Общие закономерности взаимодействия организмов и экологических факторов

Лекция №7

  1. Биотические факторы
    1. Понятие, виды биотических факторов.
    2. Биотические факторы наземной и водной среды, почв
    3. Биологически активные вещества живых организмов
    4. Антропогенные факторы
  2. Общие закономерности взаимодействия организмов и экологических факторов
    1. Понятие лимитирующего фактора. Закон минимума Либиха, закон Шелфорда
    2. Специфика воздействия антропогенных факторов на организм
    3. Классификация организмов по отношению к экологическим факторам

1. Биотические факторы

Биотические факторы - это совокупность влияний жизнедеятельности одних организмов на другие. Взаимоотношения между организмами чрезвычайно сложны и многообразны, и в целом их можно условно разделить на прямые и опосредованные. Первые заключаются в основном в непосредственных связях по линии трофики (питания): животные получают энергию для своей жизнедеятельности, поедая растения или других животных. В свою очередь, поедаемые животные (жертвы) служат источником энергии для хищников. Взаимодействия в системах жертва - хищник или хозяин - паразит в итоге обеспечивают естественный отбор и выживание наиболее приспособленных, определяют динамику численности популяций.

Опосредованные взаимодействия заключаются в том, что одни организмы являются средообразователями по отношению к другим, причем приоритетная значимость здесь принадлежит, безусловно, растениям-фотосинтетикам. Хорошо известна, например, локальная и глобальная средообразующая функция лесов, в том числе их почво- и полезащитная и водоохранная роль. Непосредственно в условиях леса создается своеобразный микроклимат, который зависит от морфологических особенностей деревьев и позволяет обитать именно здесь специфическим лесным животным, травянистым растениям, мхам и др. Условия ковыльных степей представляют совершенно иные режимы абиотических факторов. В водоемах и водотоках растения - основной источник такого важнейшего абиотического компонента среды, как кислород.

Одновременно растения служат непосредственным местом обитания для других организмов. Например, в тканях дерева (в древесине, лубе, коре) развиваются многие грибы, плодовые тела которых (трутовики) можно видеть на поверхности ствола; внутри листьев, плодов, стеблей травянистых и древесных растений живет множество насекомых и других беспозвоночных, а дупла деревьев - обычное место обитания ряда млекопитающих и птиц. Для многих видов скрытноживущих животных место питания совмещено с местом обитания.

Взаимодействия между живыми организмами в наземной и водной среде

Взаимодействия между живимыми организмами (преимущественно животными) классифицируют с точки зрения их взаимных реакции.

Различают гомотипические (от греч. гомос - одинаковый) реакции, т. е. взаимодействия между особями и группами особей одного и того же вида, и гетеротипические (от греч. гетерос- иной, разный) - взаимодействия между представителями разных видов. Среди животных существуют виды, способные питаться только одним видом пищи (монофаги), на более или менее ограниченном круге источников пищи (узкие или широкие олигофаги), или на многих видах, используя в пищу не только растительные, но и животные ткани (полифаги). К числу последних принадлежат, например, многие птицы, способные поедать как насекомых, так и семена растений, или такой известный вид, как медведь - по природе своей хищник, но охотно поедает ягоды, мед.

Наиболее распространенный тип гетеротипических взаимодействий между животными - хищничество, т. е. непосредственное преследование и поедание одних видов другими, например насекомых - птицами, травоядных копытных -плотоядными хищниками, мелких рыб - более крупными и т. п. Хищничество широко распространено между беспозвоночными животными - насекомыми, паукообразными, червями и др.

Другой тип - паразитизм. В самом обычном случае организм-паразит постоянно обитает на поверхности или внутри тела другого животного или растения (т. е. "хозяина") и живет за счет его питательных веществ. Примерами могут служить обычные вши, кишечные гельминты (плоские и круглые черви), клещи, простейшие, вызывающие заболевания, а из растений - повилика или полупаразит - омела. Такой паразитизм носит название истинного, при котором паразит не убивает своего хозяина.

Однако многие паразиты лишь периодически обитают на хозяине. Так, например, многие насекомые откладывают яйца внутрь или на поверхность тела беспозвоночных. Отродившаяся из этого яйца личинка паразита съедает хозяина изнутри или высасывает его снаружи. Такие организмы принято называть ложными паразитами или паразитоидами .

Из других форм взаимодействий между организмами можно назвать хорошо известное опыление растений животными (насекомыми); форезию, т.е. перенос одними видами других (например, семян растений птицами и млекопитающими); комменсализм (сотрапезничество), когда одни организмы питаются остатками пищи или выделениями других, примером чего являются гиены и грифы, пожирающие остатки пищи львов; синойкию (сожительство), например использование одними животными мест обитания (нор, гнезд) других животных; нейтрализм, т. е. взаимонезависимость разных видов, обитающих на общей территории.

Одним из важных типов взаимодействия между организмами считается конкуренция, которую определяют как стремление двух видов (или индивидуумов одного вида) обладать одним и тем же ресурсом. Таким образом, выделяют внутривидовую и межвидовую конкуренцию. Конкуренцию межвидовую рассматривают, кроме того, как стремление одного вида вытеснить другой вид (конкурента) из данного места обитания.

Однако реальные доказательства конкуренции в природных (а не в экспериментальных) условиях найти трудно. Конечно, две разные особи одного вида могут пытаться отнять друг у друга куски мяса или иной пищи, но подобные явления объясняются разнокачественностью самих особей, их разной приспособленностью к одним и тем же экологическим факторам. Любой вид организма приспособлен не к одному какому-либо фактору, а к их комплексу, причем требования двух разных (пусть даже близких) видов не совпадают. Поэтому один из двух окажется вытесненным в природной среде не в силу конкурентных стремлений" другого, а просто потому, что он хуже адаптирован к другим факторам. Характерный пример - "конкуренция" за свет между хвойными и лиственными древесными породами в молодняках.

Лиственные (осина, береза) опережают в росте сосну или ель, но это нельзя считать конкуренцией между ними: просто первые лучше адаптированы к условиям вырубок и гарей, чем вторые. Многолетние работы по уничтожению лиственных "сорняков" при помощи гербицидов и арборицидов (химических препаратов для уничтожения травянистых и кустарниковых растений), как правило, не приводили к "победе" хвойных, поскольку далеко не только световое довольствие, но и многие другие факторы (как биотические, так и абиотические) не отвечали их требованиям.

Иногда животных, поедающих растения или других животных (паразитов, хищников, фитофагов), рассматривают в качестве естественных врагов тех видов, которыми они питаются. Такой подход в принципе неверен. Эти организмы - обычные экологические факторы, осуществляющие в природной экосистеме функции естественного отбора. Поэтому с общебиологических позиций хозяин и паразитоид являются взаимно необходимыми друг другу. Исчезновение (или уничтожение) такого "естетвенного врага" нанесет ущерб его хозяину или жертве, так как слабые, отставшие в развитии, генетически ущербные индивидуумы не будут уничтожаться, но будут давать при скрещивании потомство заведомо нежизнеспособное. Отбор и приспособительная изменчивость тем самым будут исключены, и вид, не имеющий "врагов", обречен на вырождение.

Все эти обстоятельства человек должен учитывать при управлении живой природой, при эксплуатации животных и растений, т. е. при промысле или проведении таких хозяйственных мероприятий, как защита растений в сельском хозяйстве.

Биотические факторы почвы

Как уже упоминалось выше, почва - биокосное тело. В процессах ее образования и функционирования важнейшую роль играют живые организмы. К ним относятся, в первую очередь, зеленые растения, извлекающие из почвы питательные химические вещества и возвращающие их обратно вместе с отмирающими тканями.

Но в процессах почвообразования решающую роль играют населяющие почву живые организмы (педобионты): микробы, беспозвоночные и др. Микроорганизмам принадлежит ведущая роль в трансформации химических соединений, миграции химических элементов, питании растений.

Первичное разрушение мертвой органики осуществляют беспозвоночные животные (черви, моллюски, насекомые и др.) в процессе питания и выделения в почву продуктов пищеварения. Фотосинтетическое связывание углерода в почве осуществляют в некоторых типах почв микроскопические зеленые и синезеленые водоросли.

Почвенные микроорганизмы осуществляют основное разрушение минералов и приводят к образованию органических и минеральных кислот, щелочей, выделяют синтезированные ими ферменты, полисахариды, фенольные соединения.

Важнейшим звеном в биогеохимическом цикле азота является азотфиксация, которую осуществляют азотфиксирующие бактерии. Известно, что общая продукция фиксации азота микробами составляет 160-170 млн. т/год. Необходимо также упомянуть что фиксация азота, как правило, является симбиотической (совместной с растениями), осуществляемой клубеньковыми бактериями, располагающимися на корнях растений.

Биологически активные вещества живых организмов

К числу экологических факторов биотической природы относятся химические соединения, активные продуцируемые живыми организмами. Таковы в частности, фитонциды – образуемые организмов растениями преимущественно летучие вещества, убивающие микроорганизмы или подавляющие их рост. К ним относятся гликозиды, терпеноиды, фенолы, дубильные и многие другие вещества. Например, 1 га лиственного леса выделяет около 2 кг летучих веществ в сутки, хвойного - до 5 кг, можжевелового - около 30 кг. Поэтому воздух лесных экосистем имеет важнейшее санитарно-гигиеническое значение, убивая микроорганизмы, вызывающие опасные заболевания человека. Для растения фитонциды выполняют функцию защиты от бактериальных, грибных инфекций, от простейших. Растения способны вырабатывать защитные вещества в ответ на заражение их патогенными грибами.

Летучие вещества одних растений могут служить средством вытеснения других растений. Взаимное влияние растений путем выделения в окружающую среду физиологически активных веществ называют аллелопатией (от греч. аллелон - взаимно, патос - страдание).

Органические вещества, образуемые микроорганизмами и обладающие способностью убивать микробов (или препятствовать их росту), называются антибиотиками; характерным примером является пенициллин. К антибиотикам относятся также антибактериальные вещества, содержащиеся в растительных и животных клетках.

Опасные алкалоиды, оказывающие отравляющее и психотропное действие, содержатся во многих грибах, высших растениях. Сильнейшая головная боль, тошнота вплоть до потери сознания может возникнуть в результате долгого пребывания человека на багульниковом болоте.

Свойствами вырабатывать и выделять отпугивающие, привлекающие, сигнальные, убивающие вещества обладают позвоночные и беспозвоночные животные. В их числе можно назвать многих паукообразных (скорпион, каракурт, тарантул и др.), пресмыкающихся. Человек широко использует яды животных и растений в лечебных целях.

Совместная эволюция животных и растений выработала у них сложнейшие информационно-химические взаимоотношения. Приведем лишь один пример: многие насекомые по запаху различают свои кормовые породы, жуки-короеды, в частности, прилетают только к умирающему дереву, распознавая его по составу летучих терпенов живицы.

Антропогенные экологические факторы

Вся история научно-технического прогресса, представляет собой совокупность преобразования человеком в своих целях природных экологических факторов и создания новых, ранее в природе не существовавших.

Выплавка металлов из руд и производство оборудования невозможны без создания высоких температур, давлений, мощных электромагнитных полей. Получение и сохранение высоких урожаев сельскохозяйственных культур требует производства удобрений и средств химической защиты растений от вредителей и возбудителей заболеваний. Современное здравоохранение немыслимо без средств хемо- и физиотерапии. Эти примеры можно умножить.

Достижения научно-технического прогресса стали использоваться в политических и экономических целях, что крайним образом проявилось в создании специальных поражающих человека и его имущество экологических факторов: от огнестрельного оружия до средств массового физического, химического и биологического воздействия. В данном случае можно прямо говорить о совокупности антропотропных (т. е. направленных на человеческий организм) и, в частности, антропоцидных экологических факторов, вызывающих загрязнение окружающей среды.

С другой стороны, кроме таких факторов целенаправленного назначения, в процессе эксплуатации и переработки природных ресурсов неизбежно образуются побочные химические соединения и зоны высоких уровней физических факторов. В ряде случаев эти процессы могут носить скачкообразный характер (в условиях аварий и катастроф) с тяжелыми экологическими и материальными последствиями. Отсюда и потребовалось создавать способы и средства защиты человека от опасных и вредных факторов, что реализовалось в настоящее время в упомянутую выше систему — безопасность жизнедеятельности.

В упрощенной форме ориентировочная классификация антропогенных экологических факторов представлена на рис. 1.


Рис. 1. Классификация антропогенных экологических факторов

БОВ – боевые отравляющие вещества, Зоонозы – инфекционные и паразитарные заболевания животных, болезни, которыми может заразиться человек от животных (чума, сибирская язва)


2. Общие закономерности взаимодействия организмов и экологических факторов

Любой экологический фактор динамичен, изменчив во времени и пространстве.

Теплое время года с правильной периодичностью сменяется холодным; в течение суток наблюдаются более или менее широкие колебания температуры, освещенности, влажности, силы ветра и т. п. Все это - природные, колебания экологических факторов, однако воздействовать на них способен и человек. Влияние антропогенной деятельности на окружающую среду проявляется в общем случае в изменении режимов (абсолютных значений и динамики) экологических факторов, а также - состава факторов, например при внесении ксенобиотиков в природные системы в процессе производства или специальных мероприятий - таких, как защита растений при помощи ядохимикатов или внесение органических и минеральных удобрений в почву.

Однако каждому живому организму требуются строго определенные уровни, количества (дозы) экологических факторов, а также определенные пределы их колебаний. Если режимы всех экологических факторов соответствуют наследственно закрепленным требованиям организма (т. е. его генотипу), то он способен выживать и давать жизнеспособное потомство. Требования и устойчивость того или иного вида организма к экологическим факторам определяют границы географической зоны, в пределах которой он может обитать, т. е. его ареал. Факторы окружающей среды определяют также амплитуду колебаний численности того или иного вида во времени и пространстве, которая никогда не остается постоянной, а изменяется в более или менее широких пределах.

Закон лимитирующего фактора

Живой организм в природных условиях одновременно подвергается воздействию со стороны не одного, а многих экологических , факторов - как биотических, так и абиотических, причем каждый фактор требуется организму в определенных количествах или дозах. Растения нуждаются в значительных количествах влаги, питательных веществ (азот, фосфор, калий), но другие вещества, например бор или молибден, требуются в ничтожных количествах. Тем не менее недостаток или отсутствие любого вещества (как макро-, так и микроэлемента) отрицательно сказывается на состоянии организма, даже если все остальные присутствуют в требуемых количествах. Один из основоположников агрохимии - немецкий ученый Юстус Либих (1803-1873) сформулировал теорию минерального питания растений. Он установил, что развитие растения или его состояние зависят не от тех химических элементов (или веществ), то есть факторов, которые присутствуют в почве в достаточных количествах, а от тех, которых не хватает. Например, достаточное для растения содержание азота или фосфора в почве не может компенсировать недостаток железа, бора или калия. Если любого (хотя бы одного) из элементов питания в почве меньше, чем требуется данному растению, то оно будет развиваться ненормально, замедленно или иметь патологические отклонения. Результаты своих исследований Ю. Либих сформулировал в виде фундаментального закона минимума.

Веществом, присутствующим в минимуме, управляется урожай, определяется его величина и стабильность во времени.

Разумеется, закон минимума справедлив не только для растений, но и для всех живых организмов, включая человека. Известно, что в ряде случаев недостаток каких-либо элементов в организме приходится компенсировать употреблением минеральной воды или витаминов.

Некоторые ученые выводят из закона минимума дополнительное следствие, согласно которому организм способен в определенной степени заменить одно дефицитное вещество другим, т. е. компенсировать недостаток одного фактора присутствием другого - функционально или физически близкого. Однако подобные возможности крайне ограничены.

Известно, например, что материнское молоко для грудных детей можно заменить искусственными смесями, но дети-искусственники, не получившие в первые часы жизни материнского молока, как правило, страдают диатезами, проявляющимися в склонности к кожным высыпаниям, воспалениям дыхательных путей и др.

Закон Либиха - один из основополагающих законов экологии.

Однако в начале XX века американский ученый В Шелфорд показал, что вещество (или любой другой фактор) присутствующий не только в минимуме, но и в избытке по сравнению с требуемым организму уровнем, может приводить к нежелательным последствиям для организма.

Например, даже незначительное отклонение содержания в организме ртути (в принципе - безвредного элемента) от некоторой нормы приводит к тяжелым функциональным расстройствам (известная "болезнь Минамата"). Дефицит влаги в почве делает бесполезными для растения присутствующие в ней питательные вещества, но и избыточное увлажнение ведет к аналогичным последствиям по причинам, например, "задыхания" корней, закисания почвы, возникновения анаэробных процессов. Многие микроорганизмы, в том числе используемые в сооружениях биологической очистки сточных вод, весьма чувствительны к пределам содержания свободных ионов водорода, т. е. к кислотности среды (рН).

Проанализируем, что же происходит с организмом в условиях динамики режима того или иного экологического фактора. Если поместить какое-либо животное или растение в экспериментальную камеру и изменять в ней температуру воздуха, то состояние (все жизненные процессы) организма будет изменяться. При этом выявится некоторый наилучший (оптимальный) для организма уровень данного фактора (Топт). при котором его активность (А) будет максимальной (рис.2. ). Но если режимы фактора будут отклоняться от оптимума в ту или иную (большую или меньшую) сторону, то активность будет снижаться. При достижении некоторого максимального или минимального значения фактор станет несовместимым с жизненными процессами. В организме произойдут изменения, вызывающие его смерть. Эти уровни окажутся, таким образом, смертельными, или летальными (Тлет и Т’лет).

Теоретически сходные, хотя не абсолютно аналогичные результаты можно получить в экспериментах с изменением других факторов: влажности воздуха, содержания различных солей в воде, кислотности среды и др. (см. рис. 2, б). Чем шире амплитуда колебаний фактора, при которой организм может сохранять жизнеспособность, тем выше его устойчивость, т. е. толерантность к тому или иному фактору (от лат. толеранция — терпение).

Рис. 2. Воздействие экологического фактора на организм

Отсюда слово "толерантный" переводят как устойчивый, терпимый, а толерантность можно определить как способность организма выдерживать отклонения экологических факторов от оптимальных для его жизнедеятельности значений.

Из всего изложенного вытекает и закон В. Шелфорда, или так называемый закон толерантности.

Любой живой организм имеет определенные, эволюционно унаследованные верхний и нижний пределы устойчивости (толерантности) к любому экологическому фактору.

В такой формулировке закон может быть проиллюстрирован модифицированной кривой (рис. 2, б), где по горизонтальной оси откладываются значения не температуры, а других различных факторов - как физических, так и химических. Для организма имеет значение не только собственно диапазон изменения фактора, но и скорость, с которой фактор изменяется. Известны эксперименты, когда при резком понижении температуры воздуха от +15 до -20 °С гусеницы некоторых бабочек погибали, а при медленном, постепенном охлаждении их удавалось вернуть к жизни после значительно более низких температур. Закон сформулирован так, что он справедлив для любого экологического фактора. В общем это верно. Но возможны и исключения, когда верхнего или нижнего предела устойчивости может и не быть. Конкретный пример такого исключения мы рассмотрим ниже.

Однако закон толерантности имеет и иную интерпретацию. С законом толерантности связаны широко распространенные в экологии представления о лимитирующих факторах. Единой трактовки этого понятия не существует, и разные экологи вкладывают в него совершенно различный смысл.

Считается, например, что экологический фактор играет роль лимитирующего, если он отсутствует или находится выше или ниже критического уровня (Дажо, 1975. С. 22); другая трактовка состоит в том, что лимитирующий фактор - это такой, который ставит рамки для какого-либо процесса, явления или существования организма (Реймерс, 1990. С. 544); это же понятие используется в связи с ресурсами, которые лимитируют рост популяции и могут создавать основу для конкуренции (Риклефс, 1979. С. 255). Согласно Одуму (1975. С. 145), всякое условие, которое приближается к пределам толерантности или выходит за эти пределы, является лимитирующим фактором. Так, для анаэробных организмов лимитирующим фактором считается кислород, для фитопланктона в воде - фосфор и т. п.

Что же фактически следует понимать под данным словосочетанием? Ответ на этот вопрос крайне важен в прикладном отношении и связан с загрязнением окружающей среды. Вернемся к рис. 2, а. Как видим, диапазон между Тлет и Т’лет представляет собой пределы выживаемости, после которых наступает смерть. В то же время фактический диапазон устойчивости организма значительно более узок. Если в эксперименте отклонять режим фактора от Топт, то жизненное состояние организма (А) будет снижаться, причем при определенных верхнем или нижнем значении фактора у подопытного организма произойдут необратимые патологические изменения. Организм перейдет в подавленное, пессимальное состояние. Даже если прекратить эксперимент и вернуть фактор к оптимуму, полностью восстановить свое состояние (здоровье) организм уже не сможет, хотя это и не значит, что он обязательно погибнет. Подобные ситуации хорошо известны в медицине: при воздействии на людей в течение рабочего стажа вредных химических веществ, шумов, вибраций и т. п. у них возникают профессиональные заболевания. Таким образом, до того как фактор окажет летальное воздействие на организм, он может оказаться лимитирующим его жизненное состояние.

Любой динамичный во времени и пространстве экологический фактор (физический, химический, биологический) может быть в зависимости от его величины как летальным, так и лимитирующим. Это дает основания сформулировать следующий постулат, имеющий значимость закона.

Любой элемент окружающей среды может выступать в качестве лимитирующего экологического фактора, если его уровень вызывает необратимые патологические изменения у организма и переводит его (организм) в необратимо пессимальное состояние, из которого организм не способен выйти, даже если уровень данного фактора вернется к оптимуму.

Данный постулат имеет непосредственное отношение к санитарной охране окружающей среды и к санитарно-гигиеническому нормированию химических соединений в воздухе, почве, воде, пищевых продуктах.

На рис. 2, а значения фактора, при превышении которых он станет лимитирующим, обозначены Тлим и Т’лим.

Фактически закон лимитирующего фактора можно рассматривать в качестве частного случая более общего закона- закона толерантности, и ему можно дать следующую прикладную формулировку.

Любой живой организм имеет верхний и нижний пороги (пределы) устойчивости к любому экологическому фактору, при выходе за которые этот фактор вызывает у организма необратимые, стойкие функциональные отклонения в тех или иных органах и физиологических (биохимических) процессах, не приводя непосредственно к летальному исходу.

Рассмотренные закономерности и иллюстрирующие рисунке 2 а, б представляют собой общую теорию. Но данные, получаемые в реальном эксперименте, как правило, не позволяют построить столь идеально симметричные кривые: фактические темпы ухудшения жизненного состояния организма при отклонении уровня фактора от оптимума в ту или иную сторону не одинаковы.

Организм может быть более устойчив, например, к низким температурам или уровням иных факторов, но менее устойчив к высоким, что показано на рис. 3. Соответственно пессимальные участки кривых толерантности будут более или менее "крутыми". Так, для теплолюбивых организмов даже незначительное понижение температуры среды может иметь неблагоприятные (и необратимые) последствия для их состояния, в то время как повышение температуры даст медленный, постепенный эффект.

Сказанное касается не только температуры среды, но и других факторов, например содержания тех или иных химических веществ в воде, давления, влажности и др. Более того, у видов, развивающихся с превращением (многие земноводные, членистоногие), толерантность к одним и тем же факторам на разных стадиях онтогенеза может быть различной.

Во всех подобных ситуациях речь идет преимущественно о природных факторах, т. е. о тех, динамика которых во времени и пространстве определяла эволюцию, отбор, выработку адаптации.

Специфика воздействия антропогенных факторов на организм

Некоторые антропогенные факторы целенаправленного действия (см. классификацию на рис.1) воздействия преследуют цель преодолеть устойчивость организма, исключить его выживаемость или выработку адаптации.

Таковы, например, пестициды (ядохимикаты), применяемые для уничтожения вредителей растений или сорняков, антибиотики, синтетические яды бытового применения — для борьбы с синантропными насекомыми и грызунами. Специфика таких веществ в том, что они не были факторами эволюции и естественного отбора: их просто не существовало в окружающей среде, либо их уровни были неощутимы. Вырабатывать по отношению к ним приспособительные реакции организмам не было необходимости.

Последнее относится и к абиотическим факторам ненаправленного (побочного) воздействия. Так, уровни шума, вибрации, температуры и т. п. в производственных условиях выходят далеко за пределы толерантности организма, однако в данном случае эти факторы экологически значимы лишь тогда, когда их параметры превышают верхние пределы устойчивости организма, т. е. факторы становятся лимитирующими или летальными.

То же самое следует сказать об основном предмете охраны окружающей среды - загрязняющих веществах, рассеиваемых в воздухе, воде, почве. Отсутствие, например, SO2 или асбестовой пыли в воздухе никакого вредного влияния на организм не оказывает. А их присутствие может вызывать негативные последствия. Поэтому приведенную на рис. 2, б общую схему воздействия экологических факторов на организм (далее мы будет говорить только об организме человека) можно представить в ином виде (рис. 2, в).

По горизонтальной оси отложена концентрация загрязняющего вещества в окружающей среде (С), причем оптимальным для организма является отсутствие этого вещества (С = 0) и оптимум его жизненной активности располагается на оси ординат. Проследим, что может происходить при появлении этого вещества в окружающей среде. В зависимости от индивидуальных особенностей организма (морфологических, физиологических) даже незначительное наличие вредного вещества (С > 0) может вызвать снижение жизненной активности, хотя никаких необратимых изменений в организме не произойдет. Так, жители многих крупных промышленных центров, безусловно, испытывают определенный дискомфорт, а может быть, и недомогание в присутствии тех или иных загрязняющих веществ в воздухе или воде. Понятно, что по мере увеличения содержания этих веществ (С>>0) состояние людей будет ухудшаться, т. е. жизненная активность понизится. Но при этом концентрация загрязняющего вещества может достигнуть такого значения, при котором у организма могут произойти уже необратимые патологические изменения, обнаруживаемые методами современной медицины. Это означает, что организм имеет определенный порог устойчивости (толерантности) к конкретному веществу; фактор, уровень которого превысит данный порог, с точки зрения экологии можно рассматривать как лимитирующий.

С этими отклонениями от нормального жизненного состояния (оптимального) организм может жить долгие годы, но здоровым считаться уже не может. Вспомним общеизвестное понятие "профессиональное заболевание". На рис. 2 в соответствующая точка обозначена двумя символами: на языке экологии как Слим, а на языке токсикологии - как Спор (пороговая концентрация).

Дальнейшее увеличение концентрации вещества в окружающей среде может привести к смерти (Слет).

Таким образом, если в силу объективных обстоятельств обеспечить нулевое содержание тех или иных примесей нереально, следует ограничивать их концентрации теми значениями, которые не превышают Спор, экспериментально устанавливаемые в опытах на животных или какими-либо иными тестами. Отсюда установленное пороговое значение содержания вещества и будет иметь смысл предельно допустимой концентрации (ПДК). Понятно, что по отношению к экспериментально установленному значению Спор предельно допустимая концентрация принимается с определенным "запасом", т. е. она обычно ниже, чем Спор.

Более подробно этот вопрос рассматривается в лекции «Нормирование антропогенного воздействия на окружающую среду». Здесь же все эти объяснения потребовались лишь для того, чтобы продемонстрировать связь между экологией и санитарной охраной окружающей среды. В основе последней, как видим, лежит экологический закон лимитирующего фактора.

Закон лимитирующего фактора находится и в основе совокупности мероприятий по безопасности жизнедеятельности. Рассмотренные выше антропогенные экологические факторы тем и опасны, что их режимы и уровни выходят за пределы толерантности человеческого организма и становятся лимитирующими.

Из всего сказанного вытекает первое правило охраны окружающей среды, выраженное языком экологии.

Охранять окружающую среду означает обеспечивать состав и режимы экологических факторов в пределах унаследованной толерантности живого (в первую очередь - человеческого) организма, т.е. управлять ею так, чтобы ни один фактор не оказывался лимитирующим по отношению к нему.

Классификация организмов по отношению к экологическим факторам

Требования к амплитудам колебаний факторов (предел толерантности) у разных организмов различны: у одних эти пределы более широкие, у других - более узкие. Например, карп способен обитать только в пресной воде, а всем известная обыкновенная колюшка выносит некоторую засоленность. Растения могут быть гигрофильными (требовательными к воде), мезофильными (предпочитающими умеренную влажность), ксерофильными (сухолюбивыми). Береза хорошо растет как на относительно сухих, так и на умеренно увлажненных почвах, а для ели предпочтительно умеренное проточное увлажнение. Таким образом, каждый вид имеет определенные пределы толерантности к различным экологическим факторам, которые определяют его распространение, обилие и изменение численности во времени и пространстве.

На рис 3. представлены приделы толерантности для различных видов: один из этих видов имеет широкие пределы устойчивости - эвритермный (от греч. эври — широкий, разный) и может обитать в условиях большой амплитуды изменения температуры (II); два других - стенотермные (от греч. стенос - узкий) - имеют гораздо более узкие пределы устойчивости, причем один из них в диапазоне относительно низких, а другой - относительно высоких температур. Однако вид I, адаптированный к низким температурам, является криофильным (от греч. криос - холод), а III - термофильным. Как видим, эвритермный вид способен развиваться и сохранять активность при широких колебаниях фактора, а стенотермные снижают свою активность даже при незначительных отклонениях от оптимума.

Рис. 3. Пределы устойчивости (толерантности) организмов к экологическим факторам на примере температуры и классификация устойчивости организмов

Аналогичные закономерности применимы и к другим факторам. Например, мы уже упоминали о гигрофилах и ксерофилах. По отношению к содержанию солей в среде обитания выделяют эвригалов и стеногалов (от греч. галс - соль), к освещенности - эврифотов и стенофотов, по отношению к кислотности среды - эвриионные и стеноионные виды.

Вполне понятно, что существуют также пределы устойчивости организмов и по отношению к загрязняющим веществам: одни растения или животные более устойчивы к наличию примесей в воздухе или воде, нежели другие.

Используя уже знакомые нам термины, оценивая приспособленность организмов к обитанию в условиях широких и узких амплитуд изменений факторов, можно говорить о видах, способных обитать в разнообразных местах обитания (эвритопных) и о таких, чье распространение ограничивается узкой требовательностью к экологическим факторам (стенотопных).

В условиях постоянного приспособления к меняющимся факторам окружающей среды, у организмов в процессе эволюции и естественного отбора вырабатываются наследственно закрепленные особенности, обеспечивающие нормальную жизнедеятельность в различных экологических условиях, называемые адаптациями. Особи, почему-либо утратившие способность к адаптированию в условиях изменений режимов экологических факторов, обречены на вымирание.

Самыми типичными примерами адаптации являются морфологические адаптации, например, приспособление к быстрому плаванию у водных животных, к выживанию в условиях высоких температур и дефицита влаги - у кактусов и иных суккулентов.

Поведенческие (отологические) адаптации проявляются, например, в сезонных миграциях птиц, впадении в спячку некоторых животных и т.п.

Общие закономерности взаимодействия организмов и экологических факторов