Дифференциация клеток

Лекция №8

ДИФФЕРЕНЦИАЦИЯ КЛЕТОК

Дифференциация клеток.

Роль ядра и цитоплазмы в клеточной дифференциации

Как возникают разнообразные типы клеток в многоклеточном организме? Известно, что организм человека, развившийся всего из 1 исходной клетки – зиготы, содержит более 100 различных типов клеток. Каким образом возникает это разнообразие, сегодня до конца не ясно, так как еще мало конкретных данных, касающихся анализа путей появления тех или иных клеточных типов.

Современная биология на базе представлений эмбриологии, молекулярной биологии и генетики считает, что индивидуальное развитие от одной клетки до многоклеточного зрелого организма – результат последовательного, избирательного включения в работу разных генных участков хромосом в различных клетках. Это приводит к появлению клеток со специфическими для них структурами и особыми функциями, то есть к процессу, называемому дифференциацией.

Дифференциация – это возникновение из однородных клеток в течение индивидуального развития большого разнообразия клеточных форм, отличающихся по строению и функциям. Проявляющиеся в процессе дифференциации различия сохраняются клетками при размножении, то есть оказываются наследственно закрепленными (например, клетки печени при размножении дают только клетки печени, а мышечные клетки – только мышечные и т.д.).

Наиболее отчетливым признаком цитодифференциации является развитие цитоплазматических структур, связанных с функцией клеток и обусловливающих их специализацию (то есть органоидов специального назначения). Например, в клетках мышечной ткани образуются миофибриллы, которые и обеспечивают функцию сокращения. В клетках кожного эпителия – тонофибриллы, а затем поверхностные слои клеток ороговевают (белок кератогиалин превращается кератин) и отмирают. В эритроцитах синтезируется гемоглобин, затем клетки утрачивают ядра, а зрелые эритроциты после длительного периода функционирования погибают и заменяются новыми.

Все эти примеры указывают на конечные признаки дифференциации. Начальные же этапы проявления этих признаков удается обнаружить далеко не всегда, и состоят они в синтезе новых, ранее отсутствовавших в клетке белков. Например, специфические мышечные белки (актин и миозин) синтезируются в одноядерных клетках, которые затем сливаются, образуя симпласт, и уже в нем обнаруживаются миофибриллы. Даже используя электронный микроскоп, выявить момент начала синтеза новых белков удается не всегда.

В настоящее время доказано, что никогда в ядре не функционирует весь геном. Дифференцировка – это результат избирательной активности разных генов в клетках по мере развития многоклеточного организма.

Следовательно, можно утверждать, что любая клетка многоклеточного организма обладает одинаковым полным фондом генетического материала, всеми возможностями для проявления этого материала, но в разных клетках одни и те же гены могут находиться или в активном, или в репрессированном состоянии.

Это представление базируется на большом экспериментальном материале. Доказано, что целостное растение может быть получено из одной его соматической клетки. Этот метод получил название клонирование организмов. Опыты по клонированию животных первоначально проводились на примере земноводных: ядро зиготы у лягушек разрушали ультра-фиолетовыми лучами, на его место внедряли ядро из клетки кишечника, и в результате получали новый организм, абсолютно идентичный материнскому. Чем выше уровень организации организмов, тем труднее осуществить их клонирование. У млекопитающих этот процесс находится в стадии активного изучения, проводятся успешные опыты на мышах, на некоторых сельскохозяйственных животных.

Из этого вытекает, что клетки многоклеточных организмов обладают полным набором генетической информации, свойственной для данного организма, и в этом отношении они равнозначны. В этом состоит правило генетической тождественности клеток в пределах организма.

Но, как и в любом правиле, в нем имеются исключения: иногда при дифференцировке происходит количественное изменение генетического материала. Так, при дроблении яиц аскариды клетки, дающие начало соматическим тканям, теряют часть хромосомного материала, т.е. происходит деминуция: вместо 40 хромосом остается всего 8 хромосом. Сходный процесс описан у насекомых-галлиц (отр. Двукрылые), у которых число хромосом при деминуции уменьшается вдвое (с 32-х до 16-ти).

Эти примеры наглядно иллюстрируют роль цитоплазмы при дифференциации клеток. Если в случае с аскаридой предварительно отцентрифугировать яйцеклетки, то все компоненты цитоплазмы перемешиваются и при первом делении попадают в оба бластомера. При этом деминуции хромосом не происходит, то есть исчезает ядерная дифференциация.

У насекомых-галлиц деминуция происходит во всех ядрах, кроме одного, которое попадает в собранную у нижнего полюса зиготы плазму, богатую РНК. При облучении зародышевой плазмы ультрафиолетовыми лучами происходит разрушение РНК, при этом ядро претерпевает деминуцию вместе с другими ядрами зародыша, и развивается нормальное насекомое, но только стерильное, так как половые клетки не формируются.

Однако, первостепенную роль в дифференциации играет ядро. Роль ядра в дифференциации клеток можно показать на двух примерах.

I. Гигантская морская одноклеточная водоросль ацетабулярия имеет сложное строение. Она состоит из ризоида, в котором помещается ядро, стебелька до 5 см длиной и шапочки. Есть два вида ацетабулярии, которые отличаются формой шапочки: у первого вида длинный стебелек и шапочка в виде блюдца; у другого вида короткий стебелек и розетковидная шапочка.

На ризоид второго вида был пересажен стебелек с шапочкой первого вида. Через некоторое время шапочка удалялась и регенерировала шапочка розетковидной формы, т.е. признаки ее определялись ядром.

II. Опыты Б.Л. Астаурова над тутовым шелкопрядом.

Облучая яйцеклетки большими дозами рентгеновских лучей и активируя их после оплодотворения температурным воздействием, удалось не только разрушить ядро яйцеклетки, но и индуцировать андрогенез, то есть развитие особей за счет слияния 2-х ядер сперматозоидов (для тутового шелкопряда характерна полиспермия). В результате развивались личинки, обладавшие только отцовскими признаками.

Из этих опытов, поставленных на совершенно различных организмах, следует, что общие признаки организма, в том числе и видовые, определяются ядром, и ядро содержит всю необходимую информацию, обеспечивающую развитие организма.

В общей форме, вероятно, наиболее приемлема теория Т. Моргана, согласно которой сначала ядро воздействует на цитоплазму и программирует белковый синтез, а затем цитоплазма влияет на ядро, избирательно блокируя ряд генов, которые до этого функционировали. Цитоплазма, получившая определенную информацию, репрессирует все гены, которые не должны работать в данный момент.

Эмбриональная индукция

Второй системой (помимо генов), обеспечивающей правильное развитие организма и дифференциацию его клеток, являются индуцирующие механизмы (воздействие внешних факторов) и, прежде всего, эмбриональная индукция.

Эмбриональная индукция – это взаимодействие между частями развивающегося организма у многоклеточных беспозвоночных и всех хордовых, в процессе которого одна часть – индуктор, приходя в контакт с другой частью – реагирующей системой, определяет направление развития последней.

Эмбриональная индукция открыта в 1901 г. Х. Шпеманом на примере развития зародыша земноводных. Он установил, что для образования у этих животных нервной пластинки из эктодермы гаструлы необходим контакт эктодермы с хордомезодермальным зачатком. Клетки этого зачатка выделяют химические вещества, которые диффундируют в клетки эктодермы и заставляют их превращаться в нервные клетки. Вопрос о химической природе индуктора окончательно не решен до сих пор. Скорее всего, это могут быть белки, РНК, рибонуклеопротеиды и т.п.

Для осуществления эмбриональной индукции необходимо:

1) чтобы клетки реагирующей системы обладали компетенцией, то есть способностью реагировать на индуктор; она сохраняется только на некоторое время;

2) индуктор должен выделяться в определенное время и распространяться на определенный участок реагирующей системы;

3) действие индуктора должно продолжаться какое-то минимальное время, чтобы реагирующая система успела отреагировать.

Действие индукторов лишено видовой специфичности, т.е. действие собственных индукторов может быть заменено в эксперименте чужеродными, при этом результат будет тот же. Например, один из индукторов белкового характера, выделенный из куриных зародышей, вызывает аналогичные изменения и в зародыше земноводных.

Старение и смерть клетки

Наиболее подходящим объектом для изучения процессов старения на клеточном уровне являются клетки, утратившие способность к делению еще в эмбриональном периоде развития организма. К такому типу клеток относятся клетки нервной системы, скелетных мышц, миокарда. Продолжительность жизни этих клеток равна продолжительности жизни организма.

При сравнении клеток молодого организма с гомологичными клетками организмов более старшего возраста обнаруживается ряд изменений, которые с основанием могут считаться признаками старения. Для удобства изучения эти признаки можно разделить на несколько групп.

I. Морфологические признаки:

1) кариопикноз, то есть уменьшение ядра в объеме и его уплотнение;

2) стирание границ между клетками;

3) вакуолизация цитоплазмы;

4) увеличение количества амитозов.

II. Физико-химические признаки:

1) уменьшение степени дисперсности коллоидов цитоплазмы и ядра;

2) увеличение вязкости цитоплазмы и кариоплазмы;

3) более легкая коагуляция внутриклеточных белков при действии на них спирта, растворов солей.

III. Биохимические признаки:

1) накопление в цитоплазме оранжево-желтого пигмента липофу-сцина (это продукт окисления ненасыщенных липидов);

2) уменьшение содержания воды в клетке;

3) снижение активности ферментов;

4) увеличение содержания холестерина;

5) уменьшение содержания белка лецитина.

IV. Функциональные признаки:

1) понижается интенсивность внутриклеточного дыхания;

2) угнетается биосинтез белка;

3) увеличивается устойчивость клеток к действию различных пов-реждающих агентов.

Смерть клетки наступает в результате действия повреждающих факторов, при старении, а также в результате накопления в цитоплазме специализированных продуктов синтеза, как это наблюдается у клеток голокриновых желез.

В некоторых случаях переход клетки от жизни к смерти происходит очень быстро, (например, при действии повреждающих факторов высокой интенсивности). Тогда структурные и метаболические изменения клетки произойти не успевают, и клетка сохраняет почти в неизменном виде свою структуру. Если же процесс умирания затягивается, наблюдается ряд изменений, которые называются некротическими:

1) происходит угнетение функций митохондрий, нарушение окислительного фосфорилирования и активация гликолиза;

2) наблюдается нарушение гомеостатических свойств клетки, т.е. рН сдвигается в кислую сторону, соли, метаболиты освобождаются и переходят из клетки в окружающую среду;

3) в результате подкисления и изменения электролитного состава клетки происходит денатурация внутриклеточных белков;

4) вследствие выше перечисленных процессов разрушаются мембраны лизосом, освобождаются гидролитические ферменты, которые начинают свою разрушительную работу; они вызывают гидролиз белков, углеводов, жиров, ДНК и разрушают внутриклеточные структуры;

5) ядро умирающей клетки распадается на отдельные фрагменты (кариорексис), которые затем растворяются (кариолизис).

Гибель организма, как правило, происходит в результате смерти некоторой небольшой группы жизненно важных клеток, и после смерти организма многие его клетки остаются еще живыми и функционально полноценными.

Нарушения дифференциации клеток, ведущие

к патологическим изменениям. Злокачественный рост

Как отдельные клетки, так и целые многоклеточные организмы могут подвергаться различным воздействиям, которые приводят к их структурно-функциональным изменениям, к нарушениям их жизненных функций, т.е. к патологии.

Изучение различных патологических изменений клетки имеет большое прикладное значение, так как прямо связано с задачами медицины. Кроме того, изучение типов клеточного поражения, процессов их развития, способности клеток к репаративным процессам имеет большое общебиологическое значение, раскрывая пути взаимосвязи и регуляции между отдельными клеточными компонентами. Современная биология рассматривает клетку как единую, комплексную интегрированную систему, где отдельные функции взаимосвязаны и сбалансированы друг с другом.

Таким образом, первичное нарушение любой общеклеточной функции непременно вызовет цепь взаимосвязанных внутриклеточных событий. Это можно показать на следующем примере. Под действием алкоголя происходит набухание митохондрий и нарушение их функций, вследствие этого наблюдается недостаток АТФ и затухание синтеза белков. Из-за недостатка ферментов и структурных белков происходит падение синтеза РНК и ДНК, нарушение проницаемости мембран. Это влечет за собой набухание клетки, а затем гибель органоидов и клетки в целом.

В зависимости от интенсивности поражения, его длительности и характера, судьба клетки может быть различна. Такие измененные клетки:

1) или адаптируются, приспосабливаются к повреждающему фактору;

2) или могут репарировать повреждения и реактивироваться после снятия повреждающего воздействия;

3) или могут измениться необратимо и погибнуть.

Но к патологическим процессам на клеточном уровне относятся не только явления, связанные с деструкцией, разрушением клеток. Другой, не менее важный, уровень клеточной патологии – изменение регуляторных процессов. Это могут быть нарушения регуляции обменных процессов, приводящие к отложению различных веществ (например, «жировое перерождение тканей», патологическое отложение и накопление гликогена). Или же это могут быть нарушения дифференцировки, одним из которых является опухолевый рост.

Опухолевые клетки характеризуются следующими свойствами:

1. Безудержность, неограниченность размножения. У них практически отсутствует ограничение числа делений, в то время как нормальные клетки ограничены в своих делениях. Скорость самого процесса деления опухолевых клеток равна скорости митоза нормальных клеток, сокращается продолжительность интерфазы.

2. Нарушение уровня дифференцированости, изменение морфологии клеток. Это значит, что опухолевые клетки характеризуются более низким уровнем специализации, дифференцировки, чем исходные нормальные. Это размножающиеся клетки, остановившиеся на определенной стадии развития, как бы «недозрелые». Степень такой «недозрелости» опухолевых клеток может быть очень различной в одной и той же опухоли, что создает многообразие, полиморфность ее клеточного состава. Такой полиморфизм связан, кроме того, с тем, что в составе опухоли находятся как размножающиеся, так и дегенерирующие клетки.

3. Относительная автономность от регуляторных влияний со стороны организма. Эта особенность заключается в том, что опухолевые клетки не подчиняются регуляторным влияниям всего организма. В здоровом организме это влияние осуществляется на разных уровнях: межклеточном, межтканевом, гормональном, нервном. Степень опухолевой автономности может быть различна для разных опухолей. Так, рост некоторых опухолей может контролироваться со стороны эндокринной системы организма, другие опухоли растут вне зависимости от нее.

4. Способность к метастазированию. Вышеописанная автономизация опухолевых клеток позволяет им жить практически в любых участках организма. Отдельные опухолевые клетки могут с помощью тока крови или лимфы быть перенесены на новые места, там начать размножаться, давать новую колонию клеток, то есть метастазы. В этом отношении опухолевые клетки используют организм как какой-то субстрат, необходимый им для размножения и роста.

Таким образом, в отношении различных синтетических процессов, размножения, то есть по основным клеточным функциям, опухолевые клетки нельзя назвать «больными»; их патологичность – в неуправляемости и в ограничении способности к специализации. Это как бы клетки-«идиоты», вполне способные к размножению, но остановившиеся на «детских» стадиях развития.

Все эти свойства клетки сохраняют из поколения к поколению, то есть свойства злокачественности являются наследственной особенностью таких клеток. Поэтому раковые клетки часто сравнивают с мутантами – клетками, обладающими измененной генетической структурой. Возникновение раковой мутации объясняют по-разному.

Одни исследователи считают, что в результате мутации клетка утрачивает какие-то факторы (например, гены-регуляторы), необходимые для дифференцировки.

По другим представлениям, эти факторы не потеряны, а блокированы либо какими-то веществами, либо вирусами, материал которых остается в клетках в скрытом виде в течение многих клеточных поколений.

В любом случае для клетки результат будет один и тот же, независимо от того, утратит ли она те или иные гены-регуляторы, будут ли эти гены блокированы или клетка приобретает дополнительную генетическую информацию вирусной природы, в ней происходит изменение генома, соматическая мутация, выражающаяся в нарушении дифференцировки клетки и приобретении ею свойств злокачественности.

Дифференциация клеток