Углеродные нанотрубки (УНТ)
ВВЕДЕНИЕ
В наши дни технология достигла такого уровня совершенства, что микрокомпоненты становятся всё менее используемыми в современной технике, и начинают постепенно вытесняться нанокомпонентами. Тем самым подтверждается тенденция к большей миниатюризации электронных приборов. Возникла необходимость освоения нового уровня интеграции наноуровня. Вследствие этого появилась потребность в получении транзисторов, проволок с размерами в диапазоне от 1 до 20 нанометров. Решением этой проблемы стало в 1985г. открытие нанотрубок, но изучать их стали только начиная с 1990 г., когда их научились получать в достаточных объемах.
Углеродные нанотрубки (УНТ) - своеобразные цилиндрические молекулы
диаметром примерно от половины нанометра и длиной до нескольких микрометров. Эти полимерные системы впервые были обнаружены как побочные продукты синтеза фуллерена С60. Тем не менее, уже сейчас на основе углеродных нанотрубок, создаются электронные устройства нанометрового (молекулярного) размера. Ожидается, что в обозримом будущем они заменят элементы аналогичного назначения в электронных схемах различных приборов, в том числе современных компьютеров.
1.Понятие об углеродных нанотрубках
В 1991 году японский исследователь Ижима занимался изучением осадка, образующегося на катоде при распылении графита в электрической дуге. Его внимание привлекла необычная структура осадка, состоящего из микроскопических нитей и волокон. Измерения, выполненные с помощью электронного микроскопа, показали, что диаметр таких нитей не превышает нескольких нанометров, а длина от одного до нескольких микрон. Сумев разрезать тонкую трубочку вдоль продольной оси, ученые обнаружили, что она состоит из одного или нескольких слоев, каждый из которых представляет собой гексагональную сетку графита, основу которой составляют шестиугольники с расположенными в вершинах углов атомами углерода. Во всех случаях расстояние между слоями равно 0,34 нм, то есть такое же, как и между слоями в кристаллическом графите. Как правило, верхние концы трубочек закрыты многослойными полусферическими крышечками, каждый слой которых составлен из шестиугольников и пятиугольников, напоминающих структуру половинки молекулы фуллерена.
Протяженные структуры, состоящие из свернутых гексагональных сеток с атомами углерода в узлах, получили название нанотрубок. Открытие нанотрубок вызвало большой интерес у исследователей, занимающихся созданием материалов и структур с необычными физико-химическими свойствами.
Углеродные нанотрубки полые продолговатые цилиндрические структуры диаметром порядка от единиц до десятков нанометров (длина традиционных нанотрубок исчисляется микронами, хотя в лабораториях уже получают структуры длиной порядка миллиметров и даже сантиметров).
Идеальная нанотрубка это цилиндр, полученный при свертывании плоской гексагональной сетки графита без швов. Взаимная ориентация гексагональной сетки графита и продольной оси нанотрубки определяет очень важную структурную характеристику нанотрубки, которая получила название хиральности. Хиральность характеризуется двумя целыми числами (m, n), которые указывают местонахождение того шестиугольника сетки, который в результате свертывания должен совпасть с шестиугольником, находящимся в начале координат.
Сказанное иллюстрирует рис.1.1, где показана часть гексагональной графитовой сетки, свертывание которой в цилиндр приводит к образованию однослойных нанотрубок с различной хиральностью. Хиральность нанотрубки может быть также однозначно определена углом а, образованным направлением сворачивания нанотрубки и направлением, в котором соседние шестиугольники имеют общую сторону. Эти направления также показаны на рис.1.1. Имеется очень много вариантов свертывания нанотрубок, но среди них выделяются те, в результате реализации которых не происходит искажения структуры гексагональной сетки. Этим направлениям отвечают углы а = 0 и а = 30°, что соответствует хиральности (m, 0) и (2n, n).
Индексы хиральности однослойной трубки определяют ее диаметр D:
где d0 = 0,142 нм расстояние между атомами углерода в гексагональной сетке графита. Приведенное выше выражение позволяет по диаметру нанотрубки определить ее хиральность.
Рис.1.1.Модель образования нанотрубок с различной хиральностью при свертывании в цилиндр гексагональной сетки графита.
Углеродные нанотрубки характеризуются большим разнообразием форм. К примеру, они могут быть одностенными или многостенными (однослойными или многослойными), прямыми или спиральными, длинными и короткими, и т.д.
На рис.1.2. и рис.1.3.представлены модель углеродной однослойной и модель углеродной многослойной нанотрубок соответственно.
Рис.1.2.Модель углеродной однослойной нанотрубки
Рис.1.3.Модель углеродной многослойной нанотрубки
Многослойные нанотрубки углерода отличаются от однослойных более широким разнообразием форм и конфигураций. Возможные разновидности поперечной структуры многослойных нанотрубок показаны на рис.1.4.а и б. Структура, представленная на рис 1.4.а, получила название русской матрешки. Она представляет собой коаксиально вложенные друг в друга однослойные цилиндрические нанотрубки. Структура, показанная на рис. 1.4.б, напоминает скатанный рулон или свиток. Для всех рассмотренных структур среднее расстояние между соседними слоями, как и в графите, равно 0,34 нм.
Рис.1.4.Модели поперечного сечения многослойных нанотрубок: а - русская матрешка, б свиток.
По мере увеличения числа слоев все в большей степени проявляются отклонения от идеальной цилиндрической формы. В некоторых случаях внешняя оболочка приобретает форму многогранника. Иногда поверхностный слой представляет собой структуру с неупорядоченным расположением атомов углерода. В других случаях на идеальной гексагональной сетке внешнего слоя нанотрубки образуются дефекты в виде пятиугольников и семиугольников, приводящие к нарушению цилиндрической формы. Наличие пятиугольника вызывает выпуклый, а семиугольника вогнутый изгиб цилиндрической поверхности нанотрубки. Подобные дефекты ведут к появлению изогнутых и спиралевидных нанотрубок, которые в процессе роста извиваются, скручиваются между собой, образуя петли и другие сложные по форме протяженные структуры.
Что важно, нанотрубки оказались необыкновенно прочными на растяжение и на изгиб. Под действием больших механических напряжений нанотрубки не рвутся, не ломаются, а просто перестраивается их структура. Кстати, раз уж зашла речь о прочности нанотрубок, интересно отметить одно из последних исследований природы этого свойства.
Исследователи из Университета Райса (Rice University) под руководством Бориса Якобсона установили, что углеродные нанотрубки ведут себя как «умные самовосстанавливающиеся структуры» (исследование было опубликовано 16 февраля 2007 года в журнале Physical Review Letters). Так, при критическом механическом воздействии и деформациях, вызванных изменениями температуры или радиоактивным излучением, нанотрубки умеют сами себя «ремонтировать». Оказывается, кроме 6-углеродных ячеек в нанотрубках также присутствуют пяти- и семиатомные кластеры. Эти 5/7-атомные ячейки проявляют необычное поведение, циклически передвигаясь вдоль поверхности углеродной нанотрубки, как пароходы по морю. При возникновении повреждения в месте дефекта эти ячейки принимают участие в «заживлении раны», перераспределяя энергию.
Кроме того, нанотрубки демонстрируют множество неожиданных электрических, магнитных, оптических свойств, которые уже стали объектами ряда исследований. Особенностью углеродных нанотрубок является их электропроводность, которая оказалась выше, чем у всех известных проводников. Они также имеют прекрасную теплопроводность, стабильны химически и, что самое интересное, могут приобретать полупроводниковые свойства. По электронным свойствам углеродные нанотрубки могут вести себя как металлы, либо как полупроводники, что определяется ориентацией углеродных многоугольников относительно оси трубки.
Нанотрубки склонны крепко слипаться между собой, формируя наборы, состоящие из металлических и полупроводниковых нанотрубок. До сих пор трудной задачей является синтез массива из только полупроводниковых нанотрубок или сепарация (отделение) полупроводниковых от металлических.
2. Свойства углеродных нанотрубок
Капиллярные эффекты
Чтобы наблюдать капиллярные эффекты, необходимо открыть нанотрубки, то есть удалить верхнюю часть крышечки. К счастью, эта операция достаточно проста. Один из способов удаления крышечек заключается в отжиге нанотрубок при температуре 850° С в течение нескольких часов в потоке углекислого газа. В результате окисления около 10% всех нанотрубок оказываются открытыми. Другой путь разрушения закрытых концов нанотрубок выдержка в концентрированной азотной кислоте в течение 4,5 ч при температуре 240° С. В результате такой обработки 80% нанотрубок становятся открытыми.
Первые исследования капиллярных явлений показали, что имеется связь между величиной поверхностного натяжения жидкости и возможностью ее втягивания внутрь канала нанотрубки. Оказалось, что жидкость проникает внутрь канала нанотрубки, если ее поверхностное натяжение не выше 200 мН/м. Поэтому для ввода каких-либо веществ внутрь нанотрубок используют растворители, имеющие низкое поверхностное натяжение. Так, например, для ввода в канал нанотрубки некоторых металлов используют концентрированную азотную кислоту, поверхностное натяжение которой невелико (43 мН/м). Затем проводят отжиг при 400° С в течение 4 ч в атмосфере водорода, что приводит к восстановлению металла. Таким образом были получены нанотрубки, содержащие никель, кобальт и железо.
Наряду с металлами углеродные нанотрубки могут заполняться газообразными веществами, например водородом в молекулярном виде. Эта способность имеет большое практическое значение, ибо открывает возможность безопасного хранения водорода, который можно использовать в качестве экологически чистого топлива в двигателях внутреннего сгорания.
Удельное электрическое сопротивление углеродных нанотрубок
Вследствие малых размеров углеродных нанотрубок только в 1996 году удалось непосредственно измерить их удельное электрическое сопротивление р четырехконтактным способом. Чтобы оценить экспериментальное мастерство, потребовавшееся для этого, дадим краткое описание этого способа. На полированную поверхность оксида кремния в вакууме наносили золотые полоски. В промежуток между ними напыляли нанотрубки длиной 23 мкм. Затем на одну из выбранных для измерения нанотрубок наносили четыре вольфрамовых проводника толщиной 80 нм, расположение которых показано на рис.2. Каждый из вольфрамовых проводников имел контакт с одной из золотых полосок. Расстояние между контактами на нанотрубке составляло от 0,3 до 1 мкм. Результаты прямого измерения показали, что удельное сопротивление нанотрубок может изменяться в значительных пределах от 5,1·10-6 до 0,8 Ом/см. Минимальное значение р на порядок ниже, чем у графита. Большая часть нанотрубок обладает металлической проводимостью, а меньшая проявляет свойства полупроводника с шириной запрещенной зоны от 0,1 до 0,3 эВ.
Рис.2.Схема измерения электрического сопротивления индивидуальной нанотрубки четырех-зондовым методом: 1 - подложка из оксида кремния, 2 - золотые контактные площадки, 3 - вольфрамовые проводящие дорожки, 4 - углеродная нанотрубка.
3.Методы синтеза углеродных нанотрубок
3.1.Электродуговой метод
Наиболее широко распространен метод получения нанотрубок,
использующий термическое распыление графитового электрода в плазме
дугового разряда, горящей в атмосфере гелия.
В дуговом разряде между анодом катодом при напряжении 20-25В стабилизированном постоянном токе дуги 50-100А, межэлектродном расстоянии 0.5-2 мм и давлении Не 100-500 Торр, происходит интенсивное распыление материала анода. Часть продуктов распыления, содержащая графит, сажу, и фуллерены осаждается на охлаждаемых стенках камеры, часть, содержащая графит и многослойные углеродные нанотрубки (МСНТ), осаждается на поверхности катода. На выход нанотрубок влияет множество факторов.
Наиболее важным является давление Не в реакционной камере, которое в оптимальных, с точки зрения производства НТ, условиях составляет 500 Торр, а не 100-150 Торр, как в случае фуллеренов. Другим не менее важным фактором является ток дуги: максимальный выход НТ наблюдается при минимально возможном токе дуги, необходимым для ее стабильного горения. Эффективное охлаждение стенок камеры и электродов также важно для избежания растрескивания анода и его равномерного испарения, что влияет на содержание
НТ в катодном депозите.
Использование автоматического устройства поддержания межэлектродного расстояния на фиксированном уровне способствует увеличению стабильности параметров дугового разряда и обогащению нанотрубками материала катодного
депозита.
3.2.Лазерное распыление
В 1995 году появилось сообщение о синтезировании углеродных НТ методом распыления графитовой мишени под воздействием импульсного лазерного излучения в атмосфере инертного (He или Ar) газа. Графитовая мишень находится в кварцевой трубке при температуре 1200оС, по которой течет буферный газ.
Фокусирующийся системой линз лазерный пучок сканирует поверхность
графитовой мишени для обеспечения равномерного испарения материала мишени.
Получающийся, в результате лазерного испарения, пар попадает в поток
инертного газа и выносится из высокотемпературной области в низкотемпературную, где осаждается на охлаждаемой водой медной подложке.
Сажа, содержащая НТ, собирается с медной подложки, стенок кварцевой трубки и обратной стороны мишени. Также как и в дуговом методе получается
несколько видов конечного материала:
1) в экспериментах, где в качестве мишени использовался чистый графит, получались МСНТ, которые имели длину до 300 нм и состояли из 4-24 графеновых цилиндров. Структура и концентрация таких НТ в исходном материале главным образом определялись температурой. При 1200оС все наблюдаемые НТ не содержали дефектов и имели шапочки на окончаниях. При понижении температуры синтеза до 900оС в НТ появлялись дефекты, число которых увеличивалось с дальнейшим понижением температуры, и при 200оС образование НТ не наблюдалось.
2) при добавлении в мишень небольшого количества переходных металлов, в продуктах конденсации наблюдались ОСНТ. Однако в процессе испарения мишень обогащалась металлом, и выход ОСНТ снижался.
Для решения этой проблемы стали использовать две облучаемые одновременно мишени, одна из которых является чистым графитом, а другая состоит из сплавов металлов.
Процентный выход НТ резко меняется в зависимости от катализатора. Так, например, высокий выход НТ получается на катализаторах Ni, Co, смеси Ni и Co с другими элементами. Получаемые ОСНТ имели одинаковый диаметр и были объединены в пучки диаметром 5-20 нм. Смеси Ni/Pt и Co/Pt дают высокий выход НТ, тогда как использование чистой платины приводит к низкому выходу ОСНТ. Смесь Co/Cu дает низкий выход ОСНТ, а использование чистой меди вообще не приводит к формированию ОСНТ. На окончаниях ОСНТ, свободных от частиц катализатора, наблюдались сферические шапочки.
В качестве разновидности получил распространение метод, где вместо импульсного лазерного излучения использовалось сфокусированное солнечное излучение. Данный метод использовался для получения фуллеренов, а после
доработки для получения НТ. Солнечный свет, попадая на плоское зеркало и отражаясь, формирует плоскопараллельный пучок, падающий на параболическое зеркало. В фокусе зеркала расположена графитовая лодочка, заполненная смесью графитового и металлического порошков. Лодочка находится внутри графитовой трубки, которая играет роль теплового экрана. Вся система помещена в камеру, заполненную инертным газом.
В качестве катализаторов были взяты различные металлы и их смеси. В зависимости от выбранного катализатора и давления инертного газа получались разные структуры. Используя никель-кобальтовый катализатор при низком давлении буферного газа синтезированный образец состоял в основном из бамбукообразных МСНТ. При повышении давления появлялись и начинали доминировать ОСНТ диаметром 1-2 нм, ОСНТ были объединены в пучки диаметром до 20 нм с поверхностью свободной от аморфного углерода.
3.3.Каталитическое разложение углеводородов
Широко используемый способ получения НТ основан на использовании процесса разложения ацетилена в присутствии катализаторов. В качестве катализаторов использовались частицы металлов Ni, Co, Cu и Fe размером несколько нанометров. В кварцевую трубку длиной 60 см, внутренним диаметром 4 мм, помещается керамическая лодочка с 20-50 мг катализатора. Смесь ацетилена C2H2 (2,5-10%) и азота прокачивается через трубку в течение нескольких часов при температуре 500-1100оС. После чего система охлаждается до комнатной температуры. На эксперименте с кобальтовым катализатором наблюдались четыре типа структур:
1)аморфные слои углерода на частицах катализатора;
2)закапсулированные графеновыми слоями частицы металлического катализатора;
3)нити, образованные аморфным углеродом;
4)МСНТ.
Наименьшее значение внутреннего диаметра этих МСНТ составляло 10 нм. Наружный диаметр свободных от аморфного углерода НТ находился в пределах 25-30 нм, а для НТ, покрытых аморфным углеродом - до 130 нм. Длина НТ определялась временем протекания реакции и изменялась от 100 нм до 10 мкм.
Выход и структура НТ зависит от типа катализатора - замена Co на Fe дает меньшую концентрацию НТ и количество бездефектных НТ сокращается. При использовании никелевого катализатора большинство нитей имело аморфную структуру, иногда встречались НТ с графитизированной бездефектной структурой. На медном катализаторе формируются нити с нерегулярной формой и аморфной структурой. В образце наблюдаются закапсулированные в графеновые слои частицы металла. Получаемые НТ и нити принимают различные формы - прямые; изогнутые, состоящие из прямых участков; зигзагообразные; спиральные. В некоторых случаях шаг спирали имеет псевдопостоянную величину.
В настоящее время возникла необходимость получить массив ориентированных НТ, что продиктовано использованием таких структур в качестве эмиттеров. Существует два пути получения массивов ориентированных НТ: ориентация уже выросших НТ и рост ориентированных НТ, используя каталитические методы.
Было предложено использовать в качестве подложки для роста НТ пористый кремний, поры которого заполнены наночастицами железа. Подложка помещалась в среду буферного газа и ацетилена, находящихся при температуре 700оС, где железо катализировало процесс термического распада ацетилена. В результате, на площадях в несколько мм2, перпендикулярно подложке, формировались ориентированные многослойные НТ.
Аналогичный метод-использование в качестве подложки анодированного алюминия. Поры анодированного алюминия заполнялняются кобальтом. Подложка помещается в проточную смесь ацетилена и азота при температуре 800оС. Получаемые ориентированные НТ имеют средний диаметр 50.0±0.7 нм с расстоянием между трубками 104.2±2.3 нм. Средняя плотность была определена на уровне 1.1х1010 НТ/см2. ПЭМ нанотрубок выявила хорошо графитизированную структуру с расстоянием между графеновыми слоями 0.34 нм. Сообщается, что, изменяя параметры и время обработки алюминиевой подложки можно менять как диаметр НТ, так и расстояние между ними.
Метод, протекающий при более низких температурах (ниже 666оС) также описан в статьях. Низкие температуры в процессе синтеза позволяют использовать в качестве подложки стекло с нанесенной пленкой никеля. Никелевая пленка служила катализатором для роста НТ методом осаждения из газовой фазы в активированной плазме с горячей нитью. В качестве источника углерода использовался ацетилен. Меняя условия эксперимента можно менять диаметр трубок от 20 до 400 нм и их длину в пределах 0.1-50 мкм. Получаемые МСНТ большого диаметра (>100 нм) прямые и их оси направлены строго перпендикулярно подложке. Наблюдаемая плотность НТ по данным растровой электронной микроскопии составляет 107 НТ/мм2. Когда диаметр НТ становится меньше 100 нм преимущественная ориентация, перпендикулярная плоскости подложки, исчезает. Ориентированные массивы МСНТ могут создаваться на площадях в несколько см2.
3.4.Электролитический синтез
Основная идея этого метода состоит в том, чтобы получить углеродные НТ, пропуская электрический ток между графитовыми электродами, находящимися в расплавленной ионной соли. Графитовый катод расходуется в процессе реакции и служит источником атомов углерода. В результате формируется широкий спектр наноматериалов. Анод представляет собой лодочку, сделанную из высоко чистого графита и заполненную хлоридом лития. Лодочка нагревается до температуры плавления хлорида лития (604оС) на воздухе или в атмосфере инертного газа (аргона). В расплавленный хлорид лития погружается катод и в течение одной минуты между электродами пропускается ток 1-30 А. За время пропускания тока погруженная в расплав часть катода эродирует. Далее расплав электролита, содержащий частицы углерода, охлаждался до комнатной температуры.
Для того чтобы выделить частицы углерода, получившиеся вследствие эрозии катода, соль растворялась в воде. Осадок выделялся, растворялся в толуоле и диспергировался в ультразвуковой ванне. Продукты электролитического синтеза исследовались с помощью ПЭМ. Выявлено, что они
состоят из закапсулированных частиц металла, луковиц и углеродных НТ различной морфологии, включая спиральные и сильно изогнутые. В зависимости
от условий эксперимента диаметр нанотрубок образованных цилиндрическими графеновыми слоями колебался от 2 до 20 нм. Длина МСНТ достигала 5 мкм.
Найдены оптимальные условия по току - 3-5 А. При высоком значении тока (10-30 А) образуются только закапсулированные частицы и аморфный углерод. При
низких значениях тока (<1А) образуется только аморфный углерод.
3.5.Конденсационный метод
В методе квазисвободной конденсации пара, углеродный пар образуется в результате резистивного нагрева графитовой ленты и конденсируется на подложку из высокоупорядоченного пиролитического графита, охлаждаемую до температуры 30оС в вакууме 10-8 Торр. ПЭМ исследования, полученных пленок толщиной 2-6 нм показывают, что они содержат углеродные НТ диаметром 1-7 нм, длиной до 200 нм, большинство из которых заканчивается сферическими окончаниями. Содержание НТ в осадке превышает 50%. Для многослойных НТ расстояние между образующими их графеновыми слоями составляет 0.34 нм. Трубки располагаются на подложке практически горизонтально.
3.6.Метод конструктивного разрушения
Этот метод был разработан исследователями лаборатории IBM. Как было
сказано ранее, нанотрубки обладают как металлическими, так и
полупроводниковыми свойствами. Однако для производства ряда устройств на их основе, в частности - транзисторов и, далее, процессоров с их использованием, нужны только полупроводниковые нанотрубки. Ученые из IBM разработали метод так называемого «конструктивного разрушения», который позволил им разрушить все металлические нанотрубки и при этом оставить неповрежденными полупроводниковые. То есть они либо последовательно разрушают по одной оболочке в многостенной нанотрубке, либо выборочно разрушают металлические одностенные нанотрубки.
Вот как вкратце описывается этот процесс:
1.Слипшиеся «канаты» из металлических и полупроводниковых трубок помещают на подложку из окисла кремния.
2. Затем на подложку проектируется литографическая маска для формирования
электродов (металлических прокладок) поверх нанотрубок. Эти электроды
работают как переключатели для включения/выключения
полупроводниковых нанотрубок.
3. Используя саму кремниевую подложку как электрод, ученые «выключают»
полупроводниковые нанотрубки, которые просто блокируют прохождение любого тока через себя.
4.Металлические нанотрубки остались незащищенными. После чего к подложке прикладывается подходящее напряжение, разрушающее металлические нанотрубки, в то время как полупроводниковые нанотрубки остаются изолированными. В результате остается плотный массив неповрежденных работоспособных полупроводниковых нанотрубок - транзисторов, которые можно использовать для создания логических цепей - т. е. процессоров. Теперь рассмотрим эти процессы подробнее. Различные оболочки МСНТ могут иметь различные электрические свойства. В результате электронная структура и механизмы переноса электронов в МСНТ различны. Эта сложность структуры позволяет выбирать и использовать только одну оболочку МСНТ: ту, что имеет желанные свойства. Разрушение многостенных нанотрубок происходит в воздухе при определенном уровне мощности, посредством быстрого
окисления наружных углеродных оболочек. Во время разрушения ток, текущий через МСНТ, изменяется пошагово, причем эти шаги с удивительной постоянностью совпадают с разрушением отдельной оболочки. Контролируя процесс удаления оболочек одну за другой, можно создавать трубки с желаемыми характеристиками внешней оболочки, металлической или полупроводниковой. Выбирая диаметр внешней оболочки, можно получить желаемую ширину запрещенной зоны.
Если для создания полевого транзистора используются «канаты» с одностенными нанотрубками, то в них нельзя оставлять металлические трубки, т. к. они будут доминировать и определять транспортные свойства устройства, т.е. не дадут осуществить полевой эффект. Эта проблема также решается путем выборочного разрушения. В отличие от МСНТ, в тонком «канате» каждая ОСНТ может подсоединяться по отдельности к внешним электродам. Таким образом, «канат» с МСНТ можно представить как независимые параллельные проводники с общей суммарной проводимостью, подсчитываемой по формуле:
G(Vg) = Gm + Gs(Vg),
где Gm создается металлическими нанотрубками, и Gs является зависимой от затвора проводимостью полупроводниковых нанотрубок.
Кроме того, множество ОСНТ в «канате» контактируют с воздухом, потенциально окисляющей средой, поэтому множество трубок может быть разрушено одновременно, в отличие от случая с МСНТ. И, наконец, одностенные нанотрубки в маленьком «канате» не защищают друг друга электростатически столь же эффективно, как концентрические оболочки МСНТ. В результате, управляющий электрод можно использовать для эффективного уменьшения переносчиков электрического тока (электронов или
дырок) в полупроводниковых ОСНТ в «канате». Это превращает полупроводниковые трубки в изоляторы. В этом случае окисление, вызванное током, можно направить только на металлические ОСНТ в «канате».
Производство массивов полупроводниковых нанотрубок осуществляется
просто: путем помещения «канатов» ОСНТ на окисленную подложку кремния,
а затем набор из источника тока, заземления и изолированных электродов размещается литографическим способом на вершине «канатов». Концентрация трубок предварительно выбрана таким образом, что в среднем только один «канат» замыкает источник и землю. При этом специальной ориентации нанотрубок не требуется. Нижний затвор (сама кремниевая подложка) используется для запирания полупроводниковых трубок, а затем прикладывается избыточное напряжение для разрушения металлических трубок в «канате», что и создает полевой транзистор. Применяя эту технологию выборочного разрушения, можно контролировать размер углеродной нанотрубки, что позволяет строить нанотрубки с заранее заданными электрическими свойствами, отвечающими требуемым характеристикам электронных устройств. Нанотрубки можно использовать как провода с наноразмерами или активные компоненты в электронных устройствах: например, как полевые транзисторы. Понятно, что в отличие от полупроводников на основе кремния, требующих создания проводников на основе алюминия или меди для соединения полупроводниковых элементов внутри кристалла, в этой технологии можно обойтись только углеродом.
Сегодня производители процессоров для увеличения частоты пытаются уменьшить длину каналов в транзисторах. Технология, предложенная IBM, позволяет успешно решить эту проблему при использовании углеродных нанотрубок в качестве каналов в транзисторах.
4.Практическое использование углеродных нанотрубок
4.1.Полевая эмиссия и экранирование
При приложении небольшого электрического поля вдоль оси нанотрубки с ее концов происходит очень интенсивная эмиссия электронов. Подобные явления называют полевой эмиссией. Этот эффект легко наблюдать, прикладывая небольшое напряжение между двумя параллельными металлическими электродами, на один из которых нанесена композитная паста из нанотрубок. Достаточное количество трубок окажутся перпендикулярными электроду, что позволяет наблюдать полевую эмиссию. Одно из применений этого эффекта состоит в усовершенствовании плоских панельных дисплеев. Мониторы телевизоров и компьютеров используют управляемую электронную пушку для облучения люминесцентного экрана, испускающего свет требуемых цветов. Корейская корпорация Samsung разрабатывает плоский дисплей, использующий электронную эмиссию углеродных нанотрубок. Тонкая пленка нанотрубок помещается на слой с управляющей электроникой и покрывается сверху стеклянной пластиной, покрытой слоем люминофора. Одна японская компания использует эффект электронной эмиссии в осветительных вакуумных лампах, таких же ярких, как и обычные лампы накаливания, но более эффективных и долговечных. Другие исследователи используют эффект при разработке новых способов генерации микроволнового излучения.
Высокая электрическая проводимость углеродных нанотрубок означает, что они будут плохо пропускать электромагнитные волны. Композитный пластик с нанотрубками может оказаться легким материалом, экранирующим электромагнитное излучение. Это очень важный вопрос для военных, развивающих идеи цифрового представления поля боя в системах управления, контроля и связи. Компьютеры и электронные устройства, являющиеся частями такой системы, должны быть защищены от оружия, генерирующего электромагнитные импульсы.
4.2.Топливные элементы
Углеродные нанотрубки могут быть использованы в изготовлении батареек.
Литий, являющийся носителем заряда в некоторых батарейках, можно помещать
внутрь нанотрубок. По оценкам, в трубке можно разместить один атом лития на каждые шесть атомов углерода. Другим возможным использованием нанотрубок является хранение в них водорода, что может быть использовано при конструировании топливных элементов как источников электрической энергии в будущих автомобилях. Топливный элемент состоит из двух электродов и специального электролита, пропускающего ионы водорода между ними, но не пропускающего электроны. Водород направляется на анод, где он ионизируется. Свободные электроны движутся к катоду по внешней цепи, а ионы водорода диффундируют к катоду через электролит, где из этих ионов, электронов и кислорода образуются молекулы воды. Такой системе необходим источник водорода. Одна из возможностей состоит в хранении водорода внутри углеродных нанотрубок. По существующим оценкам, для эффективного использования в этом качестве трубка должна поглощать 6,5% водорода по весу. В настоящее время в трубку удалось поместить только 4% водорода по весу.
Элегантный метод заполнения углеродных нанотрубок водородом состоит в использовании для этого электрохимической ячейки. Одностенные нанотрубки в форме листа бумаги составляют отрицательный электрод в растворе КОН, являющемся электролитом. Другой электрод состоит из Ni(OH)2. Вода электролита разлагается с образованием положительных ионов водорода (Н+), движущихся к отрицательному электроду из нанотрубок. Наличие связанного в трубках водорода определяется по падению интенсивности рамановского рассеяния.
4.3. Катализаторы
Катализатором называется вещество, обычно металл или сплав, увеличивающее скорость протекания химической реакции. Для некоторых химических реакций углеродные нанотрубки являются катализаторами. Например, многослойные нанотрубки со связанными с ними снаружи атомами рутения имеют сильный каталитический эффект на реакцию гидрогенизации коричного альдегида (С6Н5СН=СНСНО) в жидкой фазе по сравнению с эффектом того же рутения, находящегося на других углеродных субстратах. Также проводились химические реакции и внутри углеродных нанотрубок, например восстановление оксида никеля NiO до металлического никеля и АlС13 до алюминия. Поток газообразного водорода Н2 при 475°С частично восстанавливает МоO3 до МоO2 с сопутствующим образованием паров воды внутри многослойных нанотрубок. Кристаллы сульфида кадмия CdS образуются внутри нанотрубок при реакции кристаллического оксида кадмия CdO с сероводородом (H2S) при 400°С.
4.4.Химические сенсоры
Установлено, что полевой транзистор, сделанный на полупроводящей хиральной нанотрубке, является чувствительным детектором различных газов. Полевой транзистор помещался в сосуд емкостью 500 мл с выводами электропитания и двумя клапанами для ввода и вывода газа, омывающего транзистор. Протекание газа, содержащего от 2 до 200 ppm NO2, со скоростью 700 мл/мин на протяжении 10 минут привело к трехкратному повышению проводимости нанотрубки. Такой эффект обусловлен тем, что при связывании NO2 с нанотрубкой заряд переносится с нанотрубки на группу NO2, увеличивая концентрацию дырок в нанотрубке и ее проводимость.
4.5.Квантовые провода
Теоретические и экспериментальные исследования электрических и магнитных свойств нанотрубок обнаружили ряд эффектов, которые указывают на квантовую природу переноса заряда в этих молекулярных проводах и могут быть использованы в электронных устройствах.
Проводимость обычного провода обратно пропорциональна его длине и прямо пропорциональна поперечному сечению, а в случае нанотрубки она не зависит ни от ее длины, ни от ее толщины и равна кванту проводимости (12.9 кОм1) - предельному значению проводимости, которое отвечает свободному переносу делокализованных электронов по всей длине проводника.
При обычной температуре наблюдаемое значение плотности тока (107 А(см2) на два порядка превосходит достигнутую сейчас плотность тока в
сверхпроводниках.
Нанотрубка, которая находится при температурах около 1 К в контакте с двумя сверхпроводящими электродами, сама становится сверхпроводником. Этот эффект связан с тем, что куперовские электронные пары, образующиеся
в сверхпроводящих электродах, не распадаются при прохождении через
нанотрубку.
При низких температурах на металлических нанотрубках наблюдали ступенчатое возрастание тока (квантование проводимости) при увеличении напряжения смещения V, приложенного к нанотрубке: каждый скачок отвечает появлению очередного делокализованного уровня нанотрубки в промежутке между уровнями Ферми катода и анода.
Нанотрубки обладают ярко выраженным магнитосопротивлением: электропроводность сильно зависит от индукции магнитного поля. Если приложить внешнее поле в направлении оси нанотрубки, наблюдаются заметные осцилляции электропроводности; если поле приложено перпендикулярно оси НТ, то наблюдается ее возрастание.
4.6.Светодиоды
Еще одно применение МСНТ - изготовление светодиодов на основе органических материалов. В данном случае для их изготовления использовался следующий метод: порошок из НТ смешивали с органическими элементами в толуоле и облучали ультразвуком, затем раствору давали отстоятся в течение 48 часов. В зависимости от начального количества компонентов получались различные массовые доли НТ. Для изготовления светодиодов снимали верхнюю часть раствора и путем центрифугирования наносили на стеклянную подложку, после чего напыляли аллюминиевые электроды на полимерные слои. Полученные устройства исследовались методом электролюминисценции, который выявил пик их излучения в инфракрасной области спектра (600-700 нм).
ЗАКЛЮЧЕНИЕ
В настоящее время углеродные нанотрубки привлекают к себе много внимания благодаря возможности изготовления на их основе устройств нанометровых размеров. Несмотря на многочисленные исследования в этой области, вопрос о массовом производстве таких устройств остается открытым, что связано с невозможностью точного контроля получения НТ с заданными параметрами и свойствами.
Однако в ближайшем будущем следует ожидать бурного развития в этой области из-за возможности производства микропроцессоров и чипов на основе нанотранзисторов и, как следствие, инвестирования в эту область корпорациями, специализирующимся на компьютерной технике.
СПИСОК ЛИТЕРАТУРЫ
- Углеродные нанотрубки. Материалы для компьютеров XXI века, П.Н. Дьячков. Природа № 11, 2000 г.
- Раков Э.Г. Методы получения углеродных нанотрубок // Успехи химии. -2000. - Т. 69. - № 1. - С. 41-59.
- Раков Э.Г. Химия и применение углеродных нанотрубок // Успехи химии. -2001. - Т. 70. - № 11. - С. 934-973.
- Елецкий А.В. // Успехи физ. наук. 1997. Т. 167, № 9. С. 945972.
- Золотухин И.В. Углеродные нанотрубки. Воронежский государственный технический институт.
- http://skybox.org.ua/
PAGE 15
Углеродные нанотрубки (УНТ)