодов зависит от их вида, сорта, условий хранения. В некоторых случаях методы замораживания имеют второстепенное значение. В то же время установлено, что диэлектрически размороженная продукция отличается более высоким содержанием неповрежденных плодов, лучшей консистенцией, меньшими потерями витамина С.

Интенсивность качественных изменений в размороженных продуктах обусловлена прежде всего динамикой микробиологических и ферментативных процессов. В продуктах животного происхождения воздействие тканевых ферментов проявляется главным образом в гидролитическом распаде белков, в результате которого создаются благоприятные условия для развития гнилостной микрофлоры.

Микробиологические процессы в быстрозамороженном мясе протекают после размораживания почти с такой же скоростью, что и в охлажденном, при тех же условиях хранения. Конденсация водяного пара при размораживании вызывает ускоренное развитие микроорганизмов, а в медленно замороженном мясе эти процессы протекают быстрее, что объясняется большей его ферментативной активностью.

Сохраняемость плодов и овощей после размораживания меньше, чем продуктов животного происхождения, поскольку они обладают меньшей стойкостью по отношению к микробиологическим и биохимическим процессам. Поэтому размороженные продукты вследствие быстрой порчи и ухудшения товарного вида в розничную торговлю не поступают. Они должны быть максимально быстро использованы или переработаны.

16.5. Методы расчета параметров процесса размораживания

отдельных видов продуктов

При размораживании к мороженым продуктам подводится теплота, количество которой зависит от удельной теплоты размораживания и массы продукта. Удельная теплота размораживания, в свою очередь, зависит от начальной и конечной температур продукта и количества содержащейся в нем воды.

Количество теплоты, необходимое для полного размораживания продукта, определяется по формуле

Q = G [cм (tкр –) + rW + c0 (tс.к – tкр)], (83)

где G — масса продукта, кг; с0, см, — удельная теплоемкость продукта соответственно до и после размораживания, Дж/(кг • К); tкр - криоскопическая температура продукта, °С; tн, tс.к — соответственно начальная и средняя конечная температуры продукта, °С; r — скрытая теплота плавления кристаллов льда, Дж/кг; W — содержание воды в продукте, в долях единицы; — степень вымораживания воды.

Как следует из формулы, количество теплоты, которое необходимо подвести к продукту, состоит из теплоты для повышения его внутренней температуры до криоскопической, теплоты таяния (фазовое превращение) и теплоты, требуемой для повышения температуры уже размороженного продукта до заданной конечной.

Окончание процесса размораживания определяют по криоскопической температуре в тепловом центре продукта. Конечная же температура размороженного продукта зависит от его целевого назначения (употребление, кулинарная обработка, производство других продуктов и т.д.).

Продолжительность размораживания продуктов при обработке в одном и том же интервале температур зависит от способа передачи теплоты. Процессы, передача теплоты в которых осуществляется с использованием поверхностного нагрева продуктов (путем теплообмена между поверхностью продукта и теплопередающей средой, а затем путем теплопроводности от поверхности к внутренним слоям продукта), продолжаются часы и сутки, в то время как размораживание с объемным нагревом продукта происходит за минуты.

Продолжительность процессов размораживания при всех способах передачи тепла зависит от размеров продуктов. Кроме того, при объемном нагреве она зависит от электрофизических характеристик, частоты и напряжения электрического поля; при поверхностном — от теплопроводности и теплоты фазового перехода, а также температуры, скорости движения и вида теплопередающей среды (воздух, вода, рассолы, растворы).

Продолжительность размораживания в воздушной среде продуктов, имеющих форму пластины, рассчитывают по формуле (52) из подраздела 12.4 без учета коэффициента формы продукта Кф. Для продуктов, имеющих неправильную геометрическую форму, приближающуюся к шару, можно в эту формулу подставить среднее значение половины диаметра продукта dnp вместо l:

(84)

где Vnp — объем продукта, м3.

Для расчета коэффициента теплоотдачи от поверхности мясных полутуш к воздуху, подаваемому струями, направленными сверху вниз, применяют зависимость

Nu = 0.17 Re0.7, (85)

в которой за определяющий размер принимают толщину бедренной части. Критерий Рейнольдса рассчитывают с учетом скорости движения воздуха в зоне расположения бедренных частей полутуш. Теплофизические константы воздуха принимают по средней его температуре у полутуши.

Продолжительность размораживания мясных полутуш в воздушной среде можно определить также с помощью номограмм, рекомендованных А. М. Бражниковым (рис. 24). Номограммы предусматривают определение Bi и Fo для мороженого и размороженного мяса:

Biм = al / (2np.м); Bi = al / (2np); (86)

Foм = апр.м 1 / (l / 2)2; (87)

Fo = апр 2 / (l / 2)2, (88)

где Biм — критерий Био для мороженого мяса; l — толщина бедренной части полутуши, м; np.м — коэффициент теплопроводности замороженного мяса, Вт/(м · К); Bi — критерий Био для размороженного мяса; np — коэффициент теплопроводности размороженного мяса, Вт/(м • К); Foм, Fo — критерий Фурье соответственно для мороженого и размороженного мяса; апрм и апр — коэффициенты температуропроводности соответственно мороженого и размороженного мяса, м2/с; 1и 2 — продолжительность размораживания соответственно поверхностного слоя бедренной части полутуши и центра бедренной части, полутуши, с.

Рис. 24. Номограммы для определения продолжительности размораживания мясных полутуш при различной температуре воздуха:

а — поверхностного слоя бедренной части; б — внутренних слоев (центра) бедренной части; 7 — при 6°С; 2 — при 10°С; 3 — при 16°С; 4 — при 20°С; 5— при 25°С

По номограмме (см. рис. 24, а) определяют значение критерия Фурье FoM, соответствующее продолжительности размораживания поверхностного слоя бедренной части полутуш, а из формулы (87) рассчитывают. Затем по номограмме (см. рис. 24, б) определяют значение критерия Фурье Fo, соответствующее продолжительности размораживания центра бедренной части полутуш, и с помощью формулы (88) определяют 2.

Общую продолжительность размораживания рассчитывают как сумму 1 и 2. Номограммы позволяют определить для полутуш от начальной температуры -18°С до криоскопической температуры в центре бедренной части полутуш.

Продолжительность размораживания мясных блоков и мелких порций мяса в воздушной среде ориентировочно определяют с помощью эмпирической зависимости

= {[m1 / t0 + 1)] + n1} 3600, (89)

где m1 и n1 — коэффициенты, значения которых зависят от массы блока и порции мяса (для блоков массой около 7 кг т1 =180, n1 = 4, для порций мяса массой 0,5 кг — соответственно 85 и 0,5); tо — температура воздушной среды, °С.

Формула (89) действительна при размораживании в условиях естественной циркуляции воздуха и изменения температуры продукта от -10 до -0,5 °С.

Продолжительность размораживания блоков рыбы и других продуктов при орошении водой ориентировочно можно определить по зависимости

= {[3150 l / (tw2 + 200)] + 0,91} 3600, (90)

где tw — температура воды, °С.

Продолжительность размораживания блоков рыбы и других продуктов в вакууме определяют с помощью уравнения

(91)

где Gпр — масса размораживаемого блока, кг; — темп размораживания, с-1.

= t Kф / (3qпр2/3), (92)

где t — разность между температурой теплопередающей среды (пара) и средней температурой поверхности продукта, °С; Кф — коэффициент формы, м-1.

Коэффициент теплоотдачи ориентировочно определяют по формуле

(93)

Коэффициент формы рассчитывают с помощью отношения

КФ = Fпр / Vпр2/3, (94)

где Fпр и Vnp — площадь поверхности (м2) и объем (м3) размораживаемого продукта.

Для определения продолжительности размораживания рыбы (блоков или отдельных видов) путем погружения их в воду и орошения водой разработаны номограммы, учитывающие зависимость от массы продукта, его начальной температуры и температуры воды (рис. 25, а, б). Для определения продолжительности размораживания блоков рыбы в вакууме также разработана номограмма, учитывающая зависимость от массы продукта, его начальной температуры и температуры среды (рис. 25, в).

По этим номограммам продолжительность размораживания определяется в такой последовательности:

на нижней горизонтальной шкале откладывают температуру теплоносителя tw и двигаются вверх по изотерме (стрелка 1) до пересечения с линией определенной массы;

на левой вертикальной шкале отыскивают значение массы продукта Gпр и двигаются по стрелке 2 вправо до пересечения со стрелкой 7;

из точки пересечения стрелок 1 и 2 проводят вверх вправо прямую, параллельную наклонным линиям (стрелка 3) до пересечения с изотермой начальной температуры продукта tнач;

на верхней горизонтальной шкале находят значение начальной температуры продукта tнач и по изотерме (стрелка 4) получают точку пересечения со стрелкой 3;

из этой точки проводят горизонтальную прямую (стрелка 5) до правой вертикальной шкалы , с которой считывают продолжительность размораживания.

Если с помощью приведенных номограмм определить продолжительность размораживания блока рыбы массой 10 кг от начальной температуры -7 °С до криоскопической при его обработке с водой температурой 20 °С путем погружения и орошения, а также обработке в вакууме при той же температуре, то продолжительность размораживания при погружении будет равна 4,5 ч, орошении — 2 ч, в вакууме — 0,82 ч, т.е. наиболее интенсивным является размораживание в вакууме, наиболее продолжительным — путем погружения в воду.

При построении номограмм приняты следующие усредненные параметры: плотность продукта пр =1000 кг/м3; криоскопическая температура продукта tкр = -1 °С; температура воды изменяется от 10 до 35 °С; коэффициент теплопроводности размороженного продукта пр = 0,465 Вт/(м · К); коэффициент теплоотдачи при погружении продуктов в воду погр = 350 Вт/(м2 · К), что Соответствует скорости движения воды не более 0,1 м/с; коэффициент теплоотдачи при орошении продуктов водой ор = 800 Вт/(м2 · К).

Номограммы позволяют определять продолжительность размораживания не только рыбы, но и других продуктов, близких к ней по теплофизическим параметрам, а также продуктов в условиях, незначительно отличающихся от указанных.

На практике расчет можно произвести по разности энтальпий продукта в размороженном и мороженом виде:

Рис. 25. Номограммы для определения продолжительности размораживания блоков рыбы погружением в воду (а), орошением (б), в вакууме (в)

Qр = Gпр(iр – iм), (95)

где Gnp — масса размораживаемого продукта, кг; iр и iм — энтальпия соответственно размороженного и мороженого продуктов при конечной и начальной среднеобъемной температуре, кДж/кг.

Фактически удельное количество теплоты, необходимое для размораживания говядины и свинины при начальной температуре -8 °С, колеблется в пределах 226,8 и 201,6 кДж/кг, а при температуре -18 °С оно возрастает примерно на 20 %. При размораживании молока от -20 до 0°С удельная теплота равна 317,8 кДж/кг, фруктов — 271,7, сливочного масла с содержанием 13 % воды — 95 кДж/кг.

При размораживании в воздушной среде необходимо учитывать, что в результате массообмена среды с поверхностью продуктов теплообмен сопровождается испарением или конденсацией влаги. Количество испарившейся или сконденсированной влаги зависит от способа и режима размораживания. При способах обработки продуктов в течение нескольких суток (мясные полутуши, блоки сливочного масла и др.) применяют постепенное повышение температуры воздуха и поверхности. Температура поверхности продуктов остается на протяжении всего процесса несколько ниже температуры точки росы циркулирующего воздуха, поэтому испарение влаги отсутствует и происходит конденсация водяного пара из воздуха.

При ускоренных способах размораживания продуктов, когда процесс длится не более суток (в среднем 6 — 24 ч в зависимости от вида и размеров продуктов, а также параметров воздуха), конденсация влаги происходит в период неустановившегося режима. В этот период параметры воздуха изменяются от начальных tв.нач и в.нач до заданных технологическими условиями tв и в. Продолжительность периода составляет примерно 25 % общей продолжительности процесса. При этом температура поверхности продукта изменяется от tп.нач до t'п < tp, где tp — температура точки росы воздуха заданного состояния В (см. рис. 26).

Рис. 26. Построение на I — d - диаграмме области изменений состояния воздуха и поверхности продукта в период неустановившегося и установившегося режимов размораживания.

Конденсация влаги на поверхности продуктов отрицательно сказывается на их качестве. Кроме того, при конденсации на поверхности осаждаются частицы пыли и микроорганизмы, что также способствует ухудшению качества. В связи с этим применяют процессы двухстадийного и программного размораживания, при которых в период неустановившегося режима температура воздушной, паровоздушной или газовой среды является завышенной и изменяется по заданной программе. В таком случае продолжительность неустановившегося режима сокращается в 2 — 4 раза.

За весь период установившегося режима размораживания изменение температуры воздуха обычно составляет ±1 0С, относительной влажности ±5 %. На рис. 26 область изменения параметров воздуха в данный период изображена четырехугольником В'тах — Bmin — В'min — Bmax, а область изменения состояния поверхности продукта в начальной стадии — линией П'— Пmin, а затем линией Пmin — Пmах. При этом происходит чередование периодов испарения и конденсации влаги на поверхности. Максимальная разность парциальных давлений водяного пара, находящегося на поверхности продукта и в воздухе, обусловливающая испарение влаги, соответствует максимальной температуре воздуха и его минимальной относительной влажности, т.е. Pmах = Рп.mах — Р'в.mах, где Рп.mах — парциальное давление водяного пара, находящегося на поверхности продукта при максимальной температуре tп.mах; Р'в.mах — парциальное давление водяного пара, находящегося в воздухе при максимальной температуре tв.max и минимальной влажности в.min.

Для определения тепловой и влажностной нагрузки на установку кондиционирования рассчитывают теплоприток к продукту Qпро и влагоотток от продукта Wnpo.

Теплоприток Qnpo характеризует среднее количество теплоты, подводимой к размораживаемому продукту в единицу времени. Но процесс размораживания характеризуется значительной неравномерностью подвода теплоты, так как ее количество, необходимое для размораживания продукта в различные периоды, непостоянно.

В период неустановившегося режима количество теплоты, необходимой для нагревания всего объема продукта и размораживания его поверхностных слоев, максимально. При установившемся режиме теплота расходуется в основном на размораживание внутренних слоев продукта. При этом ее количество значительно уменьшается и в конце процесса составляет 0,15 — 0,2 от Qnpo. Неравномерность подвода теплоты можно учесть с помощью поправочных коэффициентов Qпро1 = Qпро m1; Qпро2 = Qnpo m2, где Qпро1 и Qпро2 - средний теплоприток к продукту в периоды неустановившегося и установившегося режимов размораживания, кВт; т1, т2 — поправочные коэффициенты, учитывающие неравномерность теплопритока.

При размораживании мясных полутуш с использованием принудительной циркуляции воздуха и продолжительностью процесса = 16 —24 ч средние значения поправочных коэффициентов равны: т1 = 2,2 — 2,5; т2 = 0,28 — 0,5.

Расчет тепло- и влагопритоков от других источников (через ограждающие конструкции, от электродвигателей и др.), тепловой и влажностной нагрузок, а также расчет и подбор кондиционирующих устройств выполняют по определенной методике [4].

Удельную мощность, необходимую для размораживания единицы объема продукта, при микроволновом энергоподводе рассчитывают по формуле, Вт/см3,

Nуд = 0,556 • 10-12 Е2 f ' tg, (97)

где Е — напряженность переменного электрического поля, В/см; f — частота электрического поля, Гц; ' — диэлектрическая проницаемость продукта; tg — тангенс угла диэлектрических потерь.

Произведение ' tg называют коэффициентом диэлектрических потерь. Следовательно, мощность микроволнового нагрева пропорциональна квадрату напряженности переменного электрического поля, частоте поля и коэффициенту диэлектрических потерь, зависящему от свойств обрабатываемых продуктов. Из формулы (97) следует, что чем больше частота электрического поля, тем большая часть подводимой энергии преобразуется в тепловую. Но, с другой стороны, выбор частоты зависит от размеров продуктов. С увеличением частоты уменьшается глубина проникновения микроволновой энергии в продукты. Эта глубина зависит также от диэлектрических свойств продуктов, которые характеризуются коэффициентом диэлектрических потерь.

Практически коэффициент диэлектрических потерь характеризует скорость поглощения электромагнитной энергии различными продуктами. Различия в скорости поглощения электромагнитных волн наблюдаются даже у одного и того же продукта, находящегося в замороженном и размороженном состояниях. Это обусловлено тем, что диэлектрическая проницаемость воды (' = 81 при 20 °С) больше диэлектрической проницаемости льда (' = 74,6 при 0 °С).

Обычно коэффициент диэлектрических потерь остается незначительным до начала таяния льда. Затем он увеличивается в зоне таяния льда в связи с высоким содержанием воды в продуктах (примерно 70 — 90 %). Кроме того, при таянии льда соли и другие вещества, присутствующие в продуктах, способствуют увеличению коэффициента диэлектрических потерь в связи с увеличением диэлектрической проницаемости ' и тангенса угла tg. Так, например, при частоте электрического поля f = 1000 МГц коэффициент диэлектрических потерь говядины равен 1,3 при температуре -10 °С и 22 при температуре +10 °С.

Значительное влияние на изменение величины коэффициента диэлектрических потерь в размораживаемых продуктах оказывает также присутствие жира. С увеличением содержания жира коэффициент уменьшается и, следовательно, уменьшается эффективность нагрева.

Анализ различных методов размораживания показывает, что при применении любого теплоносителя (воздух, вода) ускорение процесса ограничено. При размораживании пищевых продуктов, замороженных в блоках, для промышленных целей по общепринятой ускоренной технологии нагревания за счет тепловой конвекции воздуха или подогревания водой возможны загрязнение и порча продуктов.

Совершенствование техники размораживания связано с изменением методов обработки, необходимостью дальнейшей интенсификации процесса, созданием конструкций агрегатов непрерывного действия. При этом важнейшим условием должно быть максимальное сохранение исходного качества.

Анализ существующих способов и опыт зарубежных фирм по использованию СВЧ-энергии для размораживания блоков мяса и других пищевых продуктов показали преимущества данного способа перед другими, которые выражаются в экономии производственных площадей; точном регулировании конечной температуры внутри продукта; простоте обслуживания установки; уменьшении трудовых затрат благодаря размораживанию пищевых продуктов в упаковке.

Оценка качества и санитарного состояния готовой продукции показала, что СВЧ-размораживание позволяет уменьшить потери белковых веществ и витаминов, предотвратить развитие микрофлоры, улучшить нежность мяса, что особенно важно при производстве из размороженного сырья вареных колбасных изделий. Отмечено также увеличение времени хранения и срока реализации пищевых продуктов из сырья, размороженного с помощью СВЧ-энергии.

Выбор способа размораживания и устройств для его осуществления определяется мощностью предприятия, его возможностями и видом обрабатываемого продукта.

ГЛАВА 17

ТРАНСПОРТИРОВАНИЕ ОХЛАЖДЕННЫХ И ЗАМОРОЖЕННЫХ ПИЩЕВЫХ ПРОДУКТОВ

17.1. Классификация и краткая характеристика холодильного транспорта

Холодильный транспорт — важнейшая составная часть непрерывной холодильной цепи. От четкости организации перевозок и совершенства холодильного транспорта в значительной степени зависят сохранение качества пищевых продуктов и уровень потерь как в процессе самого транспортирования, так и при последующем хранении и переработке.

Холодильный транспорт связывает все звенья холодильной цепи.

Холодильный транспорт — это совокупность передвижных транспортных средств и стационарных сооружений, предназначенных для перевозки скоропортящихся грузов. Все транспортные средства, используемые для этих целей, изотермические, т.е. их кузов изготовлен из теплоизолированных ограждающих конструкций, уменьшающих тепловые потоки из окружающей среды. Если средний коэффициент теплопередачи по всему теплоизолированному ограждению равен или меньше 0,7 Вт/(м2 · К), то транспортное средство называют обычным изотермическим, а при К меньше или равном 0,4 Вт/(м2 · К) — изотермическим с усиленной изоляцией.

Допустимую продолжительность транспортирования т замороженных пищевых продуктов при заданном повышении температуры можно определить с помощью уравнения Лединга, ч:

= Gc(tк – tн) / (KFtm),

где G — масса груза, кг; с — удельная теплоемкость продукта, кДж/кг; tH, tK — начальная и конечная температуры груза, °С; К— коэффициент, учитывающий влияние света и солнечного излучения (для крупных транспортных средств 1,75); F — средняя величина внутренней поверхности охлаждаемой емкости транспортного средства, м; tm — разница между средней температурой окружающей среды и температурой груза, °С.

Изотермический транспорт может быть ледниковым и рефрижераторным.

Ледниковый транспорт — транспортные средства с безмашинным охлаждением, в которых в качестве хладагента используют лед, льдосоляные смеси, сухой лед, сжиженные газы и т.д. Хладагент помещают в сосуды или резервуары; запас его должен быть достаточен не менее чем на 12 ч работы. В зависимости от температуры, поддерживаемой в рабочем объеме, ледники относят к следующим классам: А — с температурой не выше 7 °С; В — не выше -10 0С; С — не выше -20 °С при наружной температуре не выше 30 0С. Ледники классов В и С выпускают с усиленной изоляцией.

Рефрижераторы — изотермические транспортные средства, охлаждаемые с помощью холодильных машин или установок. При этом при наружной температуре не выше 30 °С в кузове поддерживается следующая температура в зависимости от класса рефрижератора: А — от 12 до 0 °С; В —от 12 до -10 °С; С — от 12 до -20 °С; D — не выше 2°С; Е — не выше -10 °С; F — не выше -20 °С. Все рефрижераторные изотранспортные средства, кроме относящихся к классу А, выпускаются с усиленной изоляцией.

Отапливаемые транспортные средства — это изотранспорт, имеющий отопительные установки, которые позволяют поддерживать температуру на необходимом уровне (не ниже 12 °С) в течение не менее 12 ч: для класса А — при температуре наружного воздуха не ниже -10 °С, класса В — не ниже -20 0С.

Транспорт класса В выпускают с усиленной изоляцией.

В зависимости от вида используемых транспортных средств хладотранспорт подразделяют на железнодорожный, автомобильный, водный (морской и речной), воздушный, трубопроводный и контейнерный.

Железнодорожный хладотранспорт. В зависимости от рода перевозимых грузов железнодорожные транспортные средства подразделяют на универсальные (для перевозки всех скоропортящихся грузов) и специальные (для перевозки определенных грузов: молока и молочных продуктов, виноградных вин, виноматериалов, живой рыбы и др.).

По способу охлаждения грузового помещения изотермические вагоны подразделяют на вагоны-рефрижераторы, охлаждаемые при помощи холодильных машин; вагоны-ледники с емкостями для льда или льдосоляной смеси; вагоны-термосы с тепловой изоляцией без охлаждающих устройств.

По способу отопления изотермические вагоны подразделяются на вагоны с электрическим отоплением и отапливаемые печами-времянками. Приборами электрического отопления оборудованы все вагоны-рефрижераторы.

В рефрижераторном подвижном составе имеются 21- и 23-вагонные поезда, 5- и 12-вагонные секции и автономные вагоны. 23-вагонный поезд состоит из 20 грузовых вагонов, а 21-вагонный — из 18. В составе этих поездов три вспомогательных вагона: с дизель-электростанцией, с машинным отделением и со служебным отделением для обслуживающего персонала. Вспомогательные вагоны располагаются в середине состава.

Охлаждение поездов и 12-вагонной секции — центральное рассольное. Рассол — раствор (СаС12) — охлаждается аммиачной хо лодильной установкой, расположенной в машинном отделении, и по трубопроводам насосом подается в приборы охлаждения грузовых вагонов.

В 12-вагонной секции 10 грузовых вагонов и 2 вспомогательных: вагон-машинное отделение, вагон с дизель-генераторами и служебным помещением.

5-вагонные рефрижераторные секции бывают с 4 грузовыми и одним вспомогательным вагонами и с 5 грузовыми вагонами. Во вспомогательных вагонах располагают дизель-генераторную станцию и служебное помещение. Они должны находиться в середине состава. В секции с 5 грузовыми вагонами дизель-генераторная электростанция занимает часть 4-го вагона, а служебное помещение — смежную с ней часть 3-го вагона. Обе части соединены переходной площадкой. Холодильное оборудование каждого вагона состоит из 2 холодильных установок, работающих на фреоне-12, с воздухоохладителями непосредственного охлаждения. Холодильные агрегаты располагают в торцевых машинных отделениях, а воздухоохладители — в грузовом отсеке вагона.

В автономных вагонах в середине располагается грузовое отделение, а в торцевых частях — 2 машинных. В каждом машинном отделении находятся дизель-генераторный агрегат и холодильная установка, обслуживающая половину объема грузового помещения. Система охлаждения — воздушная, отопления — электрическая. Работа холодильно-отопительного оборудования автоматизирована, позволяет поддерживать температуру с точностью до 0,5 °С.

Вагоны-ледники бывают с пристенными карманами и с потолочными баками для льда или льдосоляной смеси. Размещение приборов льдосоляного охлаждения обусловливает направление естественной циркуляции воздуха в грузовом помещении вагона, от которого зависит степень равномерности температуры воздуха по всему объему вагона. При пристенном расположении карманов со льдом температура воздуха неравномерна как по длине, так и по высоте вагона. Эта разность температур может составлять до 10 — 15 °С, что вызывает ухудшение качества перевозимого груза.

В случае расположения приборов охлаждения под потолком распределение температуры воздуха в вагоне достаточно равномерное. При этом также увеличивается погрузочная площадь вагона — на 25 — 30 % по сравнению с площадью вагонов с пристенными карманами. Недостатки таких вагонов — сложность очистки баков, возможность подмокания и порчи грузов в результате неисправности баков.

В группу специальных вагонов входят цистерна-термос для перевозки молока, цистерны-термосы для перевозки вина, виноматериалов и спирта, вагон-цистерна для перевозки вина, вагон для перевозки живой рыбы. При транспортировании температура в специальных вагонах поддерживается благодаря хорошей теплоизоляции их поверхности и снижению до минимальных размеров теплопритоков к продукту и от него. Суточное повышение (понижение) температуры продукта находится на уровне 2 —4°С. Продолжительность транспортирования определяется временем достижения продуктом предельно допустимой температуры.

Автомобильный хладотранспорт. Автомобильный холодильный транспорт — это единственное средство, осуществляющее внутригородские перевозки пищевых продуктов. Его используют также для междугородных, межобластных и международных перевозок. Преимущество автомобильного транспорта в том, что он позволяет осуществлять бесперегрузочные (прямые) перевозки от производителя к потребителю, где бы они ни располагались. По сравнению с железнодорожным транспортом он обладает большими мобильностью и оперативностью. Однако стоимость автомобильных перевозок выше и ограничена сетью автомобильных дорог.

Различают два основных типа средств холодильного автотранспорта: изотермические автомобили и авторефрижераторы.

Изотермические автомобили имеют теплоизолированный кузов, препятствующий недопустимому повышению (понижению) температуры перевозимых продуктов, но не оснащаются холодильной установкой.

Авторефрижераторы оснащены автономными холодильными установками и имеют теплоизолированный кузов. В качестве охлаждающей системы в них используют компрессорные холодильно-отопительные машины или установки с расходуемым охлаждающим веществом — жидким азотом, сухим льдом и др.

Температура в кузове изотермического автомобиля поддерживается в определенных пределах за счет холода, аккумулированного грузом, или одним из источников холода — сухим и водным льдом, льдосоляной смесью, эвтектическими растворами в специальных аккумуляторах (зероторах). Источник холода вводится в кузов вместе с грузом.

Незначительный запас холода и невозможность регулирования температуры в рабочих помещениях изотермических автомобилей не позволяет транспортировать в них скоропортящиеся продукты. Поэтому изотермические автомобили применяют в основном для внутригородских или областных перевозок.

Для перевозки в зимних условиях грузов, требующих положительных температур, изотермические автомобили оборудуют отопителями.

По грузоподъемности различают следующие типы автомобильного хладотранспорта:

малой грузоподъемности (до 1 т);

средней грузоподъемности (2 —5 т);

большой грузоподъемности (5 — 20 т).

Автомобили малой и средней грузоподъемности используют для внутригородских перевозок, средней — внутриобластных и большой — для перевозок на большие расстояния, включая международные.

Кузова изотермических автомобилей и авторефрижераторов могут выполняться вместе с автомобилем или в виде полуприцепа. Основными элементами кузова являются каркас, внутренняя и наружная обшивки, теплоизоляция, дверная рама с дверным полотном и настил пола.

Для охлаждения изотермических автомобилей используют водный лед, льдосоляную смесь, а также зероторы (специальные металлические формы различной конфигурации) с эвтектическими растворами. Водный лед или льдосоляную смесь загружают в бочки различной формы, которые размещают в специальных «карманах» под потолком или у боковых стен кузова. Зероторы заполняют эвтектическим раствором и замораживают в холодильных камерах. Затем зероторы размещают в кузове на потолке или около боковых стен. Таким образом, в кузове изотермического автомобиля температура поддерживается в определенных пределах за счет холода, аккумулированного грузом, или введением источников холода.

В авторефрижераторах применяют следующие способы охлаждения: машинное, аккумуляционное, сухим льдом, сжиженными газами, комбинированное.

Для авторефрижераторов наиболее распространенным является машинное охлаждение с использованием автоматизированной холодильной установки компрессионного типа. Выпускают машины с приводами от двигателя автомобиля, самостоятельного двигателя внутреннего сгорания, а также с электроприводом от собственной дизель-генераторной установки. Конденсатор и воздухоохладитель ребристотрубные, с принудительным обдувом. Воздухоохладитель монтируют обычно на передней стенке грузового отделения.

Аккумуляционная система состоит из компрессорно-конденсаторного агрегата, установленного вне кузова, и охлаждающих приборов аккумуляционного типа, смонтированных в кузове. Охлаждающие приборы — плоские металлические сосуды, плиты из нержавеющей стали, заполненные эвтектическим раствором. Внутри плит размещены испарители холодильной машины — трубчатые теплообменники, по которым циркулирует хладагент или охлаждающий раствор. Эвтектический раствор в плитах замораживают во время работы холодильной машины на стоянке автомобиля. В кузове поддерживается необходимая для транспортировки температура за счет таяния эвтектического раствора.

Охлаждение сухим льдом имеет ограниченное применение и используется в основном для перевозки мороженого. Сухой лед размещают в кузове в контейнерах, пристенных и потолочных карманах или непосредственно в контакте с продуктами.

Для охлаждения авторефрижераторов широко применяют сжиженные газы: азот, воздух и диоксид углерода. Предпочтение отдают азоту, который имеет низкую температуру испарения (196 °С), позволяет сократить усушку продуктов. Возможно также охлаждение смесью пропана и бутана.

Рекомендуемые режимы для перевозки автомобильным транспортом охлажденных продуктов представлены в табл. 15.

Для перевозки молока, воды, кваса, вина и других жидкостей, температура которых не должна превышать допустимой, используют изотермические автоцистерны, которые делят на прицепы-цистерны, автомобили-цистерны и полуприцепы-цистерны. могут быть одно-, двух- и трехсекционными.

Таблица 15

Температура, поддерживаемая при перевозке охлажденных продуктов автомобильным транспортом, °С

Продукт

Продолжительность перевозки, сут

1 сут

4 — 6 сут

Абрикосы

0-3

0-2

Ананасы

10-12

8-10

Апельсины

4-10

2-10

Грейпфруты, лимоны

8-10

8-15

Бананы

12-14

12-14

Виноград

0-8

0-6

Капуста:

кочанная

0-10

0-6

цветная

0-8

0-4

Картофель

5-20

5-20

Лук

1-20

1-13

Мандарины

4-8

4-8

Морковь

0-8

0-5

Огурцы

10-15

10-13

Помидоры:

зеленые

10-15

10-13

спелые

4-8

Не рекомендуется

Яблоки

3-10

3-10

Говядина, свинина

-1...-7

-1.-7

Мясопродукты

-1...-8

Не рекомендуется

Субпродукты

-1...-3

Тоже

Шпик

12

10

Цыплята, кролики

-1...-4

-1...-4

Яйца

0-15

0-15

Рыба, пересыпанная

льдом

0-2

0-2

Копченая рыба

10

6

Молоко

0-4

Не рекомендуется

Сливки, творог,

йогурт

0-4

То же

Масло, маргарин

6

6

Сыры

0-15

0-15

Водный хладотранспорт. Транспортно-рефрижераторные морские и речные суда используют для внутренних и внешнеторговые перевозок скоропортящихся грузов. Суда могут быть универсальными, осуществляющими перевозку продуктов при различных температурах, и специальными — для перевозки отдельных видое продуктов, требующих определенных условий.

Для перевозки замороженных продуктов используют низкотемпературные суда, охлажденных — высокотемпературные. Эксплуатируют также и многоцелевые суда, перевозящие и обычные, скоропортящиеся грузы (они имеют рефрижераторные трюмы). Объем трюмов рефрижераторных судов составляет 3500 м3 на рыболовно-морозильных, 9000 м3 на плавбазах и от 500 — 800 до 10000— 17000 м3 на транспортных рефрижераторах. На судах используют следующие системы охлаждения: хладоновые непосредственного охлаждения (для провизионных и морозильных камер и трюмов малотоннажных судов), рассольную (и особенно панельную — для перевозки мороженых грузов), воздушную. Холодильные машины размещают по централизованной (в одном месте) и децентрализованной схемам холодильные камеры — в трюмах и твиндеках (надтрюмных помещениях) судов.

Воздушный и трубопроводный хладотранспорт. Воздушный хладотранспорт по сравнению с другими видами транспорта позволяет быстрее перевозить грузы на большие расстояния. Воздушным транспортом перевозят фрукты, ранние овощи, ягоды, свежую рыбу, рыбные продукты и др. Перевозят их без специального охлаждения грузового помещения самолетов, так как довольно низкую температуру в нем можно поддерживать циркуляцией холодного наружного воздуха, имеющего температуру -3 °С и ниже при высоте полета 3000 м. Без дополнительного охлаждения можно перевозить и мороженые грузы. Большое значение имеет организация подвоза и вывоза грузов на аэродромы и пункты доставки.

В пределах пищевых предприятий жидкие продукты транспортируют по трубопроводам (молоко, пиво и др.).

17.2. Контейнерные перевозки

Скоропортящиеся грузы часто перевозят несколькими видами транспорта. Для таких перевозок широко используются рефрижераторные (охлаждаемые) и изотермические контейнеры. По грузовместимости все контейнеры делят на крупнотоннажные (масса брутто от 10 до 30 т, вместимость 10 — 50 м3), среднетоннажные (масса от 2,5 до 5 т, вместимость 3 — 8 м3), малотоннажные (масса до 1,5 т, вместимость до 3 м3). Контейнеры имеют теплоизоляционные ограждения. Если они снабжены холодильными установками, их называют рефрижераторными, а если таковые отсутствуют — изотермическими.

Крупнотоннажные контейнеры получили наибольшее распространение. Они выполняют две функции: охлаждения (рефрижераторные контейнеры) и транспортной тары большой грузовместимости. Внутри рефрижераторного контейнера температура воздуха регулируется от -18 до +16 °С. Для обеспечения транспортных и складских операций, в том числе и при международных перевозках грузов, наружные размеры крупнотоннажных контейнеров регламентированы стандартами Международной организации по стандартизации ИСО. Крупнотоннажный рефрижераторный контейнер имеет теплоизолированный кузов и машинное отделение, в котором размещается автоматизированная хладоновая холодильная машина (встроенная или съемная) и дизель-генераторная установка или система охлаждения жидким азотом.

Хладоновые холодильные машины могут получать электропитание от внешней сети (на стоянках) или от собственной дизель-генераторной установки.

На контейнерных пунктах (терминалах) крупнотоннажные контейнеры штабелируют, кратковременно хранят, погружают на различные транспортные средства и выгружают с этих средств, осуществляют их профилактическое обслуживание и мелкий ремонт.

В крупнотоннажных контейнерах применяют системы машинного охлаждения и охлаждения с помощью сжиженных газов. 90 % всего современного парка контейнеров составляют контейнеры с машинной охлаждающей системой. Холодильные машины, применяемые для охлаждения контейнеров, аналогичны холодильным машинам авторефрижераторов. Наиболее удобным является оборудование контейнеров холодильной машиной и дизель-генераторной установкой.

Контейнеры могут быть со встроенными и съемными холодильными машинами. Встроенные машины аналогичны навесным установкам авторефрижераторов, а съемные представляют собой отдельный блок, высота и ширина которого равны высоте и ширине контейнера.

В среднетоннажных контейнерах используют систему машинно-аккумуляционного охлаждения. В аккумуляционных охлаждающих приборах используют эвтектические растворы. Аккумуляционный охлаждающий прибор состоит из батареи, листотрубных элементов, между элементами располагаются мешки из морозостойкой пленки, заполненные эвтектическими растворами.

Малотоннажные изотермические контейнеры, как правило, не имеют систем охлаждения. По конструкции они представляют собой шкафы каркасного типа с направляющими решетками для установки поддонов.

Крупнотоннажные контейнеры перевозят все виды транспорта, их легко перемещать с одного вида транспорта на другой. Могут они выполнять и функции автономной холодильной камеры временного склада. Использование крупнотоннажных контейнеров в непрерывной холодильной цепи позволяет осуществлять доставку грузов «от двери до двери» при оптимальных режимах загрузки, разгрузки и хранения. При этом отпадает необходимость перегрузки скоропортящихся продуктов при смешанных перевозках и краткосрочном хранении на распределительных холодильниках, сокращается время пребывания грузов в пути.

Применяют также специальные контейнеры для перевозки охлажденных и только мороженых грузов.

Среднетоннажные и малотоннажные контейнеры используют для непродолжительных прямых перевозок скоропортящихся продуктов в основном автомобильным транспортом.

17.3. Условия, сроки и особенности перевозки

различных пищевых продуктов

Технология хранения скоропортящихся продуктов во многом определяет и технологию перевозок. Непрерывность холодильной цепи требует соблюдения одинаковых условий как на стационарных холодильниках, так и на холодильном транспорте. Обработка продуктов определяет подготовку транспортных средств. Неблагоприятные условия хранения продуктов на стационарных холодильниках затрудняют перевозки, сокращают предельный срок транспортирования.

Рассмотрим особенности транспортирования различных пищевых продуктов.

Мясо и мясопродукты. В общем объеме перевозок железнодорожным транспортом мясо и мясопродукты составляют около 6 %. Часть этих перевозок осуществляется в рефрижераторных вагонах, часть — в вагонах-ледниках. Дальние перевозки в пределах РФ — это поставки в районы Дальнего Востока и Крайнего Севера с Урала, из Западной Сибири и центра России. Перевозки мяса характеризуются сезонностью, что определяется неравномерностью заготовок скота в течение года: более 40 % мяса заготавливают в сентябре — ноябре.

Для транспортирования мяса по железной дороге используют 5-вагонные секции, оборудованные приспособлениями для подвески мясных туш. Используют также автономные вагоны. Вагоны и секции закреплены за крупными мясокомбинатами, постоянно отгружающими охлажденное мясо в промышленные центры. Правые половины полутуши располагают с одной стороны, левые — с другой. Четвертины говядины и туши баранины подвешивают в два яруса на деревянных разгонах или веревках. Перспективна перевозка охлажденного мяса в ящиках. Для этого туши разрубают на стандартные отруба, которые обертывают целлофаном и плотно укладывают в ящики. Такой способ позволяет лучше использовать транспортные средства (более плотная загрузка), сокращает усушку, улучшает санитарные условия.

Переохлажденное мясо укладывают вдоль вагона на напольные решетки плотными штабелями в клетку. Основную часть и мяса, и мясных продуктов перевозят в мороженом состоянии. Мясо укладывают в вагоны плотным штабелем, что позволяет лучше аккумулировать холод и уменьшает усушку. Мясо разных категорий упитанности загружают в вагон раздельно. Сроки его перевозки зависят от типа вагона, времени года и составляют в среднем 5 — 20 сут для мороженого, 3 — 12 для охлажденного.

Такие же способы укладки используют при перевозке мяса автомобильным хладотранспортом. Совместная перевозка охлажденного и замороженного мяса не рекомендуется, допускается лишь кратковременная перевозка при температуре 0 — 1 °С.

Рыба и рыбопродукты. Добычей рыбы в России занимаются пять рыбопромышленных объединений: Западное, Северное, Азово-Черноморское, Каспийское и Дальневосточное. Они отгружают по железным дорогам из портов более 80 % объема погрузки рыбы. Остальные перевозки — внутриобластные и внутриреспубликанские. Концентрация грузов благоприятна для организации перевозок и ускоренной доставки их в места потребления. Однако из-за удаленности пунктов добычи от основных мест потребления средняя дальность перевозки рыбы значительно выше, чем других скоропортящихся грузов. До поступления на наземный транспорт значительная часть рыбы длительное время находится на морском транспорте, где ее сохранность обеспечивается рефрижераторными судами, и в портовых холодильниках. Рыбу, поступающую в порты в обработанном виде, перегружают в вагоны с борта судна. Охлажденную (пресной или морской водой, льдом) рыбу перевозят в ящиках или ящиках-клетках, сухотарных бочках, которые укладывают в вагоны или автомобильные кузова плотными и правильными рядами. Сохранность ее обеспечивается за счет непрерывного таяния льда, слоями переложенного с рыбой. Чаще осуществляют перевозки мороженой рыбы. Рыбу сухой заморозки перевозят в картонных коробах или деревянных ящиках, замороженную мокрым способом перевозят в не пропускающих рассол специальных контейнерах, противнях. Температура перевозки не выше -18 °С для рыбы сухой заморозки, -12 °С — мокрой заморозки, при льдосолевом и естественном способах заморозки — не выше -6 °С.

Сельдь, рыбу особо жирную и пряных посолов, маринованную перевозят в заливных бочках, тощую и средней жирности — в сухотарных бочках или деревянных ящиках.

Вяленую рыбу упаковывают в ящики с отверстиями для вентиляции, драночные короба, плетеные корзины, рогожные кули, мешки, сухотарные бочки. Рыбу в мягкой и жесткой таре укладывают в вагон или кузов в несколько рядов, прокладывая рейками, в шахматном порядке, оставляя между рядами зазоры для циркуляции воздуха.

Рыбу горячего копчения принимают к перевозке железной дорогой только замороженной, доставляется она рефрижераторным железнодорожным и автомобильным транспортом.

Рыбу холодного копчения перевозят упакованной в деревянные и картонные ящики, короба, корзины, сухотарные бочки при температуре от 0 до 5 0С.

Икру перевозят в ящиках (баночная) и бочках (бочковая) в рефрижераторных вагонах и автомобилях.

Живую рыбу отгружают из районов Каспия, Украины, Северного Кавказа в промышленные центры страны. Перевозят ее в специальных живорыбных вагонах с приспособлениями для аэрации воды и помещениями для проезда сопровождающих. Заполнение баков водой осуществляют на 4/5 их высоты. Температуру поддерживают от 2 до 4 °С. Живых раков перевозят в плетеных ивовых корзинах и ящиках в изотермических вагонах с охлаждением. Срок между их уловом и погрузкой не должен превышать 36 ч.

Плодоовощные товары и картофель. Условия транспортировки плодов и овощей зависят от ряда факторов: их способности сохраняться, условий выращивания, степени зрелости и т.д. Для успешной перевозки плодов и овощей они должны быть тщательно упакованы в соответствующую тару. Наилучшая укладка плодов и овощей в тару такая, при которой они не соприкасаются друг с другом. Для этого используют различные упаковочные материалы: полиэтиленовую пленку, древесную стружку, бумагу и т.д. Установку в вагоны и кузова тары осуществляют так, чтобы каждое грузовое место омывалось потоком воздуха. Каждое место укрепляют для предотвращения механических повреждений плодов и овощей. Требуется поддержание постоянных температуры и влажности.

Предельные сроки перевозки свежих плодов и овощей зависят от вида транспорта, вида продукции, периода года и составляют, например, для летних яблок в изотермических вагонах 20 сут, летних груш 12, сливы 16, земляники 3, капусты 15 — 18, картофеля раннего 14, позднего 20 сут и т.д.

Консервная продукция. В общем объеме перевозок скоропортящихся грузов консервная продукция составляет около 20 %. Рыбные и мясные консервы перевозят равномерно в течение года. Перевозка плодоовощных консервов имеет ярко выраженную сезонность. В зависимости от времени года консервы перевозят в изотермических вагонах без утепления, с утеплением, с отоплением.

Молоко и молочные продукты. Из-за краткого срока хранения этих продуктов перевозка их должна быть четко организована. Наибольшую часть молока перевозят в специальных цистернах. Сливочное масло перевозят в ящиках и бочках, топленое — в бочках.

В зависимости от температуры транспортировки масло укладывают плотно (при температуре не выше -20 °С), вертикальным или шахматным способом. Сыры упаковывают в дощатые ящики и деревянные барабаны. Крупные сыры можно перевозить без тары на стеллажах. Температуру поддерживают от 0 до 5 °С. Не ограничивают сроки доставки в изотермических вагонах сливочного масла, сыров; для молока этот срок не больше 3 сут, творожных сырков 2 сут.

Виноградные и плодово-ягодные вина перевозят в стандартных бочках и бутылках, упакованных в ящики. В зимний период бочковые вина перевозят с отоплением или без отопления (тогда во избежание разрыва бочки не доливают на 10—15 %). Вина перевозят также в цистернах-термосах и в изотермических вагонах, что позволяет в 3 раза лучше использовать грузоподъемность транспорта. Пиво в бутылках упаковывают в ящики или заливают в дубовые бочки и перевозят в рефрижераторных вагонах. Минеральные воды можно перевозить навалом, переложенными сеном или соломой.

17.4. Правила приемки транспортируемых продуктов

Продукты, предназначенные для перевозки, должны соответствовать требованиям ГОСТа. Запрещается принимать продукты, упакованные в нестандартную, непрочную и загрязненную тару. Сопроводительные документы на транспортируемые продукты должны быть оформлены полностью и технически грамотно.

Принятые на хранение продукты нельзя оставлять на платформах или площадках, их следует немедленно направлять в охлаждаемый транспорт. Этот транспорт должен быть технически исправным, отвечать санитарным требованиям и быть подготовленным к загрузке продуктами. В нем должны быть проверены состояние охлаждаемых устройств, плотность закрывания дверей, электропроводка, наличие реек и решеток.

Подготавливать камеры холодильного транспорта к приему новой партии грузов следует сразу после освобождения от предыдущей партии продуктов. Камеры холодильного транспорта должны быть чистыми, без запаха и периодически подвергаться санобработке. Подготовка камер холодильного транспорта к загрузке заканчивается установлением в них необходимого температурного режима.

Для успешной транспортировки скоропортящихся продуктов большое значение имеет правильность размещения грузов в холодильном транспорте. При транспортировании мороженых грузов их необходимо укладывать плотно, что позволяет избежать колебаний температуры и вредных воздействий теплопритоков на всю партию грузов. Охлажденные грузы, наоборот, следует размещать с таким расчетом, чтобы между отдельными партиями оставались зазоры для циркуляции воздуха.

Скоропортящиеся грузы предъявляются к погрузке:

упакованными (в таре — ящиках различных типов из разных материалов, картонных коробках, корзинах, бидонах, связках, мешках);

неупакованными — мясо всех видов скота в тушах и в разрубе на полутуши и четвертины, овощи и бахчевые — россыпью.

Тара должна быть стандартной и исправной. К моменту приемки груза к перевозке должны быть готовы погрузочная станция и грузоотправитель. Отправитель заранее оформляет все документы, а работники станции убеждаются в том, что отправка предусмотрена планом. Имея право на погрузку, отправитель оформляет накладную и визирует ее в товарной конторе.

После взвешивания сведения о грузе заносят в книгу приема груза к отправлению. Когда продукция загружена в камеры холодильного транспорта, приемосдатчик дороги принимает груз наружным осмотром. Принятый к перевозке груз маркируют отправитель и станция. После погрузки и осмотра транспорт пломбируют.

ПРИЛОЖЕНИЯ

Приложение 1

Условия, сроки хранения особоскоропортящихся продуктов

Значительная часть продовольственных продуктов поступает в розничную торговую сеть непосредственно от пищевых предприятий, минуя оптовые холодильники. Это мясные, молочные, рыбные, овощные продукты, кондитерские изделия и другие так называемые особоскоропортящиеся продукты.

К особоскоропортящимся относятся продукты, сроки хранения которых с момента окончания технологического процесса при температуре не выше 6 °С составляют от 6 до 72 ч. Эти сроки включают время пребывания продуктов на предприятии-изготовителе, транспортирование и хранение на торговых предприятиях.

Условия и сроки хранения особоскоропортящихся продуктов установлены Санитарными правилами и предназначены для всех предприятий, производящих и реализующих эти продукты.

При нарушении условий и сроков хранения особоскоропортящихся продуктов в них могут размножаться микроорганизмы, вызывающие порчу, а также способные вызывать пищевые бактериальные отравления и острые кишечные заболевания.

Предприятие-изготовитель на каждую партию особоскоропортящихся продуктов обязано выдать документы, удостоверяющие качество (сертификат), накладную (заборный лист) с указанием даты и часа выработки на предприятии с момента окончания технологического процесса, температуры хранения и окончания срока хранения (дата, ч) в соответствии с Санитарными правилами.

Предприятием-изготовителем производится маркировка каждой партии особоскоропортящейся продукции с указанием на ярлыках или упаковке температуры и окончания срока хранения. При выпуске нефасованной продукции ярлыки направляются предприятиями-изготовителями в торговую сеть и при реализации выкладываются на прилавок.

Транспортируют особоскоропортящиеся продукты в закрытой маркированной таре охлаждаемым или изотермическим автотранспортом, имеющим санитарный паспорт; в теплое время года — в изотермическом транспорте (при наличии льда — не более 3 ч, без льда — не более 1 ч).

Хранение особоскоропортящихся продуктов в розничной торговой сети производится при температуре от 2 до 6 °С, за исключением некоторых полуфабрикатов и готовых изделий, температура хранения которых указана специально. В особых случаях учреждениям санитарно-эпидемиологической службы на местах дается право продлевать сроки хранения крупных партий продуктов при сохранении их качества и соблюдении условий хранения. Максимальный срок дополнительного хранения не должен превышать половины установленного.

Полуфабрикаты высокой степени готовности и кулинарные изделия, предназначенные для реализации на предприятиях-доготовочных и в магазинах кулинарии и имеющие более длительные сроки хранения, отмечены в таблице знаком «*».

Условия и сроки хранения особоскоропортящихся продуктов питания

Продукты питания

Продолжи-тельность

хранения, ч

Температура

хранения, 0С

Мясные

Полуфабрикаты из говядины, свинины,

баранины (козлятины)

Крупнокусковые

48

2 — 6

Мясо фасованное (от 0,25 до 1 г)

36

2-6

Порционные без панировки (вырезка, бифштекс натуральный, лангет, антрекот, ромштекс, говядина, баранина, свинина духовая, эскалоп, шницель и др.)

36

2-6

Порционные в панировке (ромштекс,

котлета натуральная из баранины и свинины, шницель)

24

2-6

Мелкокусковые (бефстроганов, азу, поджарка, гуляш, говядина для тушения, мясо для шашлыка и др.)

24

2-6

Жаркое особое, мясное ассорти

18

2-6

Кости пищевые

24

2-6

Субпродукты:

охлажденные

24

2 — 6

замороженные

48

2-6

Шашлык маринованный (полуфабрикат)

24

2-6

Полуфабрикаты мясные рубленые:

шницель натуральный рубленый, котлеты натуральные рубленые, бифштекс рубленый, котлеты московские, домашние, киевские, люля-кебаб

12

2-6

бифштекс рубленый замороженный

48

Не выше -5

котлеты повышенной пищевой ценности говяжьи, обезжиренные и школьные, биточки говяжьи, кнели мясные

12

2-6

комбинированные (котлеты мясо-картофельные, мясокапустные и др.)

12

2-6

Фарши мясные, вырабатываемые мясоперерабатывающими предприятиями и заготовочными предприятиями общественного питания:

фарш натуральный (диетический и др.)

12

2-6

фарш мясной замороженный

18

2-6

фарш комбинированный мясной особый (с добавлением соевого белка)

12

2-6

фарш для голубцов ленивых

12

2-6

Фарш мясной, вырабатываемый предприятиями торговли и общественного питания

6

2-6

Пельмени, фрикадельки мясные замороженные

48

Не выше -5

Полуфабрикаты из птицы и кроликов

Мясо птицы и кроликов охлажденное фасованное

48

2-6

Мясо птицы и кроликов замороженное

72

Не выше -5

Полуфабрикаты из мяса птицы (тушка, подготовленная к кулинарной обработке, окорочок, филе, четвертина задняя, цыплята-табака и любительские, бедро, голень, грудинка)

48

2-6

Наборы для студня: рагу, суповой

12

2-6

Полуфабрикаты рубленые из мяса птицы (котлеты пожарские куриные, кнели, куриные котлеты особые из кур и индеек, куриные школьные и др.)

12

2-6

Субпродукты из птицы и кроликов и полуфабрикаты из них

24

2-6

Кулинарные изделия из говядины, свинины, баранины (козлятины)

Мясо отварное, вырабатываемое централизованно на заготовочных предприятиях общественного питания (крупным куском для холодных блюд; крупным куском, нарезанное на порции для первых и вторых блюд, в желе)*

24

2-6

Мясо отварное, приготовленное на предприятиях общественного питания, кроме заготовочных

12

2-6

Мясо жареное, вырабатываемое на заготовочных предприятиях общественного питания (говядина и свинина, жаренные крупным куском для холодных блюд; говядина и свинина, жаренные крупным куском, нарезанные на порции для вторых блюд, в желе)*

48

2-6

Мясо жареное, приготовленное на всех предприятиях общественного питания, кроме заготовочных

24

2-6

Мясо шпигованное тушеное (крупным куском, нарезанное на порции для вторых блюд, в желе)*

24

2-6

Субпродукты мясные отварные (язык, вымя, сердце, почки, мозги)

18

2-6

Печень жареная

24

2-6

Кулинарные изделия из рубленого мяса жареные (котлеты, бифштексы, биточки, шницели)

12

2-6

Студни мясные и мясо заливное

12

2-6

Паштеты из мяса, печени и птицы, вырабатываемые промышленностью

24

0-2

Паштеты из мяса и печени, вырабатываемые предприятиями общественного питания

6

2-6

Пищевые бульоны, вырабатываемые предприятиями мясной промышленности:

2-6

концентрированные

24

2-6

жидкие

6

2-6

Бульоны с желатином, полуфабрикаты*:

мясные

48

2-6

куриные

24

2-6

Бульоны куриные костные, полуфабрикаты*

24

2-6

Бульоны костные концентрированные*,

полуфабрикаты

48

2-6

Кулинарные изделия из птицы и кроликов

2-6

Тушки уток и цыплят запеченные

48

2-6

Тушки птицы копченые, копчено-запеченные и копчено-вареные

72

2-6

Мясо птицы и кроликов жареное, вырабатываемое централизованно на заготовочных предприятиях общественного питания и в птицеперерабатывающей промышленности*

48

2-6

Мясо птицы и кроликов жареное, приготовленное на всех предприятиях общественного питания, кроме заготовочных

24

2-6

Птица отварная тушками, вырабатываемая централизованно на заготовочных предприятиях общественного питания и в птицеперерабатывающей промышленности*

24

2-6

Птица отварная тушками, приготовленная на всех предприятиях общественного питания, кроме заготовочных

18

2-6

Птица отварная, нарубленная на порции,

в желе*

24

2-6

Мякоть птицы отварная в форме брикета*

24

2-6

Котлеты из мяса птицы

12

2-6

Яйца вареные

24

2-6

Колбасы и колбасные изделия

2-6

Холодец в оболочке

36

2-6

Зельц, сорт:

2-6

высший

48

2-6

первый, второй

24

2-6

особый второй

12

2-6

третий

12

2-6

Рулет из рубца, сорт:

третий

12

2-6

новый и красный третьего сорта

12

2-6

Колбасы вареные, сорт:

высший

72

2-6

первый, второй

48

2-6

третий

24

2-6

Сосиски и сардельки высшего, первого

и второго сортов

48

2-6

Хлебцы мясные, сорт:

высший

72

2-6

первый, второй

48

2-6

Колбасы ливерные, сорт:

высший, первый

48

2-6

второй

24

2-6

третий

12

2-6

Колбасы кровяные, сорт:

первый, второй

24

2 — 6

третий

48

2-6

копченая первого сорта

72

2 — 6

Вареные изделия в оболочке (ветчина на

ассорти, ветчина для завтрака, ветчина

в оболочке и др.)

72

2 — 6

Колбасы вареные с добавлением субпродуктов, сардельки белковые и субпродуктовые

24

2-6

Фасованные колбасные изделия, упакованные в полимерную пленку под вакуумом; колбасы вареные, продукты из свинины, говядины и баранины вареные

48

2 — 6

Колбаса ливерная растительная

(с добавлением крупы)

12

2 — 6

Колбаски для детского питания

36

2 — 6

Колбасы вареные из птицы первого сорта, сосиски

48

2 — 6

Рыбные и морепродукты

Полуфабрикаты

Рыба всех наименований охлажденная

48

-2...0

Рыба и рыбные товары всех наименований мороженые и глазированные

24

-2...0

Рыба специальной разделки незамороженная

24

-2...+2

Рыба порционированная в сухарях

12

2 — 6

Шашлыки и поджарка

24

-2...+2

Котлеты, биточки, фарш, зразы рыбо-

картофельные, блинчики (без

замораживания)

12

-2...+2

Котлеты, голубцы, фарш замороженные

72

-4...-6

Пельмени рыбные замороженные

48

-4...-6

Кулинарные изделия

Рыба всех наименований жареная

36

2 — 6

Рыба всех наименований печеная

48

2 — 6

Рыба всех наименований отварная

24

2-6

Рыба фаршированная

24

2 — 6

Изделия рубленые из соленой рыбы (сельди, скумбрии, сардины и др.)

24

2-6

Котлеты из рыбы всех наименований жареные

12

2 — 6

Фрикадельки, тефтели рыбные с соусом

томатным

48

2-6

Рыба всех наименований и рулеты горячего копчения

48

2-6

Колбаски рыбные вареные

48

2-6

Зельцы «Рыбацкий», «Особый» и др.

12

2-6

Раки и креветки вареные

12

2-6

Крабовые палочки

48

2-6

Кальмары с овощами в сметанном соусе,

отбивные из кальмаров, котлеты из

кальмаров

24

2-6

Кальмары в маринаде

48

2-6

Кулинарные изделия промышленного

производства из белковой пасты «Океан»

Масла рыбные и икорные всех наименований

24

2-6

Рыба заливная

24

-2...+2

Пасты рыбные в полимерной

потребительской таре

24

-2...+2

Вторые рыбные блюда в потребительской таре:

без замораживания

12

-2...+2

замороженные

72

-1...-6

Паста белковая мороженая «Океан»

72

-1...-3

Молочные и кисломолочные

Молоко пастеризованное, сливки,

ацидофилин

36

-1...-3

Кефир

36

-1...-3

Простокваша

24

-1...-3

Напитки из сыворотки (квас молочный,

«Новый», сывороточный напиток с томатным соком)

48

-1...-3

Пахта свежая и напитки из нее

36

-1...-3

Кумыс натуральный (из кобыльего молока), кумыс из коровьего молока

48

-1...-3

Сметана:

обычная

72

-1...-3

диетическая

48

-1...-3

Творог:

-1...-3

жирный и обезжиренный диетический

36

-1...-3

крестьянский 5%-ный

24

-1...-3

Сырки соевые, соевая простокваша

12

-1...-3

Творожные полуфабрикаты:

-1…-3

сырники, тесто для сырников, тесто для вареников ленивых, полуфабрикат

для запеканки творожной с изюмом

24

-1...-3

Вареники с творогом

24

Не выше -6

Сырково-творожные изделия

36

0-2

Запеканка и пудинг из творога*, кулинарные изделия, вырабатываемые на заготовочных предприятиях общественного питания

48

2-6

Изделия творожные, кулинарные,

вырабатываемые на всех предприятиях

общественного питания, кроме

заготовочных:

пудинг творожный жирный и полужирный

24

2-6

зразы творожные с изюмом жирные и полужирные

36

2-6

Сыр домашний

36

2-6

Сыры сливочные в коробочках из

полистирола и других полимерных

материалов:

сладкий и фруктовый

48

2-6

острый, советский, рокфор

72

2-6

Сыры мягкие и рассольные без созревания

48

2-6

Сыр клинковый

36

2-6

Сырная масса «Кавказ»

48

2-6

Масло сырное

48

2-6

Масло сливочное брусочками

5

2-6

Напитки сливочные

24

2-6

Напиток «Южный»

24

2-6

Напитки «Любительский», «Снежок»

36

2-6

Продукты для детского питания:

детский кефир в бутылках

21

2-6

детский кефир в пакетах

36

2-6

детский творог

24

2-6

ацидофильная смесь «Малютка»:

в бутылках

24

2-6

в пакетах

36

2-6

Продукция детских молочных кухонь

24

2-6

Молоко гуманизированное «Виталакт ДМ» для детей грудного возраста

36

2-6

Молоко гуманизированное «Виталакт

обогащенный»

36

2-6

«Виталакт кисломолочный» для детского и диетического питания

48

2 — 6

Овощные

Полуфабрикаты

Картофель сырой очищенный

сульфитированный

48

2-6

Капуста белокочанная свежая зачищенная

12

2-6

Морковь, свекла, лук репчатый сырые очищенные

24

2-6

Редис, редька обработанные, нарезанные*

12

2-6

Петрушка обработанная*:

зелень

12

2-6

корень

24

2-6

Сельдерей обработанный*:

зелень

18

2-6

корень

24

2-6

Лук зеленый обработанный*

18

2-6

Укроп обработанный*

18

2-6

Эстрагон (зелень) обработанный*

18

2-6

Пастернак (корень) обработанный*

24

2-6

Полуфабрикаты, прошедшие тепловую

обработку

Запеканки капустная, морковная, овощная, картофельная с мясом*

18

2 — 6

Биточки (котлеты) капустные, морковные, свекольные, картофельные*

18

2 — 6

Шницель капустный, фарш капустный, фарш морковный

12

2 - 6

Огурцы соленые нарезанные припущенные*

24

2 - 6

Капуста белокочанная свежая нарезанная бланшированная*

12

2 — 6

Капуста квашеная тушеная для первых блюд*

72

2 - 6

Лук, морковь пассерованные*

48

2-6

Соусы концентрированные*:

красный основной и томатный

72

2-6

белый основной, сметанный, яблочный

48

2-6

Голубцы-полуфабрикаты (овощные, с мясом и рисом, с рыбой и рисом, с творогом и рисом, с пшеном и шпиком)*

12

2-6

Голубцы-полуфабрикаты с мясом и рисом, приготовленные в столовых

6

2-6

Салат из квашеной капусты *

24

2-6

Овощи отварные очищенные*:

морковь

24

2-6

свекла

24

2-6

картофель

18

2-6

Овощи отварные очищенные нарезанные*:

морковь

18

2-6

свекла

18

2-6

картофель

12

2-6

Салаты (мясной, столичный, рыбный) в незаправленном виде*

12

2-6

Салаты, винегреты всех наименований в незаправленном виде, приготовленные в столовых

6

2-6

Овощи отварные неочищенные

6

2-6

Мучные

Полуфабрикаты

Тесто дрожжевое для пирожков печеных и жареных, кулебяк, пирогов и других мучных изделий

9

2-6

Тесто слоеное пресное для тортов, пирожных и других мучных изделий

24

2-6

Тесто песочное для тортов и пирожных

36

2-6

Тесто для вареников ленивых

24

2-6

Блинчиковые заготовки

24

2-6

Блинчики:

с мясным, творожным, яблочным фаршем

12

2-6

с джемом и повидлом

18

2-6

Кулинарные изделия

Сырные палочки

72

2-6

с творогом

6

Не выше 20

с повидлом и фруктовыми начинками

24

Не выше 20

Чебуреки, беляши, пирожки столовые жареные; печеные, кулебяки, расстегаи (с мясом, яйцами, творогом, капустой, ливером и другими начинками)

3

Не выше 20

Крупяные

Полуфабрикаты

Биточки (котлеты) манные, пшенные

18

2-6

Кулинарные изделия

Запеканки манная, рисовая, рисовая с творогом

12

2-6

Пудинг молочный, рисовый

24

2-6

Крупеник с творогом жирным и полужирным

24

2-6

Плов фруктовый

24

2-6

Мучные кондитерские изделия, сладкие блюда, напитки

24

2-6

Торты и пирожные:

без отделки кремом, с белково-взбивным кремом или с фруктовой отделкой

72

2-6

со сливочным кремом, в том числе пирожное «Картошка»

36

2-6

Рулеты бисквитные:

с кремом

36

2-6

с творогом

24

2-6

Желе, муссы

24

2-6

Кремы сливочные и творожно-фруктовые

24

2-6

Сливки взбитые

6

2-6

Торт творожный

24

2-6

Квасы, вырабатываемые промышленностью:

хлебный непастеризованный

48

2-6

«Московский»

72

2-6

Безалкогольные негазированные напитки (лимонный, вишневый без консерванта), вырабатываемые промышленностью

48

2-6

Быстрозамороженные

Салаты, закуски

Салат из краснокочанной капусты

24

0-4

Салат из свеклы с хреном

24

0-4

Овощная закуска с томатом

24

0-4

Вторые блюда, гарниры

Гуляш из говядины

96

Не выше -6

Говядина тушеная

96

Не выше -6

Мясо по-домашнему

96

Не выше -6

Бефстроганов

96

Не выше -6

Тефтели

96

Не выше -6

Биточки «Здоровье» без соуса

96

Не выше -6

Биточки «Здоровье» с соусом

48

Не выше 0

Бифштекс

48

Не выше 0

Сардельки

48

Не выше 0

Сосиски

48

Не выше 0

Колбаса

48

Не выше 0

Блинчики по-крестьянски

48

Не выше 0

Блинчики кавказские

48

Не выше 0

Блинчики с капустой

48

Не выше 0

Блинчики с творогом

48

Не выше 0

Блинчики с фруктовой начинкой

48

Не выше 0

Крокеты

48

Не выше -5

Котлеты крестьянские в соусе

48

Не выше -5

Котлеты крестьянские без соуса

48

Не выше -5

Фарш для крокетов

48

Не выше -5

Капуста квашеная тушеная

24

0-4

Капуста свежая тушеная

24

0-4

Приложение 2

Номограммы охлаждения шара, пластин и цилиндра

Зависимость безразмерной температуры от критериев Био и Фурье для центра шара

Зависимость безразмерной температуры от критериев Био и Фурье для середины пластины

Зависимость безразмерной температуры от критериев Био и Фурье для оси диаметра

Приложение 3

Энтальпия продуктов питания при различных температурах, кДж/кг

Температура продукта, 0С

Говядина, птица

Баранина

Свинина

Субпродукты мясные

Рыба тощая

Рыба жирная

Куриные яйца

Масло сливочное

Молоко цельное

Простокваша, кефир

Сметана

Творог

Сыр

Мороженое сливочное

Виноград, абрикосы, вишня

Другие фрукты и плоды

-20

0

0

0

0

0

0

---

0

0

---

---

0

---

0

0

0

-18

4,6

4,6

4,6

5,0

5,0

5,0

---

3,8

5,5

9,4

7,1

7,5

6,7

-15

13,0

12,6

12,2

13,8

14,3

14,3

10,1

14,3

26,8

19,7

20,6

17,2

-12

22,2

21,8

21,4

24,4

24,8

24,4

17,6

25,2

41,2

34,8

36,5

29,8

-10

30,2

29,8

28,9

33,2

33,6

32,7

23,5

32,7

53,2

---

46,9

49,8

38,5

-8

39,4

38,5

34,8

43,1

43,5

42,3

---

29,3

42,3

---

---

63,7

1,3

62,4

63,5

51,0

-5

57,3

55,6

54,4

62,8

64,0

62,5

---

40,6

62,8

---

---

85,9

5,5

105,3

116,0

82,9

-3

75,3

74,0

73,3

87,9

88,4

85,5

227,4

50,5

88,7

103,0

11,3

178,8

202,2

139,0

-2

98,8

95,8

91,6

109,6

111,6

106,2

230,2

60,4

111,2

14,3

221,0

229,0

211,0

-1

185,5

179,5

170,0

204,0

212,2

199,8

233,8

91,6

184,2

192,6

16,7

224,4

232,6

267,9

0

232,2

224,0

211,8

261,0

265,8

249,0

237,0

95,0

317,8

0

0

299,1

19,7

227,4

235,8

271,7

1

235,5

227,0

214,7

264,5

269,5

252,0

240,0

98,8

322,8

3,2

3,8

302,2

22,7

230,8

239,5

274,3

2

238,2

230,0

217,8

268,3

272,9

256,0

243,3

101,4

326,8

8,0

5,9

205,5

25,2

234,0

242,9

279,0

4

245,5

236,3

224,0

274,3

280,0

262,6

249,8

106,5

334,4

15,9

13,0

313,0

31,0

240,9

250,2

286,7

8

248,2

249,0

235,8

289,2

293,9

277,0

262,4

121,4

350,7

31,4

29,3

326,9

42,3

254,4

264,5

302,0

10

264,5

255,3

241,7

290,0

301,0

283,0

268,7

129,8

358,5

39,4

36,8

334,0

47,7

264,0

271,8

308,8

12

270,8

261,4

248,2

302,2

308,0

290,0

274,3

138,6

366,0

47,3

44,4

344,3

53,2

267,9

278,6

317,0

15

280,4

271,2

256,8

312,8

314,4

300,4

284,4

156,3

378,0

59,0

55,2

351,5

61,5

277,8

289,6

328,0

20

296,8

286,7

272,5

330,6

336,0

317,4

300,0

182,8

398,0

78,6

73,7

369,4

75,7

294,8

307,0

346,5

25

312,0

301,8

287,7

348,0

353,6

334,4

316,2

204,2

418,0

98,4

95,8

387,2

89,6

311,0

325,5

365,6

30

329,0

314,0

301,8

366,0

371,0

351,5

331,4

321,4

437,0

118,0

110,6

404,7

103,8

328,0

343,0

384,8

35

345,0

334,0

317,8

384,0

388,0

369,0

347,5

240,0

458,0

344,6

360,5

403,0

40

361,0

349,8

332,2

401,0

406,0

385,0

362,7

253,6

477,0

361,4

378,0

421,0

Приложение 4

Физические свойства сухого воздуха при давлении 1,01 • 105 Па

Темпера-тура, °С

Плотность, кг/м3

Удельная теплоемкость, кДж/(кг • К)

Теплопроводность · 102, Вт/(м • К)

Температуропроводность,

a ·106, м2/с

Динамическая вязкость, ·106, Н·с/м2

Кинематическая вязкость, v·106, м2/с

Число Прандтля, Рr

-50

1,584

1,013

2,04

12,7

14,6

9,23

0,728

-40

1,515

1,013

2,12

13,8

15,2

10,04

0,728

-30

1,453

1,030

2,20

14,9

15,7

10,80

0,723

-20

1,395

1,009

2,28

16,2

16,2

11,61

0,716

-10

1,342

1,009

2,36

17,4

16,7

12,43

0,712

0

1,293

1,005

2,44

18,8

17,2

13,28

0,707

10

1,247

1,005

2,51

20,0

17,6

14,16

0,705

20

1,205

1,005

2,59

21,4

18,1

15,01

0,703

30

1,165

1,005

2,67

22,9

18,6

16,00

0,701

40

1,128

1,005

2,76

24,3

19,1

16,96

0,699

50

1,093

1,055

2,83

25,7

19,6

17,95

0,698

Приложение 5

Термины и определения (по ГОСТ 24393 — 80, 25005-94, ГОСТ 23833-95)

Термин

Определение

Холодильная техника

Отрасль техники, предметом которой является искусственное охлаждение

Охлаждение искусственное

Охлаждение с помощью холодильных машин

Охлаждение естественное

Охлаждение путем теплообмена с окружающей средой

Холодильная машина

Машина, осуществляющая перенос теплоты с нижнего температурного уровня на более высокий с целью охлаждения

Холодильный агент (хладагент)

Рабочее вещество холодильного цикла

Холодильная машина компрессионная

Холодильная машина, в которой холодильный цикл осуществляется с помощью механического компрессора

Холодильная машина паровая компрессионная

Компрессионная холодильная машина, в которой холодильный агент изменяет агрегатное состояние

Холодильная машина газовая компрессионная

Компрессионная холодильная машина, в которой газообразный холодильный агент сохраняет свое агрегатное состояние

Холодильная машина теплоиспользующая

Холодильная машина, в которой холодильный цикл осуществляется за счет подвода теплоты

Холодильная машина абсорбционная

Теплоиспользующая холодильная машина с применением абсорбции и десорбции

Холодильная машина пароэжекторная

Теплоиспользующая холодильная машина с применением эжекции холодильного агента

Охлаждение термоэлектрическое

Искусственное охлаждение, осуществляемое с использованием эффекта Пельтье

Вихревая труба

Аппарат для разделения потока газа с помощью эффекта Ранка на горячую и холодную части

Холодильная установка

комплекс холодильных машин и дополнительного оборудования, применяемый для искусственного охлаждения

Холодильная цепь

Совокупность технических средств для сохранения пищевых продуктов при низкой температуре на всех этапах от производства до потребления

Охлаждающее устройство

Устройство, осуществляющее искусственное охлаждение без холодильной машины

Хладоноситель

Вещество для отвода теплоты от охлаждаемых объектов и передачи ее холодильному агенту

Холодопроизводи-тельность

Количество теплоты, отводимое в единицу времени искусственным охлаждением

Холодильник

Сооружение или устройство с одной или несколькими холодильными камерами для обработки и хранения объектов охлаждения

Холодильная камера

Камера с искусственным охлаждением

Холодильник мерзлотный

Холодильник со строительными ограждениями из мерзлого грунта или построенный в вечной мерзлоте

Ледяной склад

Холодильник со строительными ограждениями изо льда

Холодильный компрессор

Компрессор для сжатия и циркуляции холодильного агента

Сторона высокого давления

Все аппараты и трубопроводы холодильной машины, находящиеся под давлением нагнетания

Сторона низкого давления

Все аппараты и трубопроводы холодильной машины, находящиеся под давлением всасывания

Холодильный компрессор сальниковый

Холодильный компрессор с уплотнением приводного конца вала

Холодильный компрессор бессальниковый

Холодильный компрессор со встроенным электродвигателем, имеющим внешние разъемы по корпусным деталям

Холодильный компрессор герметичный

Холодильный компрессор с электродвигателем в герметичном кожухе

Холодильный агрегат

Агрегат, состоящий из конструктивно объединенных основных и вспомогательных элементов холодильных машин

Холодильный цикл

Термодинамический цикл, используемый в холодильной машине для искусственного охлаждения

Влажный ход компрессора

Работа холодильного компрессора при всасывании влажного пара

Сухой ход компрессора

Работа холодильного компрессора при всасывании перегретого пара

Испаритель

Испаритель холодильной машины для кипения холодильного агента

Конденсатор

Теплообменный аппарат холодильной машины, служащий для отвода теплоты от конденсирующего холодильного агента к окружающей среде

Абсорбер

Теплообменный аппарат абсорбционной холодильной машины, в котором производится поглощение пара слабым раствором

Генератор (кипятильник)

Теплообменный аппарат абсорбционной холодильной машины, в котором осуществляется выпаривание холодильного агента из крепкого раствора

Дефлегматор

Теплообменный аппарат абсорбционной холодильной машины для разделения паров холодильного агента и абсорбента путем бесконтактного охлаждения

Ректификатор

Теплообменный аппарат абсорбционной холодильной машины для разделения паров холодильного агента и абсорбента путем непосредственного контакта с крепким раствором

Холодильная технология

Отрасль науки и техники, обеспечивающая холодильную обработку и холодильное хранение сырья и пищевых продуктов

Холодильная обработка

Обработка сырья и пищевых продуктов охлаждением, замораживанием, подмораживанием, домораживанием, отеплением, размораживанием или их комбинацией

Охлаждение

Отвод теплоты от объектов охлаждения с понижением их температуры не ниже криоскопической

Охлаждение предварительное

Охлаждение продуктов, предшествующее любому последующему этапу технологического цикла обработки холодом или хранению

Термин

Определение

Переохлаждение

Понижение температуры объекта ниже криоскопической без кристаллизации содержащейся в них воды

Замораживание

Отвод теплоты от сырья и продуктов питания с понижением температуры ниже криоскопической при кристаллизации определенной части воды, содержащейся в них

Подмораживание

Отвод теплоты от материала с понижением его температуры ниже криоскопической, сопровождающейся частичной кристаллизацией влаги в поверхностном слое

Домораживание

Понижение температуры до заданного уровня при отводе теплоты от частично размороженного продукта

Глазирование

Покрытие поверхности замороженных продуктов слоем льда или другого отвердевающего вещества в целях предотвращения потери массы, окисления при хранении и получения новых продуктов

Отепление

Подвод теплоты к охлажденным продуктам с повышением их температуры до температуры окружающей среды или несколько ниже

Размораживание

Подвод теплоты к замороженным материалам для плавления содержащегося в них льда

Холодильное хранение

Хранение сырья и продуктов питания, подвергнутых холодильной обработке при заданной температуре среды в камере

Хранение в контролируемой среде

Холодильное хранение продуктов в условиях, обеспечивающих контролирование заданного уровня температуры, давления и состава среды

Допустимый срок холодильного хранения

Срок, в течение которого продукты соответствуют заданным тестам качества

Режим холодильного хранения

Совокупность условий холодильного хранения материалов, влияющих на их качество (температура, относительная влажность, интенсивность циркуляции воздуха и состав среды)

Термический центр

Точка внутри продукта, температура которой при холодильной обработке экстремальна

Скорость охлаждения

Отношение разности начальной и конечной температур к интервалу времени между моментами замера

Скорость замораживания

Скорость продвижения границы раздела фаз (твердой и жидкой) внутри продукта при его замораживании

Продолжительность замораживания

Время, необходимое для понижения температуры термического центра продукта от начальной до заданной конечной

Криоскопическая температура

Температура начала льдообразования

Среднеобъемная температура

Условное понятие, характеризующее равновесную температуру образца, помещенного в адиабатные условия после обработки холодом

Криогидратная температура (эвтектическая)

Температура продукта, соответствующая окончанию льдообразования в нем свободной (слабо связанной) воды

Вымороженная вода

Часть воды, перешедшая в твердое состояние

Скороморозильный аппарат

Аппарат для быстрого замораживания пищевых продуктов

Криоконцентрация

Процесс концентрации продуктов путем частичного вымораживания воды и последующего разделения компонентов

Фризерование

Интенсивное частичное замораживание смеси мороженого при перемешивании с образованием в ней мелких ледяных кристаллов, сопровождаемое вбиванием в смесь мелких пузырьков воздуха с получением продукта сметанообразной консистенции

Фризер

Аппарат для фризерования смеси мороженого

Закаливание мороженого

Окончательное замораживание фризерованного мороженого после его фасовки с получением продукта твердой консистенции

Закалочный аппарат

Скороморозильный аппарат для закаливания мороженого

Холодильное оборудование торговое

Охлаждаемое оборудование для демонстрации, хранения и продажи пищевых продуктов на предприятиях торговли и общественного питания

Холодильное оборудование открытое торговое

Торговое холодильное оборудование с открытым доступом покупателя к продуктам

Холодильная витрина

Торговое холодильное оборудование с видимой выкладкой товаров

Холодильный прилавок

Охлаждаемый прилавок, не имеющий видимой выкладки товаров

Холодильный прилавок-витрина

Охлаждаемый прилавок с витриной

Холодильная стойка

Охлаждаемый прилавок, специально оборудованный для продажи напитков в розлив

Холодильная камера сборная

Холодильная камера, собираемая из теплоизолированных щитов на месте установки

Холодильный шкаф

Охлаждаемый шкаф для кратковременного хранения продуктов питания и других материалов

Холодильный транспорт

Технические средства для перевозки скоропортящихся продуктов при низких температурах

Лед искусственный

Лед, изготавливаемый с помощью холодильной машины

Льдогенератор

Аппарат или агрегат для производства искусственного льда

Ледник

Холодильник, охлаждаемый льдом

Лед пищевой

Лед из питьевой воды, употребляемый в пищу или применяемый для охлаждения пищевых продуктов

Лед прозрачный

Лед, полученный из воды, не содержащей растворенного воздуха

Снеговальный агрегат

Агрегат для получения снежного льда и загрузки его в охлаждаемый объект

СПИСОК ЛИТЕРАТУРЫ

Алямовский И.Г. Технология производства потребителей искусственного холода. — Л.: Издательство Ленинградского университета, 1984.

Бабакин Б.С, Тихонов Б.С, Юрчинский Ю.М. Совершенствование холодильной техники и технологии. — М.: Галактика-ИГМ, 1992.

Большаков С. А. Интенсификация процессов размораживания продуктов животного происхождения. — М.: ЦНИИТЭИ мясомолпром, 1978.

Бражников A.M., Карпычев В.А., Пелеев А.И. Аналитические методы исследования процессов термической обработки мясопродуктов. — М.: Пищевая промышленность, 1974.

Быкова В.М., Белова 3.И. Справочник по холодильной обработке рыбы. — М.: Агропромиздат, 1986.

Головкин Н.А. Холодильная технология пищевых продуктов. — М.: Легкая и пищевая промышленность, 1984.

Головкин Н.А., Маслова Г.В., Скоморовская И.Р. Консервирование продуктов животного происхождения при субкриоскопических температурах. — М.: Агропромиздат, 1987.

Голянд М.М., Малеванный Б.Н. Холодильное технологическое оборудование. — М.: Пищевая промышленность, 1977.

Демьянков Н.В., Маталасов С.Ф. Хладотранспорт. — М.: Транспорт, 1976.

Ильясов B.C., Полушкин В.И., Васильева Н.Л. Холодильная технология продуктов в мясной и молочной промышленности. — М.: Легкая и пищевая промышленность, 1983.

Илюхин В.В. Физико-технические основы криоразделения пищевых продуктов. — М.: Агропромиздат, 1990.

Мазуренко А.Г., Федоров В.Г. Замораживание пищевых продуктов в блоках. — М.: Агропромиздат, 1986.

Муравин Я.Г. Применение полимерных и комбинированных материалов для упаковки пищевых продуктов. — М.: Агропромиздат, 1985.

Руцкий А.В. Холодильная технология обработки и хранения продовольственных продуктов. — Минск: Вышэйшая школа, 1991.

Тертеров М.Н. Доставка скоропортящихся грузов. — М.: Транспорт, 1992.

Физико-технические основы холодильной обработки пищевых продуктов / Под ред. Э. И. Каухчешвили. — М.: Агропромиздат, 1985.

Флауменбаум Б.Л. Основы консервирования пищевых продуктов. — М.: Агропромиздат, 1986.

Холодильная техника / Под ред. В. Ф.Лебедева. — М.: Агропромиздат, 1986.

Холодильная техника и технология: Учебник / Под ред. А.В.Руцкого. - М.: ИНФРА-М, 2000.

Холодильная технология рыбных продуктов / Под ред. Л. И. Константинова. — М.: Легкая и пищевая промышленность, 1984.

Цуранов О.А., Евреинова B.C. Лабораторный практикум по холодильной технологии пищевых продуктов. — Л.: Издательство Ленинградского университета, 1983.

Чижов Г.Б. Теплофизические процессы в холодильной технологии. — М.: Пищевая промышленность, 1979.

Шавра В.М., Барулина И.Д., Поварчук М.М. Холодильный автотранспорт. — М.: Легкая и пищевая промышленность, 1981.

Шаробайко В.И. Биохимия продуктов холодильного консервирования. — М.: Агропромиздат, 1991.

Яспер В., Плаче к Р. Консервирование мяса холодом. — М.: Пищевая промышленность, 1980.

ОГЛАВЛЕНИЕ

Введение ............................................................................................................................................ 4

РАЗДЕЛ I. ХОЛОДИЛЬНАЯ ТЕХНИКА

Глава 1. Физическая сущность и способы получения искусственного холода .......................... 7

1.1. Физические процессы получения низких температур............... …………………………….7

1.2. Способы охлаждения..................................................................................................................9

Глава 2. Термодинамические основы холодильных машин .......................................................10

2.1. Термодинамический цикл холодильных машин....................................................................10

2.2. Расчет цикла холодильных машин.........................................................................................11

2.3. Принцип действия паровых компрессионных холодильных машин..................................13

2.4. Система охлаждения холодильной установки........................................................................21

2.5. Холодильные агенты и хладоносители...................................................................................21

Глава 3. Типы холодильных машин ..............................................................................................24

3.1. Газовые и вихревые холодильные машины...........................................................................24

3.2. Компрессионные паровые холодильные машины................................................................26

3.3. Абсорбционные и сорбционные холодильные машины.......................................................27

3.4. Пароэжекторные холодильные машины................................................................................27

Глава 4. Компрессоры холодильных машин .................................................................................28

4.1. Поршневые компрессоры........................................................................................................28

4.2. Ротационные компрессоры......................................................................................................32

4.3. Винтовые компрессоры...........................................................................................................33

4.4. Турбокомпрессоры....................................................................................................................34

Глава 5. Теплообменные аппараты холодильных машин ...........................................................34

5.1. Конденсаторы...........................................................................................................................34

5.2. Испарители................................................................................................................................35

5.3. Охлаждающие приборы............................................................................................................36

Глава 6. Вспомогательное оборудование холодильных машин и установок ……………........36

Глава 7. Автоматизация, автоматическое регулирование и агрегаты холодильных

машин и установок...........................................................................................................................38

7.1. Автоматизация холодильных установок.................................................................................38

7.2. Автоматическое регулирование и управление.......................................................................40

7.3. Агрегаты холодильных машин и установок...........................................................................42

Глава 8. Охлаждаемые сооружения и холодильное оборудование.............................................42

8.1. Классификация холодильников для пищевых продуктов....................................................42

8.2. Охлаждающие среды, их свойства и параметры....................................................................48

8.3. Приборы измерения и контроля параметров охлаждающих сред и продуктов.................53

8.4. Конструкции холодильников..................................................................................................55

8.5. Механизация погрузочно-разгрузочных работ

и транспортно-складских операций................................................................................................58

8.6. Тепловой баланс охлаждаемых помещений, системы охлаждения холодильных

камер, способы отвода теплоты от потребителя холода..............................................................59

8.7. Холодильное технологическое оборудование........................................................................61

8.8. Холодильное торговое оборудование.....................................................................................66

8.9. Способы и оборудование безмашинного охлаждения.........................................................69

РАЗДЕЛ II. ХОЛОДИЛЬНАЯ ТЕХНОЛОГИЯ ПРОДУКТОВ ПИТАНИЯ

Глава 9. Теоретические основы холодильного консервирования пищевых продуктов ..........73

9.1. Принципы сохранения пищевых продуктов.........................................................................73

9.2. Влияние низких температур на рост и размножение микроорганизмов...........................75

9.3. Воздействие низких температур на клетки, ткани и организмы........................................77

9.4. Вспомогательные средства, применяемые при холодильной обработке и хранении…..79

Глава 10. Виды холодильной обработки пищевых продуктов ...................................................80

10.1. Охлаждение............................................................................................................................80

10.2. Замораживание.......................................................................................................................81

10.3. Подмораживание...................................................................................................................87

Глава 11. Теплофизические параметры пищевых продуктов и их изменения

при холодильной обработке ..........................................................................................................88

11.1. Теплофизические параметры пищевых продуктов............................................................88

11.2. Изменение теплофизических параметров пищевых продуктов

и температурные графики...............................................................................................................90

Глава 12. Тепло- и массообменные процессы в холодильной технологии ...............................93

12.1. Тепловой расчет процесса охлаждения...............................................................................93

12.2. Тепловой расчет процесса замораживания.........................................................................95

12.3. Тепло- и массообмен при холодильном хранении.............................................................97

12.4. Тепло- и массообмен при размораживании........................................................................99

Глава 13. Основные изменения, происходящие в продуктах питания при охлаждении ........101

13.1. Охлаждение продуктов растительного происхождения...................................................101

13.2. Охлаждение продуктов животного происхождения.........................................................106

13.3. Промышленные способы охлаждения продуктов животного происхождения..............113

Глава 14. Основные изменения, происходящие в продуктах

питания при низкотемпературной обработке .............................................................................119

14.1. Замораживание продуктов растительного происхождения.............................................119

14.2. Замораживание продуктов животного происхождения ...................................................124

14.3. Быстрозамороженные продукты.........................................................................................127

14.4. Сублимационная сушка продуктов....................................................................................132

Глава 15. Холодильное хранение продуктов питания ...............................................................135

15.1. Характеристика холодильного хранения...........................................................................135

15.2. Условия хранения скоропортящихся продуктов...............................................................136

15.3. Общие изменения продуктов в процессе хранения..........................................................140

15.4. Изменение состава и свойств плодов и овощей................................................................142

15.5. Условия хранения продуктов животного происхождения...............................................147

15.6. Изменение продуктов животного происхождения при холодильном хранении...........156

15.7. Холодильное хранение пищевых продуктов у потребителя............................................162

Глава 16. Отепление и размораживание.......................................................................................164

16.1. Технология отепления и размораживания.........................................................................164

16.2. Классификация и анализ способов размораживания пищевых продуктов....................166

16.3. Устройства для размораживания сырья и продуктов питания........................................169

16.4. Изменения, происходящие в продуктах питания в процессе размораживания.............175

16.5. Методы расчета параметров процесса размораживания

отдельных видов продуктов……………………………………………………………………..177

Глава 17. Транспортирование охлажденных и замороженных пищевых продуктов .............183

17.1. Классификация и краткая характеристика холодильного транспорта...........................183

17.2. Контейнерные перевозки.....................................................................................................188

17.3. Условия, сроки и особенности перевозки различных пищевых продуктов...................189

17.4. Правила приемки транспортируемых продуктов..............................................................191

Приложения ...................................................................................................................................193

Список литературы ........................................................................................................................211

Холодильная техника и технология продуктов питания