ПРИМЕНЕНИЕ ЭЛЕКТРОННЫХ ПРИБОРОВ И УСТРОЙСТВ

Реферат

ПРИМЕНЕНИЕ ЭЛЕКТРОННЫХ ПРИБОРОВ И УСТРОЙСТВ


ВВЕДЕНИЕ

Рассматриваемые электронные устройства входят частично в радиотехнические системы (РТС) общая классификация которых можно представить в виде следующей таблицы 1.

Таблица 1

Устройства

Вид и назначение системы

1. Передача информации

радиовещание и телевидение РВ и ТВ,

радиорелейные линии (РРЛ), связь через ИСЗ,

мобильная связь, роуминг, телеметрия (ТМ),

передача команд (ПК)

2.Извлечение информации

радиолокация (обнаружение и классификация целей, определение координат и параметров движения) (РЛ), радионавигация (РН), радиоразведка ископаемых и состояние поверхности Земли (РР), радиоастрономия (РА), радиоразведка РЭС другой страны (РР)

3. Радиоуправление

радиоуправление ракетами (РУ),

радиоуправление космическими аппаратами, включая радиотелеуправление через ИСЗ,

подрыв боевой части снарядов (ПБЧ)

4. Разрушение информации

Радиопротиводействие (РП)

Отличительной особенностью систем передачи информации является то, что здесь сообщения отображаются в радиосигнале в пункте его излучения. После распространения в среде они принимаются и из них выделяются сообщения. Структурная схема такой системы имеет вид рис.1.

Рис.1

II. Отличительной особенностью систем извлечения информации является то, что полезная информация отображается в радиосигнале в процессе распространения и отражения радиоволн или при независимом, от рассматриваемой системы, формировании и излучении радиоволн (РТС противника, естественные источники и т.п.). Структурная схема такой системы, применительно к локации имеет вид рис.2.

Рис.2

Особенностью системы радиоуправления (РУ) является то, что в ней информация, передаваемая с помощью радиосигналов, непосредственно используется для управления объектами и процессами (например, управление полетами ракет, ИСЗ, самолетами и пр.).

III. В систему входят и другие (исполнительные, не радиотехнические) звенья, отображающие свойства объекта управления и особенности задачи управления. Структурная схема системы РУ (на примере самонаведения ракет) приведена на рис. 3.

IV. Системы разрушения информации предназначены для решения задач противодействия РТС противника, ориентированным на передачу и извлечение информации. Их особенности определяются поставленными задачами.

На рис.1 – 3 приведены простейшие, единичные системы. В реальных режимах они работают совместно со многими системами (в сети) и в сочетании с разными РТС (в радиотехническом комплексе).

Рис.3

Помимо вышеназванных основных – РТС применяются в промышленности, медицине, при научных исследованиях и др. Ясно, что данная классификация не является жесткой. Во многих случаях в реальной РТС сочетаются несколько функций. Например, в систему РТУ входят РЛ и РН и системы передачи информации, телеметрия и передача команд.

Характерным признаком радиэлектронных систем является использование радиосигнала в качестве носителя информации. Назначение информации – один из признаков классификации систем.

По виду применяемых сигналов различают: - непрерывные, импульсные и цифровые системы.

В непрерывных – информация отображается изменением амплитуды, частоты, фазы непрерывного, обычно гармонического, сигнала.

В импульсных – сигнал представляет собой последовательность радиоимпульсов, в которых информацию могут нести как изменяющиеся параметры отдельных импульсов (А, tn), так и всей последовательности (n в пакете, интервалы между ними).

В цифровых системах сигнал предварительно квантуется по времени и уровню. Каждому уровню соответствует кодовая группа импульсов, которые и модулируют несущее колебание. Такие системы легко сопрягаются с ЭВМ, осуществляющими обработку и запоминание информации, воспринимаемой затем устройством отображения.

Среди перечисленных систем наибольшее распространение сегодня получили телевизионные с которых и начнем изучение курса.

Телевизионные устройства и системы

Телевизионными (ТВ) называются системы передачи информации (ПИ), предназначенные для передачи и воспроизведения на расстоянии оптических изображений. В зависимости от назначения различают системы вещательного и прикладного.

В системах ТВ используется поэлементный принцип передачи изображения, суть которого состоит в условном разбиении передаваемого изображения на совокупность малых элементов; преобразовании информации об элементах в электрические сигналы; последовательной передаче сигналов по линии связи; воспроизведении из сигналов изображения в приемнике).

ТВ сигнал в отличие от других электрических сигналов связи и информации характеризуется тем, что его спектр во много раз превосходит спектры обычных сигналов и занимает полосу от 50 Гц до 6 МГц (заметим, что спектр звукового вещания 30 Гц 12 КГц, что в 500 раз меньше ТВ спектра). Такой сигнал определяет ряд задач, которых не было при передачи на значительные расстояния СВ и даже КВ информационных посылках. И хотя сегодня найдены средства передачи ТВ сигнала (через ИСЗ, радиорелейные линии связи, кабельные и двухпроводные телефонные линии и др.), поиск технических методов сужения полосы ТВ частот (конечно, не в ущерб качеству изображения) остается важной научно-инженерной задачей. Особое значение эта проблема приобрела в цифровом, цветном и стереоскопическом цветном ТВ.

Оценить верхнюю и нижнюю границу ТВ спектра можно на основании рассмотрения работы следующей структурной схемы (рис.4), состоящей из: генератора прямоугольных импульсов, регулируемого по частоте повторения; видеоусилителя; кинескопа; генератора развертки; отклоняющей системы; блока питания.

Рис.4 Рис.5

Примем параметры развертки стандартными (ГОСТ 784579): частота развертки по полям fп = 50 Гц, число строк разложения Z = 625, частота строчной развертки fстр = 15625 Гц.

Установив по шкале генератора импульсов fген = 50 Гц, получим на экране кинескопа две неподвижные горизонтальные полосы – черную и белую. Эта частота fн = fп = 50 Гц и принимается в спектре вещательного ТВ самой нижней.

Повышая частоту колебаний выше 50 Гц, получим при 100 Гц две пары полос (fген = 2fп = 100 Гц) и вообще m пар неподвижных полос при fген = mfп (где m – целое число).

При fген = fстр = 15625 Гц – на экране появятся две вертикальные полосы – белая и черная, т.е. граница из горизонтальной превратится в вертикальную (передача 50 полукадров в сек или 25 полных кадров).

Увеличивая fген до 2fстр = 31250 Гц, получим две пары вертикальных черных и белых полосы, а при fген = nfстр (n – целое число) n – пар черных и белых полос, расположенных вертикально.

При дальнейшем увеличении частоты в силу ограничительности разрешающей способности системы вертикальные узкие полоски на экране начнут сливаться, терять контрастность.

Ограниченность разрешающей способности имеет место по следующим причинам:

любая схема (у нас видеоусилитель), через которую проходит ТВ сигнал (у нас – прямоугольные импульсы), имеет ограниченную полосу частот;

электронный луч кинескопа из-за апертурных искажений не в состоянии воспроизводить на экране сколь угодно тонкие и мелкие детали – штрихи и точки (диаметр электронного луча вместе его касания экрана – апертура луча – не должна быть больше толщины прочеркиваемых штрихов и промежутков между ними).

Апертура луча d связана с числом строк разложения Z (625 строк) как d = h/Z = h/625 (где h – высота изображения). Для уменьшения апертурных искажений (для повышения разрешающей способности), следовало бы разрабатывать электронную оптику, фокусирующую луч в кинескопе как можно более тонким. Но такое решение не подходит, т.к при d < h/Z между строками появятся темные промежутки.

Таким образом принимая d = h/Z, получим, что максимальное количество мельчайших черных деталей (разделенных такими же светлыми промежутками) по вертикали Z, а по горизонтали pZ/2 черных и pZ/2 белых (где р – формат кадра, по стандарту р = ширина изображения; h – высота изображения). При этом на всем изображении разместятся pZ2/2 пар элементов, и передаваемых пар в 1сек fк = 25 Гц (учитывая черезстрочную развертку) fкpZ2/2, откуда, за верхнюю границу можно принять

fверх = fкpZ2/2. (1)

На практике fверх ТВ спектра принимается несколько ниже. Снижение определяется апертурными искажениями, ухудшением отношения сигнал/шум при передаче мелких деталей, разбросом параметров электронно-фокусирующей системы ТВ трубок и др.

Поэтому вводят коэффициент k = 0,9 0,8 и исходя из этого получают верхнюю границу ТВ спектра

fверх = 0,5kfкpZ2 = 0,92546252/23 6 МГц .

Если рассмотреть спектр ТВ канала, то можно отметить, что основная часть его сосредоточена в области нижних частот. В этой полосе (до 2,5 МГц) расположены составляющие спектра, соответствующие крупным элементам изображения. Высокочастотные составляющие, обладающие малой энергией, несут информацию о малоразмерных деталях. Гармоники строчной частоты со своими боковыми, образуют дискретные зоны энергии и несут информацию о деталях передаваемого объекта (рис.6).

Для передачи изображения по радиоканалу используется АМ-несущая с частотным подавлением одной боковой полосы (рис.7).

Для передачи медленно меняющихся параметров сигнала используют изменения постоянной составляющей видио сигнала. При этом меньший уровень видеосигнала соответствует большей освещенности кадра (т.к. видио сигнал отрицательной полярности, см. рис.8).

Рис.6 Рис.7

В системах вещательного ТВ совместно с изображением передается ЧМ звуковое сопровождение (рис.9), при этом стандартная полоса частот, отводимая ТВ каналу составляет 8 МГц.

Рис.8 Рис.9

Напомним, что полный ТВ сигнал в интервале двух строк имеет вид (рис.10):

Рис.10

Принципы черезстрочной развертки

Применяемая в ТВ развертка для четного и нечетного полей – полукадров отличается длительностью первой и последней строк, что понятно из приведенного рис.11.

Рис.11

Кроме того, в передаваемом по радиоканалу сигнале используется негативный характер зависимости между амплитудой и яркостью. Такой способ: упрощает задачу построения АРУ, которая в этом случае поддерживает постоянным верхний предел синхроимпульсов (СИ); снижается Рср – поскольку в изображениях преобладает белый свет; уменьшается влияние помех на качество изображения (они выше “черного” и на экране менее заметно).

Структурная схема черно-белого телевизора

Общие требования к структурным схемам телевизоров

Приемные телевизионные устройства – телевизоры строятся в настоящее время по супергетеродинной схеме, и это решающим образом определяет структуру взаимодействия между каналами, блоками, каскадами. В общем виде структура построения телевизоров различных поколений аналогичны.

В настоящее время выпускаются в основном полупроводниковые и интегральные телевизоры, обладающие неоспоримыми.

В соответствии с ГОСТ 18198-79 и ГОСТ 24330-80 все телевизоры в зависимости от технических характеристик разделяются на стационарные (с размером экрана кинескопа не менее 50 см) и переносные (с размером экрана кинескопа не более 45 см).

С точки зрения требований функционального взаимодействия структурная схема телевизора должна обеспечивать:

прием сигналов несущих частот изображения и звука в полосе 8 МГц в метровом диапазоне волн с частотами от 48,5 МГц до 299,75 МГц и дециметровом диапазоне волн с частотами от 470 до 622 МГц;

преобразование сигналов несущих частот в сигналы промежуточных частот (ПЧ) со значениями fпр.из = 38,0 МГц и fпр.зв = 31,5 МГц;

выделение из сигналов ПЧ изображения ПТС и усиления его до уровня, необходимого для управления кинескопом;

выделение из сигналов ПЧ изображения и звука сигналов разностной частоты (второй ПЧ звука) с последующим преобразованием и усилением этих сигналов до уровня, способного управлять громкоговорителем;

выделение из ПТС синхросмеси и разделение ее на строчные и кадровые синхроимпульсы с последующим направлением их к соответствующим генераторам разверток;

развертку телевизионного изображения по горизонтали и вертикали;

противошумовую, апертурную, -коррекцию, восстановление постоянной составляющей (противошумовая – повышение соотношения сигнал/шум (использование полевых транзисторов с высоким входным сопротивлением) для снижения влияния входной емкости шунтирующей Rн передающей трубки; апертурная – (апертура – сечение электронного луча)- связанные с конечными размерами сечения луча. Причина устраняется введением в видеоусилительный тракт корректирующего звена с ЧХ обратной по форме апертурной характеристики передающей трубки и линейной ФХ; -коррекция – выравнивание ступеней градаций яркости специальным усилителем с регулируемой формой АЧХ (применяются нелинейные нагрузки)).

Структурная схема телевизора

Транзисторные схемы выпускаемых промышленностью телевизоров тоже иногда отличаются друг от друга. Однако применение однотипных транзисторов в тех или иных каскадах и блоках, естественно, привело к унификации схемных решений. На рис.12 приведена структурная схема транзисторного телевизора.

Рис.12 Рис.13

По функциональному назначению структурную схему условно разделяют на 7 каналов и блоков (такое деление оправдано упрощением поиска повреждения в схеме, т.к. внешнее проявление неисправности тесно связано с тем или иным конкретным каналом или блоком телевизора).

Схема транзисторного телевизора включает в себя высокочастотный блок 1, канал изображения 2, канал звука 3, канал синхронизации 4, канал строчной развертки 5, канал кадровой развертки 6 и блок питания 7.

Высокочастотный блок

Высокочастотный блок (ВЧ блок), (рис.13) принимает от фидерной линии сигналы двух несущих частот изображения и звука fнес.из и fнес.зв, усиливает их и с помощью гетеродина преобразует в сигналы с более низкими промежуточными частотами fпр.из = 38,0 МГц, fпр.зв = 31,5 МГц. ВЧ блок состоит из селектора каналов метрового диапазона волн (СКМ), селектора каналов дециметрового диапазона волн (СКД) и блока настройки (БН). Блок настройки управляет переключением каналов в СКМ и переходом в режим приема сигналов дециметрового диапазона волн – включением СКД.

В состав СКМ входят усилитель высокой частоты (УВЧ), гетеродин, смеситель (преобразователь). В состав СКД входят только УВЧ и генерирующим автодинный преобразователь. Совместная работа схем СКД происходит следующим образом. При приеме в диапазоне метровых волн работает только СКМ. При приеме в диапазоне дециметровых волн включены СКД и преобразователь СКМ, т.к. генерирующий преобразователь СКД не обеспечивает амплитуду сигналов нужного уровня.

Преобразователь СКМ работает в этом случае как усилитель, доводя уровень сигналов ПЧ до необходимой амплитуды.

Коммутацию этих режимов работы осуществляет блок настройки оба УВЧ охвачены напряжением АРУ.

Канал изображения

Канал изображения обеспечивает основное усиление сигналов промежуточных частот (ПЧ) изображения и звука, детектирование сигналов ПЧ изображения, в результате чего выделяется ПТС, усиление ПТС до уровня, обеспечивающего управление электронным лучом кинескопа. В состав канала изображения входит также схема АРУ, управляющая усилением каскадов УПЧ, УВЧ СКМ и УВЧ СКД.

Канал изображения состоит из режектирующих и фильтрующих цепей трехкаскадного УПЧИ, видеодетектора (ВД), видеоусилителя (ВУ), кинескопа и схемы АРУ (рис.14).

Усилитель промежуточной частоты изображения (УПЧИ) принимает от ВЧ блока сигналы ПЧ изображения и звука и направляет их по общему широкополосному каналу усиления. Первый каскад УПЧИ осуществляет согласование ВЧ блока с фильтром сосредоточенной селекцией (ФСС), в котором формируется амплитудно-частотная характеристика (АЧХ) канала, определяющая в основном его избирательность. УПЧИ собран по одноканальной схеме, в которой сигналы ПЧ изображения и звука усиливаются одновременно. Такая возможность обеспечена различием способов модуляции (амплитудная и частотная).

Рис.14

В целях исключения взаимного влияния сигналов друг на друга ПЧ звука проходит через УПЧИ с режекцией (ослаблением) до уровня 0,1 от максимального значения АЧХ. В настоящее время все телевизоры отечественного производства выпускаются по одноканальной схеме УПЧИ. Напряжением АРУ охвачен первый каска УПЧИ.

Видеодетектор (ВД) принимает от УПЧИ усиленные сигналы ПЧ изображения и выделяет из них ПТС, который затем передается к видеоусилителю. ВД выполнен по схеме диодного амплитудного детектора с ВЧ коррекцией, необходимой для прохождения ВЧ составляющих видеосигнала.

Видеоусилитель (ВУ) усиливает ПТС по напряжению и мощности в полосе частот от 50 Гц до 5 МГц и регулирует контрастность изображения. ВУ выполнен по двухкаскадной схеме. Первый каскад – предварительный парафазный усилитель – обеспечивает разнополярными сигналами схему АРУ и канал синхронизации.

Схема автоматической регулировки усиления АРУ обеспечивает первый каскад УПЧИ и УВЧ автоматически меняющимся напряжением, величина которого зависит от уровня сигнала на антенном входе телевизора. Это напряжение, в свою очередь. Изменяет коэффициенты усиления каскадов так, что при уменьшении уровня входного сигнала они возрастают, а при увеличении – уменьшаются. В результате усиления канала (контрастность) остается неизменным при значительных колебаниях уровня входного сигнала.

Кинескоп является замыкающим звеном канала изображения. В нем ПТС осуществляет яркостную модуляцию луча, которая совместно с развертками по горизонтали и вертикали создает впечатление изображения.

Канал звука

Канал звука (рис.15) выделяет сигналы второй ПЧ звука (6,5 МГц) из основных ПЧ изображения и звука. Схема имеет самостоятельный детектор разностной частоты (ДРЧ), подключенный к УПЧИ. Канал звука состоит из ДРЧ, усилителя сигналов второй ПЧ звука промежуточной частоты звука (УПЧЗ), частотного детектора (ЧД), усилителя низкой частоты (УНЧ) и громкоговорителя (Гр).

Рис.15 Рис.16

Схема УПЧЗ помимо усиления должна ограничивать по амплитуде сигналы второй ПЧ звука, так как в ее составе имеются кадровые синхроимпульсы, создающие в громкоговорителе низкочастотный фон. ЧД выделяет сигналы звуковых частот, которые после усиления в УНЧ воздействуют на громкоговоритель, осуществляя звуковое сопровождение изображения.

Канал синхронизации

Канал синхронизации (рис.16) принимает ПТС от предварительного каскада ВУ, выделяет из него синхросмесь, состоящую из совокупности импульсов строчной и кадровой синхронизации, усиливает ее и разделяет на строчные и кадровые синхроимпульсы, которые затем поступают к соответствующим генераторам разверток.

Канал синхронизации состоит из амплитудного селектора (АС), парафазного усилителя (ПФУ), интегрирующего фильтра (ИФ) и схемы автоматической подстройки частоты и фазы (АПЧ и Ф). АС выделяет из ПТС методом амплитудной селекции синхросмесь, которая усиливается в ПФУ. К ПФУ подключены два устройства: ИФ и АПЧ и Ф. С помощью ИФ из синхросмеси методом интегрирования выделяются кадровые синхроимпульсы, которые затем поступают к генератору кадров, синхронизируя его работу. Схема АПЧ и Ф автоматически подстраивает частоту и фазу генератора строк в соответствии с частотой и фазой синхроимпульсов. Эта схема имеет два входа и один выход. На один вход поступают синхроимпульсы, на другой – импульсы генератора строк. Здесь импульсы сравниваются по частоте и фазе, и в зависимости от их совпадения на выходе появляется напряжение, подстраивающее генератор строк.

Канал строчной развертки

Канал строчной развертки (рис.17) обеспечивает с помощью строчных отклоняющих катушек развертку луча кинескопа по горизонтали. Он состоит из задающего генератора строк (ЗГС), двухкаскадного усилителя мощности (УМ), демпфера (Д), трансформатора выходного строчного (ТВС), высоковольтного выпрямителя (ВВ) и строчных отклоняющих катушек (СОК), входящих в состав отклоняющей системы (ОС).

Рис.17 Рис.18

ЗГС вырабатывает импульсное напряжение необходимой формы, которое передается усилителю мощности, формирующему в строчных отклоняющих катушках пилообразные токи необходимой формы и мощности. Демпфер сглаживает паразитные колебания, возникающие в резонансной системе выходного каскада усилителя мощности во время обратного хода развертки.

С помощью ТВС импульсы обратного хода увеличиваются по амплитуде, выпрямляются, удваиваются схемой умножения напряжения и подаются на второй анод кинескопа в виде высокого выпрямленного напряжения.

Канал кадровой развертки

Канал кадровой развертки (рис.18) с помощью кадровых отклоняющих катушек развертывает луч кинескопа по вертикали.

Канал состоит из задающего генератора кадров (ЗКГ), эмиттерного повторителя (ЭП), двухкаскадного усилителя мощности (УМ) и кадровых отклоняющих катушек (КОК). ЗКГ вырабатывает пилообразное напряжение для управления каскадами усилителя мощности. ЭП обеспечивает необходимое согласование между ЗКГ выходными каскадами кадров. Усилитель мощности формирует в кадровых отклоняющих катушках пилообразные токи необходимой формы и мощности.

Блок питания

Блок питания (БП) обеспечивает телевизор (включая накал кинескопа) стабилизированным постоянным напряжением. Он состоит из силового трансформатора, диодного выпрямителя и электронного стабилизатора напряжения. С помощью силового трансформатора осуществляется понижение напряжения сети переменного тока 220-127 В до значений, необходимых для нормальной работы телевизора. Диодный выпрямитель преобразует переменное напряжение в пульсирующее с последующим сглаживанием его с помощью фильтров. Электронный стабилизатор обеспечивает постоянство значений выходного постоянного напряжения в заданных пределах при колебаниях потребляемого тока и переменного напряжения питающей сети.

Функциональные взаимодействия каналов и блоков транзисторного телевизора следующие.

Высокочастотные сигналы несущих частот изображения и звука принимаются приемной антенной и по фидерной линии направляются в антенный вход телевизора. С помощью селектора каналов избирается нужная программа ВЧ блок преобразует эти сигналы в более низкие промежуточные частоты изображения и звука. Их значения остаются неизменными независимо от выбранного канала.

В УПЧИ происходит основное усиление сигналов ПЧ и режекция помех соседних каналов. Далее, в видеодетекторе, выделяется ПТС со всеми его компонентами и приняты меры ВЧ коррекции, обеспечивающие прохождение ВЧ составляющих видеосигнала.

С предварительного видеоусилителя сигналы разветвляются в трех направлениях : на оконечный каскад видеоусилителя в канал синхронизации и на схему АРУ.

С оконечного каскада видеоусилителя ПТС поступает на кинескоп, где с помощью ПТС и ОС происходит преобразование электрических сигналов в изображение. Схема АРУ автоматически регулирует коэффициенты усиления первого каскада УПЧИ и каскадов УВЧ селекторов каналов метрового и дециметрового диапазона волн в соответствии с изменением уровня входного сигнала телевизора.

Канал звука подключен к последнему каскаду УПЧИ. С помощью ДРЧ выделяется вторая ПЧ звука с частотой 6,5 МГц. Резонансный УПЧЗ усиливает и ограничивает эти сигналы по амплитуде. Далее с помощью ЧД частотно-модулированные колебания преобразуются в сигналы низкой частоты звукового сопровождения, которые после усиления в УНЧ воздействуют на громкоговоритель. В громкоговорителе сигналы НЧ преобразуются в звук.

Канал синхронизации подключен к предварительному каскаду ВУ и осуществляет необходимые преобразования сигналов строчной и кадровой синхронизации, обеспечивающие синхронную работу генераторов строчной и кадровой разверток.

Задающие генераторы работают в автоколебательных режимах, обеспечивая непрерывный растр на экране кинескопа. При подаче сигналов на антенный вход телевизора генераторы оказываются засинронизированными с аналогичными генераторами на передающей стороне. Далее каналы строчной и кадровой разверток формируют пилообразные токи, необходимые для правильной работы отклоняющей системы.

Стабилизированный блок питания обеспечивает постоянным напряжением все каскады схемы. В некоторых телевизорах блок питания может использоваться также для заряда аккумуляторной батареи.

1.2. Структурная схема унифицированного телевизора

Структурная схема рис.19 унифицированных телевизоров II – III поколений в основе своей мало отличаются друг от друга. Имеющиеся отличия в основном связаны с цепями питания. Условно схема разделена на семь названных выше каналов и блоков.

ВЧ блок содержит традиционные устройства транзисторного телевизора. Аналогична и комбинация совместной работы ПТК-СКД.

Канал изображения содержит дополнительные схемы автоматической подстройки частоты гетеродина (АПЧГ), преобразователя напряжения (ПАРУ) и каскад защиты от перегрузок (КЗ). Схема АПЧГ получает сигналы ПЧ изображения с третьего каскада УПЧИ. В случае отклонения частоты гетеродина от нормы ПЧ изображения также будет иметь расстройку частоты относительно значения 38,0 МГц, на которую отреагирует дискриминатор АПЧГ.

КЗ предохраняет от перегрузок каскады, охваченные напряжением АРУ. Канал звука по своим функциональным задачам и структурной схеме аналогичен транзисторному варианту. Преобразование и выделение второй ПЧ звука производит амплитудный ВД. В котором одновременно приняты меры, исключающие прохождение этой частоты с ВУ.

Рис.19

Канал синхронизации содержит традиционные каскады. Канал строчной развертки может отличаться наличием высоких напряжений во всех каскадах. Выходной каскад строк (ВКС) и высоковольтный выпрямитель (ВВ) выполняют соответственно функции усилителя мощности и выпрямителя тока высокого напряжения.

Канал кадровой развертки также аналогичен транзисторному каналу. Функции усилителя мощности выполняет выходной каскад кадров (ВКК).

Блок питания состоит из силового трансформатора, двух диодных выпрямителей, сглаживающих фильтров и обеспечивает постоянным напряжением все каскады схемы, переменным напряжением накалы ламп, за исключением накала высоковольтного кенотрона и переменным напряжением – схему защиты.

Высокочастотный блок

Усилитель высокой частоты

Высокочастотный блок (ВЧ блок) современного телевизора состоит из обоих селекторов (СК-М и СК-Д), с помощью которых можно принимать программы всех диапазонов вещательного телевидения.

СК-М (ПТК) воспринимает от антенны через фидерную линию и входные цепи сигналы двух несущих частот метрового диапазона волн, усиливает их и с помощью процесса гетеродинирования преобразует в сигналы более низких промежуточных частот. Одним из главных преимуществ гетеродинного приема является то, что независимо от выбираемого канала ПЧ остается неизменной при этом упрощается схема усилительного тракта.

Рис.20

СК-М (ПТК) состоит из входных цепей, усилителя высокой частоты, гетеродина и смесителя. В соответствии с задачами, выполняемыми селекторами каналов можно сформулировать два дополнительных требования: возможно меньший уровень собственных шумов и возможно большее ослабление сигналов гетеродина во входных устройствах селектора. Первое требование повышает чувствительность телевизора, второе – уменьшает проникающее действие сигналов гетеродина в антенну.

Входные цепи селектора, обладающие резонансными свойствами, выделяют из множества наведенных в антенны сигналов нужные сигналы в полосе частот 8 МГц, а также обеспечивают согласование фидерной линии с входом УВЧ, при котором происходит передача в этом звене максимального сигнала. Оптимальными входными цепями являются повышающие резонансные трансформаторы с волновым сопротивлением на средних частотах канала, равным 75 Ом.

Кроме того, повышающий трансформатор в значительной степени уменьшает возможность прохождения сигналов гетеродина в антенну, т.к. для этих сигналов он является понижающим.

Транзисторный УВЧ (рис.20) собран по схеме с общей базой, которая обеспечивает достаточное усиление высоких частот. В эмиттерную цепь через резистор R1 подается положительное напряжение +Е. Во входной цепи катушка L2, конденсатор С3, С5 и параллельная ему входная емкость транзистора составляют резонансный контур, обеспечивающий увеличение напряжения в 1,5 раза. Последовательный режекторный контур С2, L1 настроен на частоты, равные промежуточным. Иногда во входной цепи имеется несколько таких контуров, которые уменьшают проникновение из антенны сигналов помех на частоте, равной ПЧ изображения и звука.

Конденсаторы С3, С5 обеспечивают неполное подключение входного контура к эмиттерной цепи транзистора, что дает возможность уменьшить шунтирующее действие этой цепи на контур и сформировать требуемую полосу пропускания входной цепи. Напряжение АРУ подается в цепь базы транзистора через резистор R4. При увеличении положительного напряжения на базе этого транзистора он запирается, что уменьшает усиление УВЧ. Иногда используют обратную полярность напряжения АРУ. При увеличении отрицательного напряжения на базе Vтр возрастает коллекторный ток и увеличивается падение напряжения на резисторе R1. Это приводит к уменьшению постоянного напряжения на промежутке база-эмиттер и к падению усиления. Приведенные способы АРУ получили соответственно названия прямой и обратной АРУ (определяется номиналами резисторов и смещением). Коллекторная нагрузка УВЧ состоит из двухконтурного полосового фильтра L3, L4, частотная характеристика которого также как и из лампового УВЧ имеет вид двугорбой кривой, настроенной на несущие частоты изображения и звука.

Преобразователь

В смесителе смешиваются колебания частоты гетеродина fг с колебаниями несущих частот сигналов изображения fн.из и звука fн.зв. Среди многих комбинаций частот в нагрузочном резонансном контуре преобразователя образуются разностные частоты:

Fпр.из = fг – fн.из = 38,0 и Fпр.зв = fг – fн.из = 31,5 МГц.

Транзисторный преобразователь (рис.21,а) выполнен по схеме с общим эмиттером, что снижает шунтирующее действие полосового фильтра УВЧ и позволяет повысить избирательность каскада. На рис.21,в приведена схема автодинного смесителя, используемого в портативных телевизорах, имеющего ЧХ аналогичную рис.21,б.

а б

в

Рис.21

Здесь в эмиттерную цепь Сэб подается сигнал с выхода УВЧ (L3C3), который складывается в диодной части транзистора с сигналом частоты гетеродина. Для ПЧ контур L1C4C1 – емкость, которая включена параллельно L2. Гетеродин выполнен по схеме емкостной трехточки. Коллектор через С4 соединен с контуром L1C1, а обратная связь с коллектора на эмиттер осуществляется через собственную емкость транзистора и добавочный конденсатор С2.

Канал изображения

В усилителях сигналов изображения широко применяются резонансные контуры, с помощью которых формируются амплитудно-частотные характеристики, определяющие в конечном итоге избирательность канала. Резонансные контуры используются не только как нагрузки каскадов, но и в целях режекции помех соседних каналов и ослабления собственных сигналов промежуточных частот.

Усилитель промежуточной частоты

Усилитель промежуточной частоты изображения (УПЧИ) решающим образом влияет на основные показатели телевизора: чувствительность, четкость, избирательность, качество звука и синхронизации. Как уже отмечалось, в современных одноканальных телевизорах через УПЧИ проходят и усиливаются сигналы промежуточных частот как изображения, так и звука. В связи с этим УПЧИ должен иметь достаточно широкую полосу усиливаемых частот и вместе с тем исключать возможность взаимного влияния этих сигналов друг на друга. Исходя из назначения, можно сформулировать требования, предъявляемые к УПЧИ:

обеспечение коэффициента усиления, достаточного для выделения в нагрузке детектора сигнала с амплитудой 2 В при полосе усиливаемых частот до 5 МГц;

режекцию сигналов промежуточных частот изображения и звука до уровней 0,5 и 0,1 соответственно;

режекцию помех соседних сигналов на частотах 30,0; 39,5; 41,0 МГц.

На основании изложенных требований можно построить АЧХ УПЧИ, удовлетворяющую этим требованиям. (см.рис.22)

Рис.22

Для лучшего понимания уточним понятия чувствительности, четкости и избирательности, которые в основном определяют качество работы телевизора.

Чувствительность связана с общим коэффициентом усиления каскадов от антенного входа до детектора, от которого, в частности, зависит контрастность изображения и качество синхронизации.

Четкость изображения, как известно, определяется шириной полосы частот усиливаемых сигналов всего видеоканала и, в частности, УПЧИ, с которой связано также качество звука.

Избирательность влияет на все перечисленные качества работы телевизора, т.к. ею определяется выбор полезных сигналов для данного канала. Для правильной работы видеодетектора, видеоусилителя и кинескопа амплитуда сигнала на выходе УПЧИ должна составлять 4 В.

Воспользуемся рис.23 и подсчитаем, каким должен быть коэффициент усиления УПЧИ, учитывая, что чувствительность телевизоров колеблется в пределах от (50 до 200 мкВ).

Рис.23

По известной формуле общий коэффициент усиления совокупности устройств или каскадов равен произведению коэффициентов усиления этих устройств или каскадов Kобщ = K1K2…Kn .

Общий коэффициент усиления входных цепей, УВЧ и УПЧИ с учетом необходимой амплитуды выходного сигнала УПЧИ и чувствительности телевизора составит:

Kобщ = 4/(50106 ) = 80000,

отсюда на УПЧИ приходится

Kупчи = Kобщ/Kвх.изKувч = 80000/[1,5(25…30)] = 2000.

УПЧИ обычно состоит из трех каскадов резонансных усилителей, в которых комбинацией режекторных контуров обеспечиваются необходимые избирательность и усиление.

Как уже отмечалось, АЧХ предусматривает подавление помех соседних каналов в УПЧИ. Рассмотрим на примере рис.22 причины появления этих помех. Несущие частоты телевизионных передатчиков, образующих телевизионную сеть страны, выбираются с учетом требования минимальных взаимных помех. Однако частоты соседних каналов расположены настолько близко друг от друга, что их края попадают в раствор частотной характеристики УВЧ. Поскольку несущие частоты соседних каналов отстоят друг от друга на 1,5 МГц, то и помехи, образованные после взаимодействия несущих с гетеродином, тоже будут отстоять от промежуточных частот на 1,5 МГц в ту и в другую стороны:

fп1 = 31,5 – 1,5 = 30,0 МГц; fп2 = 38,0 + 1,5 = 39,5 МГц.

Так как каналы метрового диапазона волн распределены неравномерно (1-й канал отстоит от 2-го на 1,5 МГц), то появляется возможность еще одной помехи:

fп3 = fп4 + 1,5 = 41,0 МГц.

Практика показывает, что сигналы помех должны быть ослаблены в 100 200 раз относительно максимальных значений АЧХ.

Рис.24

Рассмотрим более подробно формирование левого и правого склонов АЧХ. Полоса частот видеосигнала располагается между несущими изображения и звука. Область ВЧ составляющих, определяющая максимальную четкость изображения, находится вблизи несущей звука. В результате взаимодействия несущих с гетеродином ВЧ блока АЧХ УПЧИ представляет собой зеркальное отражение АЧХ, показанной на рис.10. Вследствие этого ВЧ составляющие видеосигнала на частотной характеристике УПЧИ теперь расположились слева и их количество определяется крутизной левого склона АЧХ.

Для максимального захвате ВЧ составляющих видеосигнала склон должен быть по возможности крутым (см.рис.22). Вместе с тем на этом же склон располагается промежуточная частота звука, которая режектируется до уровня 0,1 от максимального значения АЧХ. Отрезок кривой в области ПЧ звука 31,5 МГц должен быть плоским и параллельным оси частот с шириной, равной полосе звука Пзв. В противном случае появляется так называемый дискриминаторный эффект (черные полосы на экране в такт со звуком). На рис.25 показаны причины появления дискриминаторного эффекта.

Если склон АЧХ будет не плоским, то изменение частоты f (fпр.зв промодулирована по частоте) вызывает изменения амплитуды сигнала U. В составе сигнала изображения появляется дополнительная паразитная амплитудная модуляция. Дискриминаторный эффект проявляется тем сильнее, чем больших уровней на АЧХ достигает паразитная амплитудная модуляция.

Рис.25

На правом склоне АЧХ располагается промежуточная частота изображения fпр.из, в области которой концентрируются НЧ составляющие видеосигнала. В связи с частичным подавлением нижней боковой полосы видеосигнала возникают неизбежные искажения, вызванные избытком НЧ составляющих в области fнес.из. Энергия НЧ вдвое больше, чем остальных составляющих видеосигнала. Для устранения этих искажений АЧХ ПЧ изображения режектируется до уровня 0,5 от максимального значения АЧХ и правый склон АЧХ должен быть по возможности пологим.

Пример трехкаскадного УПЧИ приведен на рис.26. Усилитель имеет четыре двухконтурных полосовых фильтра, из которых три соединены через емкость, а один в последующем каскаде через индуктивность. Благодаря применению кремниевых транзисторов с малой обратной емкостью нет необходимости в нейтрализации ОС.

Рис.26

Для уменьшения перекрестных помех все фильтры мешающих частот помещены на входе усилителя (в ФСС). Один из них компенсирующий фильтр. Вторые контуры полосовых фильтров на входе и выходе среднего каскада имеют емкостной делитель. В последнем каскаде усилителя индуктивная связь между контурами фильтра противодействует попаданию гармоник ПЧ на выход усилителя.

Рис.27

В каскадах УПЧИ телевизоров II и III поколений склоны АЧХ формируются Т-, М-образными и дифференциально-мостовыми фильтрами рис.27. В транзисторных УПЧИ формирование АЧХ осуществляется с помощью фильтра сосредоточенной селекции (ФСС), показанного на рис.28

Рис.28

Видеодетектор

Выходной сигнал УПЧИ поступает на вход видеодетектора. В большинстве схем телевизоров видеодетектор выполняет 2 задачи: выделяет огибающую сигнала изображения и выделяет разностную частоту для канала звука. В качестве видеодетектора обычно применяют однополупериодные выпрямители на точечных германиевых диодах (рис.29). Сущность работы диодного детектора заключается в том, что диод преобразует амплитудные колебания входного ВЧ сигнала в одностороннее пульсирующее напряжение, которое затем сглаживается благодаря наличию конденсатора. В нагрузочном резисторе выделяется огибающая этого напряжения – полный телевизионный сигнал. Процесс выделения ПТС показан на рис.29,б.

Рис.29

Видеоусилитель (ВУ)

ВУ (рис.30) служит для усиления продетектированного ПТС до уровня, необходимого для управления электронным лучом кинескопа. Кроме того ВУ выполняет ряд других функций: вырабатывает управляющее напряжение для схем АРУ, регулирует контрастность изображения и служит источником импульсного напряжения для управления каналом синхронизации. Для нормальной модуляции луча кинескопа необходимо иметь видеосигнал с размахом около 40 В. При линейном детектировании амплитуда сигнала изображения, подаваемого с нагрузки детектора на вход ВЧ, должна составлять 2 В. Отсюда следует, что КУ ВУ должен быть равен 20. Полоса частот, занимаемая видеоусилителем, составляет от 0 до 5,5 МГц. Частотная характеристика ВУ должна иметь вид, показанный на рис.30,б. Некоторый подъем усиления в области 5МГц (на 20 – 30%) полезен, т.к. при этом повышается четкость изображения.

Рис.30

Автоматическая регулировка усиления (АРУ)

Величина сигнала на входе телевизора меняется в зависимости от рабочего канала и условий распространения радиоволн. С помощью АРУ поддерживается постоянной амплитуда сигнала в канале изображения при колебаниях его уровня на входе телевизора. Напряжение АРУ, величина которого пропорциональна уровню входного сигнала, подается на каскады УВЧ и УПЧИ. С увеличением уровня входного сигнала коэффициент усиления этих каскадов под действием напряжения АРУ уменьшается, а с уменьшением – возрастает. Это обеспечивает постоянство амплитуды сигналов, подаваемых на детектор. Нормальная работа АРУ поддерживает постоянной контрастность изображения и устойчивость синхронизации.

В современных телевизорах применяется схема ключевой АРУ, использующая в качестве управляющего сигнала синхроимпульсы.

Рис.31

Транзисторная схема АРУ (рис.31) состоит из 2 транзисторов V1, V2, выполняющих функции усилителей постоянного тока (УПТ) и ключевого каскада (КК) соответственно. В промежутке между синхроимпульсом коллекторная цепь V2 закорочена на землю через открытый VД2 и обмотки ТВС. При совпадении по времени строчных синхроимпульса и импульса обратного хода развертки VД2 запирается положительным импульсом обратного хода и синхроимпульс, выпрямленный VД1, заряжает С1. Величина заряда С1 прямопропорциональна амплитуде синхроимпульса, а следовательно, и уровню сигнала на входе телевизора. Величина напряжения заряда С1 определяет величину коллекторного тока VТ1 и напряжение АРУ. Чем больше заряд С1, тем больше коллекторный ток V1, тем меньше положительное напряжение АРУ. Положительное напряжение формируется на зарядном конденсаторе С1 строчными синхроимпульсами ПТС.

Автоматическая подстройка частоты гетеродина (АПЧГ)

Высокое качество изображения и звука во многом зависит от точной и стабильной работы гетеродина. Такую работу обеспечивает система АПЧГ. Реагирующая на отклонения частоты гетеродина от нормы. Рассмотрим структурную схему АПЧГ (рис.32)

Причинами нестабильной работы гетеродина может быть изменение сетевого напряжения, нагрев деталей в процессе работы и другие. Действие системы АПЧГ основано на преобразовании фазовых сдвигов, возникающих при отклонении частоты гетеродина, в напряжение, управляющее с помощью варикапа восстановлением этой частоты.

Рис.32

Схема АПЧГ состоит из фазового дискриминатора и УПТ. Управляющий элемент – варикап – включен параллельно в цепь контура гетеродина. При изменении величины управляющего напряжения, приложенного к варикапу, изменяется его емкость и частота гетеродина.

Канал звука