Сравнение характеристик качества обслуживания в сетях с коммутацией каналов и коммутацией пакетов
Лекция №11
по дисциплине “Теория распределение информации»
Наименование темы: Сравнение характеристик качества обслуживания в сетях с коммутацией каналов и коммутацией пакетов
1. Анализ времени доставки сообщений в сети с коммутацией каналов
2. Анализ времени доставки сообщений в сетях с коммутацией пакетов
1. Анализ времени доставки сообщений в сети с коммутацией каналов
Передача данных по сетям с коммутацией каналов осуществляется в три фазы - установление соединения, передача данных, разъединение соединения. Для реализации этих процессов применяется система сигнализации. На рис. 1 показаны упрощенно сигнальные сообщения, которыми обмениваются абоненты и коммутационные узлы в процессе передачи.
Рис. 1 Сигнализация в сети с коммутацией каналов.
Передача сигнализации может осуществляться как по специальному общему для всех коммутируемых каналов каналу сигнализации (ОКС), так и в полосе речевого сигнала, т.е. по тем же соединительным линиям, по которым передаются информационные сообщения. Рассмотрим случай: найдем время установления соединения, которое будет являться функцией нагрузки в сети, длины управляющих и информационных сообщений, интенсивности передачи сигнальных сообщений и данных (скорости передачи), а также числа каналов (соединительных линий) предоставленных для связи. Рассмотрим модель сети с коммутацией каналов в виде системы обслуживания, в которой вызовы ожидают освобождения каналов, а не блокируются. Отбросим на этом этапе проблему маршрутизации, предположив сеть полносвязной. На рис. 2 показана модель СМО, соответствующая сделанным предположениям. Два узла коммутации А и В связаны между собой N каналами (СЛ) с пропускной способностью СL ,бит/с. Пусть это также и скорость передачи по абонентскому шлейфу . С этой скоростью данные будут передаваться по каналу после установления соединения. Вызовы от абонентских устройств поступают на узел А и находятся в очереди пока не станет свободным хотя бы одна СЛ до узла В. На рис. 3 показаны все составляющие времени Тс времени установления соединения от момента передачи сообщения запроса передачи до момента приема сообщения о начале передачи. Временем на соединение узла В и получателя пренебрегаем. Показанные отрезки времени требуется для передачи каждого из сигнальных сообщений, обработка в узлах А и В требует в каждом случае среднее время M<Тр>. Среднее время ожидания в очереди в узле А до освобождения одного из N каналов обозначено M<W>.
Теперь примем для простоты, что каждое сигнальное сообщение имеет одну и ту же длину и требует времени передачи Тs . Время передачи сообщения о соединении примем равным ТI. При таком упрощении время соединения равно:
.
Рис. 2 Пара узлов в полносвязной сети с коммутацией каналов; модель системы обслуживания; сигнализация по разговорному каналу.
Рис. 3 Составляющие времени установления соединения.
Для расчета среднего времени ожидания M<W> воспользуемся моделью системы обслуживания типа M/M/N с бесконечной длиной буфера и N серверами. Предположение о пуассоновском распределении потока вызовов является, как правило, адекватным в задачах со многими абонентами, допущение о показательном распределении времени обслуживания существенно более грубое, однако описание времени обслуживания статистикой общего вида сильно усложнит задачу.
Пусть интенсивность потока вызовов в узел А равна , а среднее значение времени обслуживания 1/. Тогда можно использовать модель M/M/N со следующими характеристиками интенсивностей переходов
Здесь n - состояние СМО, т.е. число установленных соединений, включая обслуживаемый вызов. Решение уравнений равновесия для данной системы было дано ранее. Введя параметр =/(N), стационарные вероятности состояний определяются как
2. Анализ времени доставки сообщений в сетях с коммутацией пакетов
Теперь перейдем к рассмотрению сети с коммутацией пакетов, а чтобы быть более точным, сети с передачей данных не ориентированной на соединение. В такой сети каждый пакет доставляется индивидуальным маршрутом и передача пакета считается завершенной только после получения подтверждения о его приеме. На рис.4. приведен фрагмент сети, состоящий из двух узлов и соединяющих их дуплексных каналов. Для сопоставимости результатов с сетью с коммутацией каналов будем считать полную интенсивность потока во входящем узле равной , пропускную способность дуплексного канала между узлами положим равной СТ=NСL в каждом направлении, где величина СL определяет максимальную скорость доступа к узлу от индивидуального абонента (пропускная способность абонентской линии). В этой сети принципиально отсутствуют расходы времени на установление соединения, однако в качестве накладных расходов выступает время на получение подтверждений о приеме пакета. Рассмотрим два способа передачи подтверждений. Первый состоит в передаче от узла В отдельных пакетов с информацией о подтверждении, а второй предполагает, что в информационные пакеты обратного направления встраиваются специальные поля битов подтверждения о приеме пакетов встречного направления. Рассмотрим сначала первый способ. Пусть каждый принятый пакет генерирует отдельное подтверждение фиксированной длины LI бит. Тем самым в каждом узле образуется поток пакетов переменной длины, состоящих из некоторого фиксированного поля длины LI и поля случайной длины со средним значением mc . Такие пакеты поступают в очередь на входном узле и обслуживаются в порядке поступления.
Рис. 4. Пара узлов; сеть с коммутацией пакетов.
Очевидно, что здесь мы должны использовать модель СМО с произвольным распределением времени обслуживания в силу специфики структуры пакетов. Поставим задачу найти среднее время отклика TD от узла до узла, используя модель M/G/1. На рис. 5 показано как можно рассматривать входную очередь и какой вид функции распределения времени обслуживания следует принять.
Найдем среднее значение времени обслуживания на один пакет. Поскольку весь выходной поток узла считывается в канал со скоростью СТ, можно записать, что время на передачу будет равно:
.
Первая составляющая представляет собой время на передачу «заголовков», а вторая составляющая время на передачу собственно данных. Средняя длина подтверждений также равна th . Таким образом, среднее «эквивалентное» время обслуживания в системе M/G/1 следует принять равным
.
Поскольку поступления двух типов входящих сообщений равновероятны, и обслуживание происходит в порядке поступления, можно считать, что коэффициент использования для данной системы будет определяться как
.
Рис. 5 Передача отдельных подтверждающих пакетов.
Здесь был введен параметр M=tm эффективный коэффициент использования передаваемых через канал битов. Его смысл полностью совпадает с введенным выше с тем же обозначением коэффициента для сети с коммутацией каналов. Действительно из соотношений
Таким образом, мы ввели для сети с коммутацией пакетов параметр сравнения, совпадающий с параметром сети, ориентированной на соединение.
Вспомним теперь, что для СМО типа M/G/1 среднее время ожидания зависит от второго момента распределения времени обслуживания. Найдем
.
Используя формулу Полячека-Хинчина, получаем выражение для среднего значения времени ожидания пакета в системе:
В конечном счете общее время отклика от узла до узла складывается из только что полученного времени задержки в очереди в узле А и задержки в очереди подтверждений в узле В, а также среднего времени передачи пакета и времени передачи подтверждения. Искомое время равно
.
Для сравнения полученной величины со временем соединения в сети с коммутацией каналов, нормируем эту величину на время передачи данных по абонентской линии, как это делалось ранее. Вводя обозначение отношение длины управляющего пакета к длине информационного пакета k=LI /mc=th /tm, получим
.
На рис. 6 приведены графики зависимости этой величины от M при тех же параметрах сети, что и сети с коммутацией каналов k=0.1, N=10.
Рис. 6 Нормированное время ответа; случай коммутации пакетов.
Рассмотрение и сравнение зависимостей показывает, что если сигнальные сообщения имеют ту же длину, что и сообщения об установлении соединений, максимальное использование канала в сети с коммутацией канала составляло величину в 0.67. При сигнальных сообщения в десять раз короче, эта величина возрастала до 0.88. В сети с коммутацией пакетов полезное использование не превышает 0.83. На рисунке приведены также зависимости для второго способа передачи подтверждающих прием пакета сообщений в теле обратных пакетов (вложенные подтверждения). Можно показать, что в этом случае нормированное время отклика может рассчитываться по формуле
Как видно из графика вложенные подтверждения несколько эффективнее при больших нагрузках и сильно ухудшают характеристики сети при малых нагрузках. На этом же рисунке приведены результаты расчетов, сделанные в приближении экспоненциального распределения времени обслуживания. Как видно учет второго момента распределения незначительно влияет на результаты даже при больших нагрузках, если только правильно выбрать средние значения.
В заключение приведем сравнение двух видов коммутации в зависимости от длины передаваемых данных. Будем определять величину задержки в системе как функцию длины информационной части пакета mc.
Для сети с коммутацией каналов величина задержки определяется временем соединения TC =M<W>+TI+3TS, где среднее время ожидания в очереди и время на передачу сигнализационных сообщений необходимо выразить через длины пакетов, пропускные способности и сопоставимую величину коэффициента эффективного использования M. Для сети с коммутацией пакетов и потоком подтверждений будем находить время ответа TD, выраженное через те же самые величины.
На рис. 7 приведены сравнительные графики, рассчитанные по приведенным выше формулам для случая сети с 16 битовыми сигнальными сообщениями, сообщениями запроса и подтверждения длиной 160 бит и скоростями на абонентской линии и межузловом канале в 2.4 Кбит/c и 120 Кбит/с соответственно. На рис. 8 приведены результаты расчетов для сети с медленными каналами в 110 бит/с на абонентской линии и 1100 бит/c на межузловом канале.
Длина сигнального сообщения о соединении и подтверждения имеет длину в 100 бит, а другие сигнальные сообщения в 50 бит.
В целом рассмотрение полученных результатов приводит к следующим выводам. Коммутация пакетов может дать меньшее время реакции в диапазонах малых длин сообщений (пакетов), тогда как коммутация каналов имеет преимущества при больших длинах сообщений. Каналы с большей пропускной способностью при коммутации пакетов тем эффективнее, чем меньше коэффициент полезного использования M. При увеличении длины сигнального сообщения характеристики сети с коммутацией каналов сильно ухудшаются (в том случае, если для передачи сигнальной информации используются те же каналы).
Рис. 7 Сравнение коммутации пакетов и коммутации каналов. Пример 1.
Рис. 8 Сравнение коммутации пакетов и коммутации каналов. Пример 2.
Сравнение характеристик качества обслуживания в сетях с коммутацией каналов и коммутацией пакетов