Элементы векторной алгебры

PAGE 7

Глухов Ю.П. Конспект лекций по высшей математике.

Лекция 7

ТЕМА: Элементы векторной алгебры

План лекции.

  1. Скалярные и векторные величины.
  2. Линейные операции над векторами.
  3. Базис и координаты вектора.
  4. Системи координат. Декартовая система координат. Линейные операции над векторами в координатах.
  5. Скалярное произведение векторов.

Скалярные и векторные величины

Определение. Скаляром называется величина, которая полностью определяется своим числовым значением.

Определение. Вектором называется направленный отрезок (упорядоченная пара точек).

Обозначения: a, , .

К векторам относится также и нулевой вектор, начало и конец которого совпадают.

Определение. Длиной (модулем) вектора называется расстояние между началом и концом вектора.

Определение. Векторы называются коллинеарными, если они расположены на одной или параллельных прямых. Нулевой вектор коллинеарен любому вектору.

Определение. Векторы называются компланарными, если существует плоскость, которой они параллельны.

Коллинеарные векторы всегда компланарны, но не все компланарные векторы коллинеарны.

Определение. Векторы называются равными, если они коллинеарны, одинаково направлены и имеют одинаковые модули.

Всякие векторы можно привести к общему началу, т.е. построить векторы, соответственно равные данным и имеющие общее начало. Из определения равенства векторов следует, что любой вектор имеет бесконечно много векторов, равных ему.

Замечание. Таким образом, мы изучаем так называемые свободные векторы, начальная точка которых может быть выбрана произвольно. Векторы, для которых важна точка приложения, называются присоединенными (связанными) и используются в некоторых разделах физики.

Линейные операции над векторами

Определение. Суммой a + b векторов a и b называется вектор, идущий из начала вектора а в конец вектора b, если начало вектора b совпадает с концом вектора а.

b

a+b

a

Замечание. Такое правило сложения векторов называют правилом треугольника.

Свойства сложения:

Свойство 1. a + b = b + a.

Доказательство. Приложим векторы а и b к общему началу и рассмотрим параллелограмм

AOBC. Из определения 5.4 и треугольника ОВС следует, что ОС=b+a, а из треугольника

ОАС – ОС=а+b. Свойство 1 доказано.

В а С Замечание. При этом сформулировано еще одно правило

b b сложения векторов – правило параллелограмма: сумма

a+b= векторов a и b есть диагональ параллелограмма, построенно-

=b+a го на них как на сторонах, выходящая из их общего начала.

О А

а

Свойство 2. (a+b)+c=a+(b+c).

b Доказательство. Из рисунка видно, что

A a+b B (a+b)+c=(OA+AB)+BC=OB+BC=OC,

a a+(b+c)=OA+(AB+BC)=OA+AC=OC.

Свойство 2 доказано.

b+с

O c С

Свойство 3. Для любого вектора a существует нулевой вектор О такой, что a+О=а.

Доказательство этого свойства следует из определения суммы векторов.

Свойство 4. Для каждого вектора a существует противоположный ему вектор a/ такой, что а+а/=О.

Доказательство. Достаточно определить a/ как вектор, коллинеарный вектору a, имеющий одинаковую с ним длину и противоположное направление.

Определение. Разностью а – b векторов а и b называется такой вектор с, который в сумме с вектором b дает вектор а.

a a-b

b

Определение. Произведением ka вектора а на число k называется вектор b, коллинеарный вектору а, имеющий модуль, равный |k||a|, и направление, совпадающее с направлением а при k>0 и противоположное а при k<0.

Свойства умножения вектора на число:

Свойство 1. k(a + b) = ka + kb.

Свойство 2. (k + m)a = ka + ma.

Свойство 3. k(ma) = (km)a.

Следствие. Если ненулевые векторы а и b коллинеарны, то существует такое число k, что b = ka

Базис и координаты вектора

Определение. Векторным базисом системы векторов называется наибольшее число линейно независимых векторов.

Определение.

1) Базисом в пространстве называются любые 3 некомпланарных вектора, взятые в определенном порядке.

2) Базисом на плоскости называются любые 2 неколлинеарные векторы, взятые в определенном порядке.

3)Базисом на прямой называется любой ненулевой вектор.

Определение. Если - базис в пространстве и , то числа , и - называются компонентами или координатами вектора в этом базисе.

В связи с этим можно записать следующие свойства:

равные векторы имеют одинаковые координаты,

при умножении вектора на число его компоненты тоже умножаются на это число,

= .

при сложении векторов складываются их соответствующие компоненты.

; ;

+ = .

Линейная зависимость векторов

Определение. Векторы называются линейно зависимыми, если существует такая линейная комбинация , при не равных нулю одновременно i , т.е. .

Если же только при i = 0 выполняется , то векторы называются линейно независимыми.

Свойство 1. Если среди векторов есть нулевой вектор, то эти векторы линейно зависимы.

Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима.

Свойство 3. Система векторов линейно зависима тогда и только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов.

Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны.

Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны.

Свойство 6. Любые 4 вектора линейно зависимы.

Определение. Проекцией вектора АВ на ось u называется длина направленного отрезка А/В/ оси u, где А/ и В/ - основания перпендикуляров, опущенных из точек А и В на ось u.

Обозначение: прuа.

Свойства проекции:

  1. Прua = |a| cos, где – угол между а и осью u.
  2. При сложении двух векторов их проекции на любую ось складываются.
  3. При умножении вектора на число его проекция на любую ось умножается на это число.

Замечание. Свойства 2 и 3 назовем линейными свойствами проекции.

Система координат

Для определения положения произвольной точки могут использоваться различные системы координат. Положение произвольной точки в какой-либо системе координат должно определяться однозначно. Понятие системы координат представляет собой совокупность точки начала отсчета (начала координат) и некоторого базиса. Как на плоскости, так и в пространстве возможно задание самых разнообразных систем координат. Выбор системы координат зависит от характера поставленной геометрической, физической или технической задачи. Рассмотрим некоторые наиболее часто применяемые на практике системы координат.

Декартовая система координат

Определение. Декартовой системой координат в пространстве является совокупность точки и базиса. Точка называется началом координат. Прямые, проходящие через начало координат называются осями координат.

1-я ось – ось абсцисс

2-я ось – ось ординат

3-я ось – ось апликат

Чтобы найти компоненты вектора нужно из координат его конца вычесть координаты начала.

Если заданы точки А(x1, y1, z1), B(x2, y2, z2), то = (x2 – x1, y2 – y1, z2 – z1).

Определение. Базис называется ортонормированным, если его векторы попарно ортогональны и равны единице.

Определение. Декартова система координат, базис которой ортонормирован называется декартовой прямоугольной системой координат.

Рассмотрим декартовую прямоугольную систему координат, базис которой образуют в пространстве три попарно ортогональных единичных вектора i, j, k. Тогда любой вектор d может быть представлен в виде их линейной комбинации: d = Xi + Yj +Zk.

Определение. Числа X, Y, Z называются декартовыми координатами вектора d.

Замечание. Декартовые координаты вектора равны его проекциям на оси Ох, Оу и Оz декартовой системы координат

Пример. Даны векторы(1; 2; 3), (-1; 0; 3), (2; 1; -1) и (3; 2; 2) в некотором базисе. Показать, что векторы , и образуют базис и найти координаты вектора в этом базисе.

Векторы образуют базис, если они линейно независимы, другими словами, если уравнения, входящие в систему:

линейно независимы.

Тогда .

Это условие выполняется, если определитель матрицы системы отличен от нуля.

Для решения этой системы воспользуемся методом Крамера.

1 = ;

2 =

3 =

Итого, координаты вектора в базисе , , : { -1/4, 7/4, 5/2}.

Длина вектора в координатах определяется как расстояние между точками начала и конца вектора. Если заданы две точки в пространстве А(х1, y1, z1), B(x2, y2, z2), то .

Если точка М(х, у, z) делит отрезок АВ в соотношении /, считая от А, то координаты этой точки определяются как:

В частном случае координаты середины отрезка находятся как:

x = (x1 + x2)/2; y = (y1 + y2)/2; z = (z1 + z2)/2.

Определение. Косинусы углов, образованных вектором о осями декартовой системы координат, называются его направляющими косинусами.

Свойства направляющих косинусов:

  1. X = |d| cos, Y = |d| cos, Z = |d| cos.
  2. , , .
  3. cos2 + cos2 + cos2 = 1.

Линейные операции над векторами в координатах

Пусть заданы векторы в прямоугольной системе координат

тогда линейные операции над ними в координатах имеют вид:

Скалярное произведение векторов, его свойства.

Определение. Скалярным произведением векторов и называется число, равное произведению длин этих векторов на косинус угла между ними.

= cos

Свойства скалярного произведения:

  1. = 2;
  2. = 0, если или = 0 или = 0.
  3. = ;
  4. (+) = + ;
  5. (m) = (m) = m(); m=const

Если рассматривать векторы в декартовой прямоугольной системе координат, то

= xa xb + ya yb + za zb;

Доказательство. Используя формулу d = Xi + Yj +Zk, получим: ab = (X1i + Y1j + Z1k)(X2i + Y2j + Z2k) .

Используя свойства 4 и 5, раскроем скобки в правой части полученного равенства:

ab = X1X2ii +Y1Y2jj + Z1Z2kk + X1Y2ij +X1Z2ik + Y1X2ji + Y1Z2jk + Z1X2ki + Z1Y2kj.

Но ii = jj = kk = 1 по свойству 6, ij = ji = ik = ki = jk = kj = 0 по свойству 2, поэтому

ab = X1X2 + Y1Y2 + Z1Z2 .

Используя полученные равенства, получаем формулу для вычисления угла между векторами:

;

Пример. Найти (5 + 3)(2 - ), если

10- 5+ 6- 3 = 10,

т.к. .

Пример. Найти угол между векторами и , если

.

Т.е. = (1, 2, 3), = (6, 4, -2)

= 6 + 8 – 6 = 8:

.

cos =

Пример. Найти скалярное произведение (3 - 2)(5 - 6), если

15- 18- 10+ 12 = 15

+ 1236 = 240 – 336 + 432 = 672 – 336 = 336.

Пример. Найти угол между векторами и , если

.

Т.е. = (3, 4, 5), = (4, 5, -3)

= 12 + 20 - 15 =17 :

.

cos =

Пример. При каком m векторы и перпендикулярны.

= (m, 1, 0); = (3, -3, -4)

.

Пример. Найти скалярное произведение векторов и , если

()() =

= 10 +

+ 27 + 51 + 135 + 72 + 252 = 547.

Кафедра информатики и высшей математики КГПУ

Элементы векторной алгебры