<< Пред.           стр. 7 (из 13)           След. >>

Список литературы по разделу

  2. Базиев Д.Х. Основы единой теории физики. - М.: Педагогика, 1994.
  3. Базиев Д.Х. Электричество Земли. - М.: Коммерческие технологии, 1997.
  4. Базиев Д.Х. Заряд и масса фотона. - М.: Педагогика, 2001.
  5. S.Gunner Sendberg Эффект Сёрла. - Sussex University, 1982.
  6. Рощин В.В., Годин С.М. Экспериментальное исследование физических эффектов в динамической магнитной системе. // Сборник материалов международного Конгресса-2000 "Фундаментальные проблемы естествознания и техники". - СПб., 2000. - №1. - Т. 1. - С.202-205.
  7. Андреев Е.И. Расчет тепло- и массообмена в контактных аппаратах. - Л.: Энергоатомиздат, 1985.
  8. Андреев Е.И. Механизм тепломассообмена газа с жидкостью. - Л.: Энергоатомиздат, 1990.
  9. Фурмаков Е.Ф. Магниторотационные гидрометрические датчики. Государственный университет аэрокосмического приборостроения.
 E-mail: kbJ.is@infopre.spb.ru
  10. Walt Rosenthal, Floyd Sweet. VTA модуль. //
 Заметки об энергии пространства, 1993. - №1. - Т.4. http://ufo.knet.ru/proekt/trioid.htm
  11. Патент РФ 2141159, 1999. Магнитоэлетрический моментный двигатель Волегова В.Е. / Волегов В.Е.
  12. А.с. 304565, решение о выдаче патента по заявке на изобретение РФ 97117417, 1999. Ротативный двигатель. / Чернышев И.Д.
  13. Богомолов В.И. Генератор Маринова-Богомолова. // журнал "Петербургский аналитик", 1999. - №7. - С.49.
  14. Гребенников В.С. Непериодические быстропротекающие явления в окружающей среде. - Томск, 1988.
  15. Гребенников В.С. Тайны мира насекомых. - Новосибирск, 1990.
  16. Шипов Г.И. Вездеход без колес. // газета "Труд", 2001. - 10 ноября.
  17. Пономарев А.Н. Реальные перспективы технологических революций. // журнал "Индустриальный Петербург", 1999. - №5 (17). - С.80 - 82.
  18. Осиповский Ф. Супердвижок вологодского Кулибина. // газета "Труд", 2000. -№9.
  19. Иосиро Накамацу. Человек - дискета. // газета "Аргументы и факты", 2000. -№18. - 3 мая.
  20. Фролов А.В. Свободная энергия. // Материалы международной конференции "Новые идеи в естествознании". - СПб., 1996. E-mail: postmaster@frolov.spb.ru
  21. Цандер Ф.А. Проблема полета при помощи ракетных аппаратов. - М.: Оборонгиз, 1947.
  22. Сказин И.А., Андреев Е.И. Нетрадиционная газодинамическая энергоустановка. // Материалы международного конгресса "Фундаментальные проблемы естествознания". - СПб, 1998. - С. 193.
  23. Патент РФ 1672933 от 30.11.1989. Плазмо-детона-ционный двигатель прямой тяги "Прим - 500". / Пушкин Р.М.
  24. Патент РФ 2017985, БИ №15, 1994. Глушитель для ДВС. / Чистов А.В.
  25. Решение о выдаче патента РФ 94010375/06; 1994. Способ получения энергии в ДВС. / Чистов А.В.
  26. Сапогин Л. Вечные двигатели работают в Швейцарии, //дайджест "24 часа", 2000. - №2.
  27. Суховал А.К. Два опыта с магнитным полем. // журнал "Химия и жизнь", 1988. -№3. - С.27.
  28. Григорьев Е.А. Способ создания магнитного поля. // 21 вып. серии "Проблемы исследования Вселенной". - СПб.: ЛГУ, 1999.
  29. Пруссов П.Д. Физика эфира. - Николаев, 2000.
  30. Гречихин Л.И. Энергетика сегодня. // журнал "МОСТ", 2001. - №48, сентябрь. -С.52-54.
  31. E. Mallove "Kinetic Furnace enters New Energy Race". // "Infinite Energy" 1998, V.4.-№19.-Р.9-15.
  32. Патент РФ 2165054, 2000. Способ получения тепла. // Потапов Ю.С.
  33. Патент РФ 2152083, 1998. Ядерный реактор. / Колдамасов А.И.
  34. Патент 2096934, 1995. Способ получения высокотепмературной плазмы и осуществления термоядерных реакций / Маргулис М.А.
  35. Патент 2132517, 2000. Вихревой теплогенератор. / Мустафаев Р.И.
  36. Потапов Ю.С., Фоминский Л.П. Вихревая энергетика и холодный ядерный синтез с позиций теории движения. - Кишинев-Черкассы: Око-Плюс, 2000.
  37. Шахпаронов И.М. Излучение Козырева-Дирака. // Материалы международного конгресса "Новые идеи в естествознании", 1996. - С. 176 - 187.
  38. Филимонов В. А. Сборник материалов международного Конгресса-2000 "Фундаментальные проблемы естествознания и техники". - СПб., 2000. - №1. -Т. 1.-С. 238-248.
  39. Фролов В.П. Сборник материалов международного Конгресса-2000 "Фундаментальные проблемы естествознания и техники". - СПб., 2000. - №1. -Т.1.-С.262.
  40. Ружанский В.И. Сборник материалов международного Конгресса-2000 "Фундаментальные проблемы естествознания и техники". - СПб., 2000. - №1. -Т.1.-С.211.
  41. Щербак П.В. Сборник материалов международного Конгресса-2000 "Фундаментальные проблемы естествознания и техники". - СПб., 2000. - №1. -Т.1.-С.299.
  42. Остриков М.Ф. Общая теория единого мира. - СПб, 2001.
  43. Луценко Е.В. Мастеру, звезда которого светит из будущего (беседы об искусстве превращения жемчуга в алмаз). // Серия: опыт исследования высших .форм сознания. - Краснодар, 2000.
  44. Кушелев А. Наномир и сакральная энергетика. // журнал "Чудеса и приключения", 2000. - №8.
 ftp.decsy.ru/nanoworld/index.htm
  45. Николаев Г.В. Непротиворечивая электродинамика. Книга 1 - теория, эксперименты, парадоксы; книга 2 - электродинамика физического вакуума. -Томск: изд-во научно-технической литературы, 1997.
  46. Пастер Л. Пастеризация. БСЭ, 1955. - т.32. - С.211.
  47. Голант М, Девятков Н. Младенец из секретного "ящика" - г. Фрязино, Московской обл., п/я 17. // дайджест "24 часа", 2001. - №48 (650), 22 ноября.
  48. Маршал В. Основные опасности химических производств. - М.: Мир, 1989. -С.266.
  49. Белоконь В. Микровзрывная термоядерная энергетика. // дайджест "24 часа", 2001.-№1.
  50. Тихонов М.Н., Довгуша В.В. Электромагнитная безопасность. // журнал "МОСТ", 2001. - №48 - 50.
  51. Симаков А.С. Натуральная философия. - СПб.: Айю, 1998.
  52. Шляпников А.А. Теория Максвелла и самоорганизация в микромире, 2001. http://physic.nm.ru/Classic.htm
 
 
 
 
 
 
 
 РАЗДЕЛ ТРЕТИЙ
 
 
 
 
 РЕАЛИЗАЦИЯ ИДЕЙ
 
 
 Введение
  Книга завершает трилогию о естественной энергетике. Первая книга /1/ посвящена энергии, аккумулированной в веществе; вторая /2/ - свободной энергии, запасенной в окружающем пространстве; третья - практическим вопросам реализации. Явление автотермии - горение без расходования органического или ядерного топлива - исторически первым использовано и осуществлено на карбюраторном двигателе автомобиля ВАЗ-2106 25 июля 2001 года в Санкт-Петербурге. Задолго до этого момента на гоночных машинах производилась настройка двигателей на максимальную мощность с помощью отработанных практикой известных приемов: обеспечение предельно бедной топливно-воздушной смеси; регулировка угла зажигания и мощности искры; добавление катализаторов сгорания. На некоторых машинах (автомобили, мотоциклы), как говорят гонщики: "вдруг пёрла мощность", существенно превышающая номинальную мощность двигателя. Это давало преимущество в скорости, а также - в более редких заправках топлива, хотя топлива было в избытке, и о его расходовании много не думали. Такие факты известны по крайней мере более 20...30 лет.
  На следующем историческом этапе некоторые умельцы гоночную практику настройки двигателей стали применять к обычным легковым автомобилям. Например, инженер-механик А.В.Чистов за почти 20-летний период настроил на режим повышенной мощности и экономии топлива около 200 автомобилей /8/. Экономия топлива составляла от 30 до 70%. Отсутствие теории и невозможность объяснения эффекта с помощью представлений традиционной физики в течение длительного времени препятствовали получению стабильного режима работы указанных двигателей. Режим работы с экономией топлива быстро пропадал, а мысли о режиме автотермии - без расходования топлива - вообще в голову не приходили.
  За несколько лет общения с физиками на регулярно проводимых А.П.Смирновым городских семинарах было переработано много полученной информации о новых теориях физики. Эти несколько десятков теорий (около ста), многие из которых опубликованы в виде отдельных монографий, можно, в основном, разделить на две части: усовершенствование и математизация на основе традиционной физики. И только одна, гиперчастотная физика Д.Х.Базиева /5/, опубликованная в 1994 году, существенно отличалась от остальных, хотя и была построена на тех же известных экспериментальных фактах.
  Основное отличие заключалось в том, что было теоретически установлено существование новой элементарной частицы существенно мельче электрона, которую по аналогии с ним автор назвал электрино.
  Позднее существование электрино было подтверждено экспериментально /7/. Гиперчастотная физика позволила разработать, понять и наглядно представить физический механизм горения, в котором обязательными компонентами как и прежде были топливо и окислитель. Но их роли и взаимодействие были выявлены на уровне элементарных частиц - электрона и электрино. Тем не менее, о бестопливном автотермическом горении еще не было высказано никаких суждений. Только к 2000 году была разработана теория бестопливного горения /1/. Согласно этой теории воздух мог гореть самостоятельно, автономно - без топлива, что подтверждалось практикой настройки и работы в режиме экономии топлива двигателей внутреннего сгорения на гоночных и легковых автомобилях, на которых эти режимы были многократно проверены в течение длительного времени. Именно эти факты давали твердую 100%-ную уверенность в возможности осуществления автотермического бестопливного режима горения воздуха в карбюраторных автомобильных двигателях. И именно поэтому на них и стали проводиться экспериментальные и опытно-конструкторские работы, направленные, в конечном итоге, на исключение топлива из горения вообще, что и было, наконец, достигнуто.
  Теория помогла правильно аппаратурно оформить процесс автотермического горения воздуха и получить стабильную работу двигателя на любых режимах нагрузки.
  Во время практической работы приходилось решать много теоретических вопросов, расширять и углублять ранее полученные новые физические представления. Эволюция новых взглядов отражена в первой части настоящей книги, а вторая часть полностью посвящена практическим вопросам.
 
  Санкт-Петербург,
 21 декабря 2002 г.
 
 
 
 
 
 
 ЧАСТЬ ПЕРВАЯ
 
 
 
 
 ЭВОЛЮЦИЯ НОВЫХ ВЗГЛЯДОВ
 В ФИЗИКЕ И ЭНЕРГЕТИКЕ
 
 1. От осознания теории к изобилию энергии
  Два вида энергии - аккумулированная /1/ и свободная /2/ - рассматриваются как неисчерпаемый источник экологически чистой, возобновляемой в природных условиях естественной энергии, созданной самой природой.
  Одним из основных способов получения энергии является сжигание органического топлива.
  Рассмотрим кратко исторический аспект теории горения. Первой была теория флогистона - невесомого вещества, которое вызывало горение и участвовало в нем. В 1669 году немецкий химик Бехер в труде "Подземная физика" высказал мысль о том, что в состав тел входит горючая составляющая. В 1703 году немецкий химик Шталь переиздал труд Бехера и назвал горючее начало флогистоном. Однако выделить флогистон в чистом виде не удавалось, опыты не соответствовали теории, и последняя теряла свои позиции. В 1756 году Ломоносов определил горение как соединение горючего с воздухом, а в 1773 году Лавуазье - как соединение веществ с кислородом (химическая реакция окисления). С тех пор практически ничего не менялось. Сейчас к горению относят все экзотермические химические реакции, включая и окисление горючего.
  Никакого физического механизма горения до сих пор не разработано, несмотря на многочисленные работы по теории и практике горения. Теплотворную способность топлива до сих пор считают свыше данным свойством, количественные характеристики которого определяют экспериментально.
  Рассмотрим один из парадоксов традиционной теории горения. Известно, что кислород взрывается при наличии следов смазочного масла (или любых углеводородов). Если следовать теории взрыва как быстрого горения топлива в кислороде, то ясно, что теплота реакции следов масла никогда не соответствует энергии взрыва кислорода. В этом и заключается парадокс: мизерное количество топлива (тротиловый эквивалент в микрограмм), и в то же время - огромная энергия взрыва кислорода. Получается, что кислород взрывается как бы с самим собой.
  Если пренебречь мизерным количеством следов масла, то кроме самого кислорода, в исходной до взрыва среде ничего нет. Молекула кислорода состоит из двух атомов, соединенных одним электроном. В то же время в чистом кислороде вследствие всегда имеющего место фазового перехода "молекулы атомы" в любой момент времени есть небольшое количество атомов (ионов) кислорода (плазма). А в углеводородах, содержащих большое количество электронов связи, всегда также есть некоторое небольшое количество свободных электронов. Наличие хотя бы одного электрона и противоположных по знаку избыточного электрического заряда атомов кислорода неизбежно приводит к их взаимодействию и последующему взрыву.
  Физический механизм этого процесса энерговыделения разработал Д.Х. Базиев /5/. Когда в плазму входит свободный электрон, обладающий наибольшим среди осцилляторов электродинамическим потенциалом, то он мгновенно становится первым действующим началом в системе атомов-ионов кислорода (плазме). Вокруг него формируется электронная глобула - сфера из атомов кислорода. Основу механизма получения энергии составляет электродинамическое взаимодействие свободных электронов с атомами вещества, при котором отрицательно заряженный электрон послойно отбирает у атома значительно более мелкие, чем он сам, положительно заряженные частицы, называемые электрино. Обладающие высокой (~1016 м/с) скоростью вылета электрино отдают свою кинетическую энергию дистанционно (электродинамически) и контактно (при непосредственных столкновениях) окружающим атомам и частицам, сами превращаются в фотоны ("обессиленные" электрино) и со скоростью света ~108 м/с удаляются из зоны реакции в пространство. Этот процесс энерговыделения назван фазовым переходом высшего рода - ФПВР. Как видно из такого краткого описания механизма ФПВР, для его протекания необходимы два условия: первое - наличие плазмы как состояния ионизированного раздробленного вещества, по крайней мере, на атомы; второе - наличие свободных электронов.
  При каждом взаимодействии с электроном атом безвозвратно излучает одно электрино, которое становится гиперчастотным осциллятором плазмы на краткий миг, в течение которого оно передает окружающим осцилляторам свою энергию связи в атоме кислорода.
  Интересны некоторые численные значения параметров процесса энерговыделения. При горении метана в воздухе, например, предельное число осцилляторов в электронной глобуле составит 595. Частота колебания осцилляторов электронной глобулы равна частоте фотонов излучаемого света. Частота колебания электрона-генератора , что превышает частоту колебания атома кислорода на 4 порядка. Процесс высвобождения избыточной энергии - энергии связи элементарных частиц в молекулах, атомах и фрагментах вещества сопровождается понижением давления в электронной глобуле до , что способствует снабжению глобулы атомами кислорода - донорами электрино
 и самому распаду атомов вещества.
  В указанном процессе горения один и тот же электрон выступает в роли генератора примерно 5900 раз,
 а каждый атом кислорода теряет 286 электрино и столько же (286 раз) входит в состав глобулы. При акте взаимодействия электрино неподвижно зависает над своим атомом кислорода на удалении 3,1 dэ, где dэ - диаметр электрино. Замирает и атом кислорода, который после взаимодействия заменяется новым. Амплитуда колебания электрона всего , то есть он почти неподвижен. Локальное давление в объеме пространства в центре глобулы, где движется электрон, достигает предельной концентрации энергии из известных, а температура .
  Дефект массы атома кислорода составляет ; потенциальное число участий атома в горении : после этого кислород может превратиться в инертный газ.
  Как видно, дефект массы атома кислорода после горения имеет совершенно определенный смысл - недостаток 286 электрино, составляющий всего ~10-6% от полной массы атома. При столь незначительном дефекте массы кислород, как и другие вещества, сохраняют свои химические свойства и вступают в соответствующие химические реакции. Поскольку все химические реакции сопровождаются выделением или поглощением теплоты либо, что то же, выделением или поглощением мелких частиц - электрино, то - все химические реакции являются одновременно атомными реакциями, включая горение. Только теперь, после знакомства с описанным выше процессом взрыва как быстрого горения, становится понятным его механизм. Свободные электроны, которые всегда есть в углеводородах, начинают взаимодействовать как электроны - генераторы энергии с атомами кислорода, которые тоже всегда есть, хотя и в небольшом количестве, в чистом кислороде. Вырванные из атомов электрино за короткий миг повышают энергетику зоны взрыва. Это вызывает разрушение молекул кислорода на атомы с одновременным освобождением их электронов связи, которые сразу становятся новыми генераторами энергии. Процесс, таким образом, идет ускоренно, лавиной, которой ничто не препятствует, и завершается взрывом, хотя органического топлива практически не было - только его следы. Но, как видно, именно они явились первопричиной начала реакции. Таков вкратце механизм взрыва чистого кислорода.
  Химическую реакцию горения и взрыва чистого кислорода можно записать как распад молекулы на атомы и электрон и их воссоединение после взаимодействия в процессе энерговыделения (ФПВР) с дефектом массы, представляющим излученные электрино:
 .
  При горении кислорода с органическим топливом, например углеродом, после ФПВР происходит соединение участников реакции - окисление топлива . Таким образом, окисление топлива - это следствие ФПВР. При этом продукт реакции потребляет два-три электрона для связи своих атомов: один электрон берется из молекулы кислорода, остальные электроны поставляет органическое топливо. То есть топливо в реакции горения является донором электронов.
  Таким образом, в ХХI веке утверждается новая физика, в которой подробно рассматриваются круговорот и превращения энергии и вещества, установлен единый механизм получения энергии - фазовый переход высшего рода (ФПВР). ФПВР состоит в деструкции вещества на элементарные частицы, кинетическая энергия которых превращается в тепловую и другие виды энергии (механическую, электрическую...).
  Эти реакции по сути - атомные - могут протекать при разной интенсивности вплоть до полного распада вещества. Нет ни одного вещества, которое невозможно было бы расщепить. Но интерес представляют наиболее распространенные и возобновляемые природой вещества - воздух и вода. При этом полный распад не только не нужен, но и вреден сопровождающей его радиоактивностью. Основанную на них энергетику называют естественной, природной, натуральной.
  В последние пять лет появились реально работающие энергоустановки с ФПВР, в которых происходит частичное расщепление воздуха или воды. Так в двигателях внутреннего сгорания (ДВС) был получен режим работы, при котором расход топлива (бензина) уменьшается до 5...6 раз, и соответственно возрастает мощность. В составе выхлопных газов ДВС обнаружено повышенное содержание водяного пара, углерод в виде мелкого графита, кислород, и пониженное содержание азота и углекислого газа /1/.
  Поскольку в воздухе, идущем на горение в ДВС, кроме кислорода и азота ничего нет, то снижение расхода органического топлива происходит за счет вовлечения в горение азота, на что указывает снижение содержания азота в выхлопных газах. Для этого необходимо каким-либо инициирующим воздействием разрушить молекулу азота хотя бы на атомы или более мелкие фрагменты. Это достигается электрическим разрядом, магнитным потоком, взрывом и другими средствами, на которые энергии затрачивается на несколько порядков меньше, чем её получается в ФПВР. Причем такой азотный режим работы и горения идет с окислением до H2O, а не до CO2, что энергетически и экологически более эффективно.
  Процессы ФПВР с выделением избыточной мощности (больше затраченной) получены также в кавитационных теплогенераторах, работающих на воде.
  Теперь - о свободной энергии. Её называют по-разному, но не могут сформулировать, что это такое. Кто называет энергией эфира, кто называет фундаментальной энергией мироздания (ФЭМ); а когда спрашиваешь: "Что это такое?" отвечают "Нечто", то есть не вкладывают никакого физического смысла. Так вот: физический вакуум или эфир или квинтэссенция, которые нас окружают, - это есть электринный газ, то есть среда, содержащая невидимые нами мелкие элементарные частицы - электрино, открытые Д.Х. Базиевым в 1982 году. Их свойства рассмотрены в работах /5, 6, 7/, а существование электрино подтверждено экспериментально РАН лишь в 2001 году /7/.
  Поскольку энергия, как многие признают, есть мера движения, то чтобы использовать энергию окружающей среды как свободную энергию, нужно заставить электрино двигаться (в различного вида энергоустановках). В работе /2/ дана полная классификация основных типов энергоустановок, включая традиционные, а также нетрадиционные, работающие на аккумулированной и свободной энергии. Описаны подробно физические механизмы и принципы их действия, дано описание реально работающих установок на свободной энергии. Показано, что энергообмен в природе и энергоустановках заключается в переходе потоков электрино как потоков энергии между взаимодействующими объектами или между объектами и окружающей средой.
  Свободную энергию, рассеянную в окружающем пространстве, можно преобразовать в механическую, электрическую или иной вид энергии с помощью виброрезонансных, электромагнитных и энергоустановок иных типов. Примером энергоустановок, работающих на свободной энергии, могут быть известные двигатели и генераторы Сёрла, Флойда, Кушелева ("вечная" лампочка, 2002 г.) и других авторов.
  Разработанные физические механизмы процессов энерговыделения позволят создать промышленные, стабильно работающие, экологически чистые энергоустановки, не потребляющие опасных для человечества видов топлива - органического и ядерного.
 
 
 
 
 2. Отличие обычного и бестопливного горения
 Обычное горение
  1. При обычном горении, например, углерода 12С, углеродные цепочки топлива разрушаются на отдельные элементы так, что на каждый атом углерода приходится по одному электрону их связи, который становится свободным
  (1)
  2. Молекулы кислорода воздуха, каждая из которых состоит из двух атомов и электрона их связи, разрушаются на положительно заряженный атом (ион) и отрицательно заряженный ион, состоящий из положительно заряженного атома кислорода и соединенного с ним электрона связи
  (2)
  3. Свободный электрон, полученный в плазме горения от топлива (1), становится электроном - генератором энергии в соответствии с физическим механизмом ФПВР: электродинамически взаимодействует с ионами О+, послойно, отбирая у них мелкие элементарные частицы, что создает малый дефект массы атома кислорода (порядка 10-6%). Такой ничтожный дефект массы позволяет сохранить химические свойства кислорода. По окончании процесса энерговыделения (ФПВР) продукты реакции объединяются в наиболее устойчивое соединение (СО2)
  С + О2 = СО2 или с учетом электронов
  (3)
  4. Как видно, при обычном горении идет атомная реакция расщепления кислорода. За счет энергии связи его элементарных частиц и выделяется тепловая энергия.
  Топливо является донором электронов.
  Реакция окисления (3) является следствием горения.
  Азот в обычном горении участия не принимает, являясь балластом в составе воздуха.
 
 Необычное - "бестопливное" горение
  5. Если разрушить молекулу кислорода с выделением свободного электрона связи
  , (4)
 то этот свободный электрон станет электроном-гене-ратором энергии точно так же, как электрон, полученный от топлива (1).
  6. Тогда исключается необходимость в топливе и горение становится бестопливным, но с тем же дефицитом массы кислорода ?m как при обычном горении
  . (5)
  7. В чистом кислороде реакция энерговыделения по (4) идет со взрывом (быстрое горение). Для ее начала достаточно, как известно, следов углеводородов (смазочное масло, бензин, дизтопливо и т.п.).
  В воздухе взрыву препятствует азот. Молекулы азота, имея отрицательный избыточный заряд окружают каждую молекулу кислорода, имеющую положительный избыточный заряд, образуя агрегаты из кислорода, экранированного азотом от действия электронов.
  8. То есть для бестопливного горения необходимо не только разбить кислород по (4), но и предварительно разбить агрегаты кислорода с азотным экраном. Таким образом, азот не просто балласт, а структурно организованная среда препятствующая доступу к кислороду и его взрыву.
  9. Если инициирующее воздействие достаточно для разрушения азота, молекула которого в два раза прочнее молекулы кислорода, так как имеет не один, а два электрона связи, то азот при этом разрушается не только на атомы, но и фрагменты, представляющие другие химические элементы
  . (6)
  10. Эти элементы, особенно, кислород и водород, вступают в реакцию энерговыделения (ФПВР) с электронами - генераторами энергии.
  11. Участие азота в ФПВР увеличивает мощность реакции энерговыделения за счет дополнительной энергии связи элементарных частиц в атомах, указанных веществ. Такая реакция горения называется азотной реакцией.
  12. Продуктами азотной реакции являются, в основном, водяной пар (вода) Н2О, частично кислород О2, углерод С и в меньшей степени СО2, СО, NOХ и другие вещества.
 3. Вихревые структуры и "дыхание" атомов
  В 1903 году Дж. Томсоном была разработана электростатическая модель атома ("пирог с начинкой"). Атом был представлен положительно заряженной материей внутри которой слоями располагались электроны.
  В 1994 году, почти век спустя, после модели Томсона и электродинамической модели Резерфорда (1911 г.) Д.Х. Базиев возвратился к электростатической модели, усовершенствовав ее на основе современных достижений физики и фактов, которым предшествующие модели не соответствовали /5/. Введено понятие "единичный атом", в котором содержится три структурных электрона, заряд которых компенсирован положительной материей, состоящей из 2,4181989·108 штук мелких элементарных частиц, названных электрино по аналогии с электроном. Единичный атом называют еще односложно: нейтроном или нуклоном, что не противоречит понятию и может отличаться только тем, что в нейтроне (нейтральном единичном атоме) суммарные заряды электронов и электрино точно равны друг другу и составляют по 50% от суммарного заряда нейтрона. В атомах положительные и отрицательные заряды слегка разбалансированы, чем достигается соединение нейтронов в атомы химических элементов, а последних также - в молекулы веществ.
  Итак, атомы состоят из единичных атомов (нейтронов, нуклонов). В составе нейтрона и любого вещества масса электрино составляет 99,83671%, остальное 0,16329% - это электроны, которые выполняют роль склейщика вещества (электрино), а также атомов и молекул между собой.
  Атомы и молекулы вещества являются осцилляторами и совершают организованное (не хаотическое) возвратно-поступательное (твердые вещества) и вращательное (газы, пары, жидкости) движение, взаимодействуя между собой электродинамически с очень высокой частотой. Именно поэтому новую физику называют гиперчастотной. Атом движется внутри сферической или близкой по форме к сферической области пространства - глобулы, размер которой в настоящее время в классической физике принимают за размер атома. Реальный размер атома примерно на три порядка меньше размера глобулы.
  На фотографии золота, сделанной с увеличением в 10 миллионов раз, видно, что почти сферические глобулы расположены плотно одна к другой /1, 5/. Поэтому индивидуальное пространство, занимаемое атомом со своей глобулой, достаточно просто определить, как частное от деления массы атома (молекулы) на плотность вещества, значения которых обычно известны. Так для среднего осциллятора воздуха . Атмосферное давление в , как видно, означает плотность кинетической энергии осциллятора и, одновременно, прочность его глобулы, хотя она и не имеет стенок, но имеет границу движения молекулы воздуха при взаимодействии с соседями. Поэтому энергия , а частота колебаний (с учетом формулы Планка ) . Средняя линейная скорость осциллятора за один период его возвратно-поступательного движения на пути, равном примерно двум диаметрам глобулы,
  Известно, что температура есть мера кинетической энергии, пропорциональная частоте и численно равная отношению реальной частоты к частоте при 1К (градус Кельвина) . Нагрев приводит к увеличению частоты, размера глобулы и повышенному напряжению, в результате которого при превышении прочности связей между атомами, например, в твердом веществе, оно становится жидким, и появляется еще вращательное движение осцилляторов. При дальнейшем нагревании при некотором значении параметров вещество переходит в парообразное состояние, например, осциллятор водяного пара состоит из трех молекул воды. Последующий нагрев переводит вещество в газообразное состояние, при котором осциллятор состоит из одного атома или молекулы, например, воды. Охлаждение вещества приводит к обратной цепочке состояний: газ > пар > жидкость > твердое вещество > сверхпроводник (для металлов).
  Прочность структурных единиц вещества увеличивается по мере их миниатюризации: глобула > атом > нейтрон > электрон > электрино.
  Каждая единица имеет свое индивидуальное пространство, внутри которого она движется, взаимодействуя электродинамически с соседями. Однако, прочность атомов и нейтронов имеет порядок 1013 атмосфер и поэтому глобулы нейтронов тесно прижаты друг к другу с удивительно большой силой так, что приходится говорить об их электростатической связи между собой, которая как бы интегрально обобщает и учитывает глобально их электродинамические взаимодействия при каждом периоде колебаний с очень высокой частотой (гиперчастотой).
  По площади поверхности статические положительные электрические поля атома составляют 99,999% и являются фоновыми. Отрицательные поля образованы электронными лучами (е-лучи), идущими от выступающей над поверхностью атома части электронов (глазки). Отрицательные поля в виде е-лучей на четыре порядка концентрированнее положительных полей, занимают всего одну тысячную процента площади поверхности атома и являются, таким образом, дискретными.
  Наряду со статическим электрическим зарядом электронов и электрино каждый атом с отрицательным статическим избыточным зарядом имеет еще и динамический электрический заряд в виде вращающегося вокруг него вихря электрино.
  В 2000 и 2002 гг. опубликованы связанные с гиперчастотной физикой разработки по естественной энергетике с экологически чистой и практически неограниченной энергией, содержащейся (аккумулированной) в веществах, в том числе - в воздухе и воде, а также - по свободной энергии, рассеянной в окружающем пространстве /1, 2/. В них приведены дальнейшие уточнения и подробности, касающиеся строения, внешнего облика атома и его взаимодействий. Оказывается, атомы бывают однослойными, двухслойными и трехслойными. Каждый слой состоит из единичных атомов (нейтронов, нуклонов). Изменение диаметра сферических атомов, начиная с атома водорода, состоящего из одного нуклона, и - атома углерода, состоящего из 12 нуклонов и представляющего минимальную однослойную сферу в зависимости от атомного числа, прекрасно ложится на логарифмический график /1/. Наибольшей, трехслойной, сферой является атом платины. Остальные, несферические, атомы химических элементов - овалоиды. Такая структура наряду с другими параметрами (атомная масса и число, валентность) определяет свойства химических элементов, в том числе, каталитические и магнитные.
  Вихрь электрино, вращающийся вокруг атомов металлов, каждый из которых имеет отрицательный статический избыточный заряд, не является чем-то монотонно фиксированным. Вихрь электрино все время меняет свою конфигурацию и размеры, причудливо колеблясь с высокой частотой. Частицы - электрино движутся в вихре от большей концентрации к меньшей, отталкиваясь друг от друга, и одновременно движутся по е-лучу в сторону глазка электрона, притягиваясь к его отрицательному заряду. Пусть первой фазой колебаний вихря будет движение частиц - электрино вдоль е-луча, расположенного радиально относительно атома. Электрино под действием электростатического притяжения к отрицательному заряду е-луча двигаются к нему, но, встречая положительные поля остальной массы электрино вихря, вынуждены остановиться на некотором расстоянии от оси луча в положении безразличного неустойчивого равновесия. Однако, под действием асимметрии внешних сил электрино начинают вращаться вокруг е-луча, одновременно двигаясь вдоль него к атому. В целом движение электрино имеет спиральную траекторию вдоль луча и внешний вид воронки, сужающейся у поверхности атома. Количество электронных лучей и воронок соответствует количеству глазков электронов, возвышающихся над поверхностью атомов. При этом спиральный поток вдоль е-луча может дополнительно раскручиваться под действием кориолисовой силы подобно смерчу (тайфуну, торнадо) и приобретать самовращение без дальнейшей остановки.
  По мере увеличения концентрации электрино в зоне е-луча происходит нейтрализация заряда последнего, ослабление плотности потока электрино к лучу и вдоль него. Одновременно вследствие скопления электрино у поверхности атома и увеличения их концентрации в приповерхностной зоне начинается отток электрино в сторону меньшей концентрации, то есть от атома к периферии вихря (2-я фаза). При этом поток электрино между соседними е-лучами имеет в разрезе форму лепестка цветка, например, ромашки. По окончании второй фазы колебаний длина лепестка принимает наибольшее значении, увеличивается концентрация на периферии лепестка и уменьшается - у корня. Далее снова следует первая фаза - движение электрино вдоль е-луча по спиральной траектории в виде воронки к поверхности атома. При этом длина лепестков вихря уменьшается. Радиальное движение электрино вдоль е-луча вызывает также усиление вращения самого вихря вокруг атома под действием кориолисовой силы, то есть колеблется и скорость вращения, увеличиваясь в первой фазе и уменьшаясь во второй вследствие меньшей концентрированности движения электрино от поверхности атома к периферии вихря в лепестках.
  В кристаллической решетке металлов и, особенно, магнитных материалов, имеющих коридорную (туннельную) решетку, при намагничивании вихрь поворачивается соосно с внешним вектором индукции. Вихрь - гироскоп и хорошо держит положение оси вращения: поэтому вектор индукции намагниченного металла сохраняется длительное время. Вращающийся вокруг атома вихрь выполняет также роль рабочего колеса насоса или турбины, в которых лопатками являются сами частицы - электрино. Они гонят по туннелю решетки в одну сторону некоторую совокупность электрино, которая воспринимается как магнитный поток. Скорость такого потока в межатомных каналах достигает 1019 м/с как в современных ускорителях, что достаточно для разрушения молекул-мишеней. Именно этим обеспечиваются их особые каталитические свойства. Кроме того, часть вихря атома выходит за поверхность твердого тела, образованную кромками атомов. Эта надповерхностная часть вихрей электрино является причиной сверхпроводимости при некоторых условиях.
  Под действием вращательного движения вихрей вокруг атомов и поступательного движения магнитного потока вихри приобретают спиральную траекторию по цепочке атомов вдоль канала решетки. Сами атомы не могут быть ориентированы иначе как соединяясь между собой е-лучом, который упирается с одной стороны в глазок электрино, а с другой - в середину части поверхности другого атома, ограниченной соседними глазками, и имеющей в этой середине наибольший положительный заряд. То есть, наибольший отрицательный заряд поверхности одного атома должен располагаться напротив наибольшего положительного заряда поверхности другого, соседнего, атома. По указанному е-лучу, а точнее - по спиральной траектории вдоль него, электрино могут двигаться против магнитного потока, вращаясь также против направления вращения вихря вокруг атома.
  Металлы имеют всегда некомпенсированный статический избыточный отрицательный электрический заряд, который может достигать значения в несколько (до 6...8) зарядов электрона. При этом избыточные заряды создают не целые электроны, а выходящие на поверхность атома глазки электронов. Поверхностные электроны могут быть почти целиком утопленными в массе электрино либо сильно выпирать над поверхностью атома. Соответственно, заряд структурного электрона может быть компенсирован почти полностью или почти не компенсирован. Поэтому динамический заряд или вихрь электрино может быть только там, где есть глазок электрона и в том количестве (больше-меньше), которое позволяет значение заряда глазка и е-луча от него. Над атомом вихрь электрино частично или полностью компенсирует избыточный статический отрицательный заряд атома, экранирует его, влияет на гравитацию - уменьшает вес атома, снижает валентность и активность химического элемента. В то же время вихрь электрино вокруг атома повышает каталитические свойства атома и химического элемента в целом. Вихрь и его разрушительное действие - катализ тем больше, чем выше значение отрицательного статического заряда атома, который в свою очередь, как правило, увеличивается по мере увеличения массы атома.
  Как правило, но не всегда: так атом платины 195Pt, имеющий атомное число (количество единичных атомов) 195, является одним из наиболее сильных катализаторов, хотя по химической активности - инертен. Стоящее рядом в таблице химических элементов золото 197Au тоже инертно, но одновременно еще и не является катализатором (малый вихрь) несмотря на большое атомное число. Это означает только одно, что атом золота почти не имеет отрицательного избыточного статического заряда и, соответственно, почти не имеет вихря: заряды структурных электронов почти полностью компенсированы зарядами мелких частиц - электрино, и глазки электронов почти не выступают над поверхностью атома. Так два рядом стоящих элемента 195Pt и 197Au, имеющих солидную массу, существенно различаются, каталитическими свойствами из-за разных по мощности вихрей над их атомами, но и в то же время одинаково инертны, так как отрицательный избыточный заряд атомов золота сам по себе невысокий вследствие равновесия зарядов структурных электронов и электрино, а отрицательный избыточный статический заряд атома платины компенсирован мощным вихрем электрино, представляющим динамический положительный заряд.
  Как показывает опыт избыточный статический отрицательный заряд полностью является гравитационным, так как непосредственно увеличивает гравитацию - вес вещества /7/. Тогда электронные лучи должны состоять из гравитационных "струн", представляющих собою полые трубки из притянутых друг к другу мелких вихрей - торов (гравитоны), просасывающих через трубки первичную бесструктурную материю /2/ по замкнутым контурам между плюсом и минусом зарядов взаимодействующих тел. А поскольку электронные лучи испускает электрон, то он тоже должен состоять из гравитонов, которые мельче и, соответственно, плотнее, чем электрино. То есть плотность электрона должна быть выше электрино, что и подтверждается опытом: (плотность электрона в 610 раз выше плотности электрино).
  Одновременно все сказанное означает, что каждая частица-электрино держится на гравитационных струнах или - соединена с отрицательным зарядом гравитационными струнами. Визуально это можно представить так: каждая частица-электрино, связанная "струнами" как пружинками с отрицательным зарядом, вращается вокруг атома в составе вихря; вокруг электронного луча от глазка электрона в атоме в составе спирально движущихся совокупности электрино; вокруг электронного луча лазера; вокруг электрического проводника; вокруг магнита в составе магнитного потока; вокруг Земли в составе геомагнитного потока электрино и т.п. "Пружинки"-парные: одна притягивает, другая отталкивает, чем обеспечивает положение и состояние неустойчивого безразличного равновесия частицы-электрино, и таких пар много.
  Изложенный новый взгляд на физику атома и физический механизм движения электрино в виде вихрей вокруг атомов позволяет лучше понять ряд процессов и явлений, ранее не поддающихся объяснению, в том числе, поверхностное натяжение жидкости, атмосферные явления, сверхпроводимость, катализ, бестопливную энергетику и другие.
 4. Природа сверхпроводимости
  Сверхпроводники могут работать и работают при обычных температурах.
  Современные представления /1/ о физических процессах позволяют лучше понять природу сверхпроводимости и получить практический результат для обычных температур окружающей среды.
  Рассмотрим алгоритм получения режима сверхпроводимости сначала для известного сверхпроводника, например, алюминия, требующего криогенной температуры. Основными этапами процесса в соответствии с /1/ являются следующие:
  1. Охлаждение проводника.
  2. Снижение частоты колебаний атомов пропорционально температуре.
  3. Рост динамического заряда атома в виде вихря электрино.
  4. Частичная нейтрализация отрицательного избыточного заряда атома.
  5. Ослабление связей и взаимодействия между атомами.
  6. Объединение вихрей электрино вокруг групп еще не объединенных атомов.
  7. Потеря прочности связей между атомами.
  8. Объединение атомов между собой по группам скачком под сжимающим действием объединенного вихря.
  9. Рост каналов (пространства) между группами атомов вследствие их объединения.
  10. Рост скачком вихря электрино вокруг группы объединенных атомов.
  11. Рост скачком теплоемкости материала.
  12. Выход части вихря на поверхность проводника у групп, граничащих с нею.
  13. Наступление режима сверхпроводимости.
  Следует дать пояснения к алгоритму и, в первую очередь, охарактеризовать понятие сверхпроводимости. Сверхпроводимостью считают режим течения электрического тока по проводнику с нулевым сопротивлением. Однако, это не совсем так.
  Установлено, что сопротивление обусловлено рассеянием электрино вихря, а поскольку атомы сохраняют некоторую амплитуду колебаний, то будет и рассеяние электрино, следовательно, сверхпроводник обладает конечной проводимостью (не нулевой). Подпитка электрино в замкнутом сверхпроводящем контуре со стоячим вихрем электрино производится из магнитного поля Земли, а в общем случае - из окружающего пространства, в котором находится "электринный газ" (эфир).
  В любой кристаллической решетке положение и взаимодействие атомов определяется, во-первых, притяжением их разноименных электрических статических зарядов и, во-вторых, отталкиванием их одноименных избыточных статических зарядов (в металлах - это отрицательный заряд). Поле отрицательных (электронных) зарядов является дискретным в виде электронных лучей, поэтому для неподвижного атома ничто не мешает положительно заряженным частицам - электрино компенсировать его полностью, находясь вокруг атома в виде вихря, представляющего динамический положительный заряд. Подлетая к атому под действием притяжения отрицательного избыточного заряда, электрино встречает положительные поля атома, которые составляют более 99% и являются фоновыми, недискретными. Эти поля одноименных зарядов отталкивают электрино и заставляют ее (частицу) зависнуть на некотором удалении от атома в положении безразличного неустойчивого равновесия. В конце концов вихрь электрино примет какое-либо направление вращения вокруг атома под действием внешних сил.
  Ввиду дискретности отрицательных полей вихрь подвижного атома будет рассеивать электрино, выбывшие из зоны их действия, и иметь значительно меньший вихрь по сравнению с неподвижным атомом и любым телом, имеющим отрицательный заряд. При охлаждении проводника снижение температуры вызывает пропорциональное снижение частоты колебаний атома в кристаллической решетке. Более неподвижный, чем ранее,
 атом увеличивает свой вихрь электрино вплоть почти до нейтрализации отрицательного избыточного заряда, часть которого остается для взаимодействия с соседними атомами.
  Снижение отрицательного заряда ведет к относительному росту сил притяжения между атомами кристаллической решетки проводника. С превышением прочности связи атомов при криогенной температуре они под действием сил взаимного притяжения скачком объединяются между собой группами (кластерами). Считают, что кристаллическая решетка алюминия имеет кубическую структуру с координационным числом 6. Это значит, что, видимо, при указанных условиях атомы объединяются в группы по 7 штук в каждой. Объединяются и их индивидуальные вихри электрино в общий для каждого кластера вихрь. Такая группа - кластер, монокристалл имеет атомное число 27x7=189 а.е.м., соответствующее самым тяжелым металлам 6 группы таблицы Менделеева, в том числе, редкоземельным (лантаноидам).
  Поскольку размер глобул атомов уменьшается почти на 2 порядка, то соответственно возрастает размер межглобулярного канала. Одновременно также скачком происходит окончательное объединение индивидуальных вихрей атомов в общий мощный вихрь группы - монокристалла. По сути произошел фазовый переход аналогичный конденсации вещества например, из парообразного в жидкое состояние, что естественно при его охлаждении. Точно также происходит, например, конденсация водяного пара путем объединения молекул воды в мельчайшие капли - кластеры /3, 4/, которые затем растут и вливаются в основную массу жидкости. Объединение капель жидкости происходит точно так же, как атомов алюминия, а именно: в объединенном вихре электрино одноименные заряды отталкиваются друг от друга и приближающиеся к атомам электрино (а их миллионы штук) электродинамически действуют на атомы с некоторой силой, прижимающей их друг к другу со всех сторон одинаково, заставляя капли принимать сферическую форму. Для капель воды это и есть физическая причина поверхностного натяжения жидкости. Удаляющиеся от атомов электрино силой своей реакции также сжимают атомы в группу (как молекулы в каплю).
  Образовавшийся вокруг каждого кластера - монокристалла мощный вихрь электрино спокойно (без сопротивления) вращается, так как проходит через увеличенные каналы не сталкиваясь с атомами, причем верхняя часть вихря выступает над поверхностью проводника. Она-то и является тем электрическим током, который возникает в сверхпроводнике при подаче напряжения. Этот ток проходит как бы не внутри самого проводника, а вне его, не вызывая столкновительных взаимодействий электрино с атомами и, соответственно, не вызывая электрического сопротивления. Этот поверхностный ток является одновременно и магнитным потоком, который, как считают, "выдавливается" на поверхность. Электрино потому и не сталкиваются с атомами, что у них для этого, как видно, нет причин, они свободно кружат вокруг атомов в составе общего вихря группы -монокристалла.
  Это и есть режим сверхпроводимости, при котором электрическое сопротивление, определяемое только рассеянием носителей зарядов - электрино, снижается почти до нуля (для алюминия - на 5 порядков). Одновременно скачком увеличивается теплоемкость вещества, в том числе, алюминия, примерно в 2,5 раза, что и следовало ожидать при конденсации так же, как увеличение теплоемкости воды по сравнению с теплоемкостью пара при его конденсации.
  Понимание физической сущности механизма сверхпроводимости на уровне взаимодействия атомов и элементарных частиц дает возможность осуществить сверхпроводимость при обычной комнатной температуре. В принципе это можно сделать с помощью любого редкоземельного металла или любого металла 6 группы таблицы Менделеева. Для этого через пленку микронной толщины из композита с включением указанных металлов должен быть пропущен электрический ток. При этом такая пленка не только не сгорает и не разрушается, но даже не нагревается.
  Достаточно мощный вихрь электрино вокруг атомов тяжелого металла, например, неодима 142Nd своей поверхностной частью позволяет пропустить необычно большой ток в таком пленочном сверхпроводнике при комнатной температуре.
  Применение тонкопленочных сверхпроводников позволяет:
 • уменьшить металлозатраты на проводники;
 • уменьшить габариты энергоустановок;
 • исключить сложные устройства охлаждения ввиду отсутствия сопротивления и нагрева;
 • создать компактные энергоисточники на основе неподвижных магнитов (электро- и теплогенераторы);
 • использовать скоростной ток, идущий по поверхности обычных проводников, как ток сверхпроводимости.
 5. Современное представление
 о механизме энерговыделения
 при разложении перекиси водорода
  Известно, что с повышением температуры и в присутствии катализаторов перекись водорода разлагается на воду и кислород с выделением тепла иногда со взрывом.
  Современное представление о механизме энерговыделения состоит в следующем /5/. В приповерхностном слое катализатора молекула испытывает механическое и электродинамическое действие потока положительно заряженных частиц (электрино), в результате чего межатомные связи нейтрализуются, ослабляются и молекула разрушается на два атома водорода, два атома кислорода и три электрона связи, которые становятся свободными. В такой плазме электроны как самые крупные отрицательно заряженные объекты электродинамически взаимодействуют с атомами водорода и кислорода, послойно отбирая у них электрино, которые вылетают из атомов с высокой скоростью и отдают свою кинетическую энергию плазме, разогревая ее все больше и больше.
  Эти свободные частицы - электрино движутся, как правило, к металлическим конструкциям от большей концентрации к меньшей или, что то же, - от большего потенциала к меньшему, образуя электрический ток. Отработанные атомы водорода и кислорода, потерявшие часть электрино, и отработавшие электроны образуют продукты реакции: воду и кислород.
  Такой процесс энерговыделения с частичной потерей веществом своей массы в виде электрино называют фазовым переходом высшего рода (ФПВР).
  С повышением температуры процесс ФПВР усиливается, причем для каждой молекулы этот процесс весьма скоротечен и занимает миллионные доли секунды, что чревато взрывом.
  Во время ФПВР при разложении перекиси водорода необходимо организовать отвод не только выделяющегося тепла, но и отвод освободившихся заряженных частиц - электрино как движущихся зарядов, образующих электрический ток. Отсутствие должного отвода тепла и электрино вызывает их быстрое накопление с мгновенно следующим взрывом, результата реализации невостребованной энергии.
  Теперь о катализаторах. Катализаторы - это металлы вокруг атомов которых в кристаллической решетке обращается вихрь электрино. Скорость этих частиц достигает 1019 и даже 1021 м/с как в существующих ускорителях, что достаточно для разрушения молекул перекиси водорода как мишеней при бомбардировке их потоком частиц - электрино.
  Именно в этом заключается каталитическое действие металлов. Эффективность действия катализатора усиливается с увеличением атомной массы и избыточного заряда атома металла, так как увеличивается число обращающихся вокруг атома частиц - электрино и их концентрация. Энергия - это и есть поток электрино в том или ином виде.
  Так вот: во-первых, чем крупнее атомы, тем сильнее катализатор, во-вторых, чем ближе форма атомов к сферической, тем тоже сильнее этот металл как катализатор химических реакций из-за равномерности и, следовательно, большей плотности потока электрино вихря. Кроме известных (для перекиси водорода) катализаторов (серебро, железо, кобальт, никель, медь) с малой атомной массой, все металлы, начиная с лантана с более высокой атомной массой, также могут быть катализаторами для перекиси водорода, в том числе, такие, казалось бы "спокойные" как свинец, а также их сплавы, окислы и соли.
  Одним из примеров катастрофического взрыва перекиси водорода является взрыв ракеты на космодроме Плесецк, о котором рассказывали в 2001 году по телевидению. Оказалось, что причиной взрыва явилась замена оловянистого припоя фильтров перекиси водорода на свинцовистый. То есть, даже такая малость свинца как припой, и даже в сплаве с другим металлом вызвала великую катастрофу с гибелью людей.
  Нечто похожее могло произойти на "Курске". И экипаж тут не причем. Ответственные люди не знали современной физики.
  Изложенный выше процесс энерговыделения с разложением перекиси водорода происходит как обычная повседневная реальность в свинцовых аккумуляторах /5/. Но взрывов не происходит в связи с тем, что процесс включается только при замыкании электрической цепи и разряда аккумулятора, сопровождаемых как видно, отводом электрического тока к потребителю в виде потока электрино, который поступает на свинцовую пластину анода из приповерхностной "холодной" плазмы, где идет ФПВР.
  Чтобы не допустить в дальнейшем взрывов технических систем с перекисью водорода необходимо выполнять следующие обязательные требования:
  1. Тщательно подбирать материалы трубопроводов, арматуры и конструкций, с которыми соприкасается перекись водорода, в том числе, с учетом изложенного механизма ФПВР. Обязательно проверять экспериментально свои технические решения.
  2. Организовать отвод всегда образующегося при ФПВР электрического тока как потока положительно заряженных частиц - электрино, а также отвод тепла от зоны реакции.
  3. Предусматривать регулирование режима работы установок с перекисью водорода, в том числе, температурного режима.
  4. Отслеживать информацию по современной физике и энергетике для использования в практической работе по проектированию, изготовлению и эксплуатации установок с перекисью водорода.
  5. Как правило, не допускать использование потенциально взрывоопасных установок, в основном с образованием атомарного кислорода, в герметизируемых объектах ни при каких условиях.
 6. Структура первых химических элементов таблицы Менделеева
  Выше была дана информация о том, что атомы химических элементов являются по форме точно сферическими, начиная с 12С углерода, или овалоидными. Естественно, что атомы меньше углерода не могут быть набраны в сферу из единичных атомов (нейтронов, нуклонов) в связи с их недостаточным количеством (меньше 12 штук) в атомах первых химических элементов таблицы Менделеева.
  По химическим реакциям с учетом баланса электронов установлено /5/, что атом водорода (протий) является разбалансированным единичным атомом (нейтроном) без одного электрона. То есть атом протия содержит всего два, а не три, структурных электрона и имеет поэтому избыток электрино, дающих ему большой статический положительный избыточный заряд, равный примерно по абсолютной величине заряду электрона. Молекула водорода (протия) образуется из двух атомов, соединенных двумя электронами связи (по одному на каждый положительный атом), и является прочной вследствие двойной электронной связи. Естественно, что такая молекула газа может вращаться (с очень большой скоростью) только вокруг ее длинной оси как имеющая наименьший момент и хорошую балансировку именно относительно длинной оси.
  Водород (протий) считают самым распротраненным элементом, в том числе, в межзвездном и межгалактическом пространстве. Полученное в результате многократных и тщательных измерений отношение плотности барионов (нейтронов и протонов) к плотности фотонов составляет В = 1.0х10-9 - барионное число, и это число остается постоянным, несмотря на изменение плотности вещества в отдельных зонах пространства. Однако, один нейтрон с тремя электронами и нейтральным суммарным зарядом дает отношение к количеству электрино (фотонов), равное ВН = 4.1х10-9. В то же время при образовании вещества в пространстве сначала образуются мононейтроны, то есть образования с одним электроном и соответствующим по заряду количеством электрино nм = 8.06х107. Отношение мононейтрона (1 шт.) к количеству nм электрино дает мононейтронное число М = 1.37х10-9, которое ближе к указанному барионному числу В по своему численному значению. Это свидетельствует о том, что в космическом пространстве основной большой частицей служит мононейтрон, а не барионы. Мононейтрон, являясь неустойчивым кластером, образуется и распадается (диссоциирует) на мелкие частицы электрино, составляющие в пространстве электринный газ. При действии солнечных лучей последние (электрино) входят в состав лучей, именно поэтому их называют фотонами.
  Поскольку дейтерий и тритий распадаются на атомы протия, то естественно полагать, что они из этих атомов и состоят. Но, в отличие от молекулы водорода - протия атомы дейтерия и трития состоят из атомов протия, соединенных между собой не двумя, а одним электроном. Поэтому атомы дейтерия и трития и их молекулы являются непрочными образованиями и легко распадаются на атомы и молекулы водорода - протия. Два атома дейтерия или трития соединены в молекулу с помощью одного электрона. При распаде молекул дейтерия и трития именно эта наиболее прочная связь сохраняется как молекула водорода-протия. Распаду дейтерия и трития способствует то обстоятельство, что их атомы и тем более молекулы представляют собой длинные линейные композиции, что при быстром вращении вокруг их осей при любом малом воздействии приводит к потере устойчивости и распаду. Именно поэтому в природе дейтерия и трития мало в отличие от водорода - протия.
  У гелия - четвертого элемента после протия, дейтерия и трития - атом состоит из четырех полноценных единичных атомов, соединенных тремя электронами, размещенными между ними на одной оси. Молекула гелия состоит из двух атомов, соединенных двумя электронами.
  Литий и бериллий 7Li и 9Be (пятый и шестой по счету элементы) являются металлами, то есть имеют отрицательный избыточный статический заряд, который не очень высок - около половины заряда электрона. Атомы лития и бериллия представляют длинные линейные композиции из единичных атомов, соединенных между собою электронами. Это непрочные мягкие маловалентные металлы. В парообразном состоянии их атомы быстро вращаются вокруг своей длинной оси.
  Бор 11В - это уже не цепочка единичных атомов, а почти сфера - овалоид (без одного нейтрона). Имеет положительный статический заряд, равный заряду электрона (по модулю), неметалл.
  Поскольку у атома протия недостает одного электрона, то там, где он должен быть - избыток положительного заряда, а с другой стороны атома, где расположены два структурных электрона - избыток отрицательного заряда. Как видно, такой атом является диполем. Диполи не соединяются между собой электроном, а сами разворачиваются друг к другу противоположными по знаку зарядами и соединяются по принципу притягивания "плюс-минус". А электроны соединяют положительные атомы или их положительные стороны. Поэтому атомы Н, Д, Т, Не могут иметь дипольное соединение в цепочки по принципу "плюс-минус", а их молекулы Н2, Д2, Т2, Не2, соединенные электронами, составляют только четные пары, так как атомы обращены к электронам связи своими положительными сторонами и по-другому соединяться не могут. Именно поэтому молекулы Н2, Д2, Т2, Не2 имеют только по два атома.
  Длинные цепочки лития и бериллия в твердом и жидком виде могут быть свернуты (в спирали). Почему нет устойчивого изотопа химического элемента с пятью единичными атомами 5Х? Этот элемент был бы переходным между газами Н2, Д2, Т2, Не2 и металлами 7Li и 9Be. Но для газов, из-за вращения, цепочки в 2 х 5 = 10 единичных атомов - неустойчивы, а для металлов цепочка в 5 единичных атомов - коротка, не сворачивается в спираль. Поэтому элемента 5Х и нет в природе как устойчивого изотопа таблицы Менделеева.
 7. Самоподдерживающаяся многорезонаторная бегущая волна - основа экономности энергетических процессов в природе
  В дополнение к самовращению и резонансу, описанным во второй книге, принцип бегущей волны также является одним (третьим) из основополагающих в природе. Природа экономна. Саморазвиваются и выживают в конкурентной борьбе естественного отбора наиболее приспособленные. К сожалению, о человечестве этого сказать пока нельзя, в этом смысле черепахи и то лучше. Человечество расточительно, так как потребляет создаваемые природой блага в больших количествах, чем их успевает воссоздавать природа. Это ведет к различным катаклизмам... Необходимо довольствоваться миллионными долями того, что производит природа: тогда будет порядок. И это становится возможным, по крайней мере, как видно из предыдущего материала, - в энергетике - этой самой расточительной области деятельности людей.
  Описанное выше колебание вихрей электрино вокруг атомов приводит к перетоку электрино от одного атома с повышенной амплитудой вихря и концентрацией электрино к другому атому с меньшим вихрем. Атом, как конденсатор, заряжается и разряжается, отдавая свою энергию соседу в виде потока электрино. При этом фазы колебаний соседних атомов сдвинуты на четверть периода (900): когда у одного атома максимальная амплитуда вихря, у другого, соседнего с ним атома, амплитуда минимальна. Один атом подкачивает энергией другой атом и так - по всей цепочке атомов, образуя бегущую волну. Получается как подкачка качелей, когда вы легким движением руки поддерживаете движение тяжелого маятника, например, сидения с ребенком, в режиме резонанса, то есть совпадения частоты действия вашей руки - задатчика - с собственной частотой колебаний маятника. Достигается максимальная амплитуда при минимальной затрате энергии - только на сопротивление трению, но не на подъем груза.
  Аналогичный процесс происходит в любой кристаллической решетке твердого вещества, а также в жидкости и газе, где добавляется еще вращательное движение и большая подвижность атомов и молекул. Откуда берется энергия и как она перетекает из окружающей среды (эфир, электринный газ) было показано в разделе о виброрезонансных явлениях. В конечном счете, энергия берется от скоростных электрино, называемых нейтрино, которые, в частности, испускает Солнце. Более энергичные электрино электринного газа окружающей среды, в том числе, межглобулярного пространства перетекают к атомам, а менее энергичные в соответствующей фазе колебаний удаляются от атома в окружающую среду, энергию которой и пополняют нейтрино. Поскольку движения атомов и электрино происходят в глубочайшем вакууме между ними, то затраты энергии на трение невелики. Более того, в каждой резонаторной цепочке есть один, ведущий, атом, который первым получает энергию из окружающего пространства, а остальные атомы цепочки подпитываются энергией каждый от предыдущего. В этом именно и заключена экономность природы: не все сразу получают энергию, а один на всю совокупность атомов (молекул), да еще в вакууме, где сопротивление движению минимально; да еще в режиме резонанса, когда частота задатчика колебаний совпадает с собственной частотой остальных резонаторов.
  Может быть легче объяснить принцип бегущей волны в атомном ансамбле на примере молекулы азота в воздушной атмосфере, так как у азота всегда вокруг молекулы находится одна частица-электрино, которая влетает и вылетает из вихря с частотой примерно 1030 1/с [Гц]:
  1. После вылета электрино из вихря, точнее - с орбиты вокруг молекулы азота, уменьшается ее динамический заряд, увеличивается, соответственно, избыточный отрицательный статический заряд.
  2. Следующее электрино из окружающей среды (эфир, электринный газ) под действием заряда начинает двигаться к молекуле азота ускоренно.
  3. Вступает, влетая в зону вихря, в электродинамический контант - взаимодействие с молекулой азота.
  4. Подкачивает его (электродинамически), как подкачиваем рукой качели.
  5. Электрино тормозится, отдавая свою кинетическую энергию (скорость) молекуле азота, которая от этого восполняет потерю и сохраняет вращение и движение в целом.
  6. Электрино, встречая положительные поля азота, зависает над молекулой, слегка проваливаясь в положительные поля как на рессоре, пружине.
  7. Останавливает радиальное движение к молекуле и начинает обратное радиальное движение, продолжая вращательное движение вокруг молекулы, в силу отталкивания от положительного заряда и - под действием центробежных сил.
  8. Удаляется за пределы зоны вихря (влияния молекулы) в окружающую среду, имея меньшую скорость (энергию), чем была у этой частицы-электрино до того.
  9. Удаленная частица-электрино вступает во взаимодействие с другими электрино окружающей среды.
  10. Окружающая среда с влетевшей электрино восстанавливает свою энергию за счет более быстрых электрино (нейтрино) Солнца и Вселенной в целом - в природных условиях.
  11. Природа экономна и в этом: она использует одни и те же электрино последовательно в многорезонаторном атомном ансамбле в виде бегущей волны, передавая их от одного атома к другому в период, когда в одном амплитуда вихря максимальна, а в другом - минимальна, что соответствует сдвигу фаз колебаний на четверть периода (900) между соседними атомами (молекулами) - резонаторами.
  Принцип многорезонаторной бегущей волны, реализуемый природой при взаимодействии атомов в кристаллической решетке твердых веществ, а также - в жидкостях и газах, является универсальным природным физическим механизмом взаимодействия и движения осцилляторов в виброрезонансных системах.
  Аналогами природных виброрезонансных систем с многорезонаторной бегущей волной являются, например, следующие:
  1. Многорезонаторный магнетрон с круговой бегущей волной, впервые разработанный и запатентованный М.А.Бонч-Бруевичем в 1929 году. Впервые, не зная природного физического механизма бегущей волны, Бонч-Бруевич практически его применил в магнетроне для многократного увеличения его эффективности и мощности, чего до него никто не мог добиться.
  2. Поплавки А.Дидина (1999 г.). Один из двух связанных между собою поплавков, фазы колебаний которых можно плавно изменять, создает волны, а другой поплавок как бы скользит по их поверхности как серфингист, используя свою гравитационную составляющую. Меняя соотношение фаз, можно разгонять или тормозить поплавки. Увеличивая количество поплавков, получим многорезонаторную систему с бегущей волной. Можно создать круговую систему стоячих волн с вращательным движением поплавков или жидкости. Для усиления эффекта можно использовать ртуть, центробежные силы, криволинейные траектории, электромагнитные волны, электрический ток и т.д. (В.Богомолов, А.Шаповалов, Ю.Койнаш и др.). По указанным схемам можно получать энергию или двигаться в окружающем пространстве. Роль эксперимента А.Дидина в том, что он позволил сделать проблему понятной, наглядной и очевидной.
  3. Даже принцип "домино" является простейшим аналогом одноразового действия бегущей волны, позволяющей визуально наблюдать ее действие и причудливые формы.
  4. Вечная лампочка А.Ю.Кушелева с двенадцатью сферами-резонаторами из сапфира диаметром каждая 8 мм, эквивалентная электролампочке накаливания мощностью 185 Вт (2002 год).
  Систему из 12-ти резонаторов (по четыре "крест-на-крест"), соединенных проводящими шевронами, А.Кушелев раскачивает с помощью лампы бегущей волны до частоты 34...36 ГГц, когда их собственная частота начинает совпадать с частотой колебаний атомов. Система вспыхивает как лампочка в оптическом диапазоне частот перетока электрино, после отключения лампы бегущей волны не требуя энергии извне на свое свечение, так как энергия потребляется из окружающей среды в режиме резонанса, а задатчиком колебаний являются атомы кристаллической решетки сапфира. Сам набор 12-ти сфер является набором соединенных электрически резонаторов со сдвигом фаз между ними на 900. Диаметр сфер подбирается эмпирически так, чтобы собственная частота лучше соответствовала частоте атомов. Американцы тоже зажигали лампочку из двух сфер диаметром 2 мм, даже раньше А.Кушелева, но она не была вечной. Для равномерности колебаний всего объема и поверхности сферы требуется ее прецезионное изготовление и изотропность свойств. Раз зажженные и негаснущие лампочки А.Кушелева могут храниться в стеклянных или в металлических (для экранирования СВЧ излучения) банках.
  Использование вечного движения атомов в веществе является наивысшим достижением в виброрезонансной технике для получения энергии из окружающей среды.
 8. Электринная энергетика
 с атомным приводом
  Ранее установили, что для виброрезонансных устрйоств необходимы: сам объект - резонатор, задатчик колебаний, источники энергии для преобразования в резонаторе и для привода задатчика, резонанс как совпадение частоты задатчика с собственной частотой колебаний резонатора, желательно совпадение формы колебаний (гармоник) и наличие бегущей волны для экономности процесса. В описанной выше вечной лампочке А.Кушелева все эти условия выполнены: резонаторами являются сферы сапфира, задатчиком - атомы кристаллической решетки, источником энергии является электринный газ окружающего пространства. Поскольку другого привода нет, то можно сказать, что это энергоустройство (вечная лампочка) снабжено атомным приводом, а по типу источника энергии такая энергетика может быть названа электринной.
  Вечная лампочка А.Кушелева является первым реальным и полноценным подтверждением возможности практического осуществления теоретических разработок для такого сорта энергоустановок как наиболее эффективных с точки зрения рационального использования даров природы.
 8.1. Движители транспортных средств
  Исторически одними из первых были разработаны различного типа инерцоиды как средства безопорного движения. Они двигались, ползали, ездили, но не летали. Почему?
  Авторы, назвав их безопорными, хотели подчеркнуть, как им казалось, высший смысл достижения - полет без опоры в любом направлении и среде. Однако, это не состоялось и не могло состояться. Как ни парадоксально, но в названии "безопорный" заложен ответ на этот вопрос: без опоры - нет движения. Наземный транспорт опирается на матушку-Землю (попробуйте убрать опору хотя бы с помощью скользкой дороги, что будет?). Водный транспорт опирается на воду, воздушный - на воздух. Космическому транспорту приходится возить с собой какое-либо вещество и выбрасывать его для создания опоры на реактивную струю при движении в космосе.
  В то же время, как мы выяснили с помощью барионного и мононейтронного чисел, космос заполнен электринным газом, на который как, например, на воздух могут опираться летательные аппараты. Но для этого нужно привести электрино в движение как, скажем, в вечной лампочке А.Кушелева, а у инерцоидов этого нет: поэтому и не улетают. Попытки Серла и Флойда получить энергию - это первый и не лучший опыт, так как не задействован резонанс и атомный привод. Но их попытки ценны именно своим опытом, в том числе, четким подтверждением возможности черпать энергию из окружающего пространства в виде перетока электрино с соответствующим довольно заметным охлаждением зоны забора электрино.
  Циркуляция воздушного потока по замкнутому контуру вокруг профиля крыла самолета, вращающегося колеса или диска - это все явления одного сорта, которые нам и предстоит рассмотреть. Начнем с крыла, как наиболее изученного предмета. Неподвижное крыло, как известно, подъемной силой не обладает. При движении крыла в воздушной среде набегающий поток, проходя по верхней части профиля больший путь, чем по нижней, имеет большую скорость. Это представление заменяют на сложение скоростей набегающего и циркулирующего потоков в верху и их вычитание в низу профиля крыла, что также соответствует схеме скоростей на периферии потоков вокруг вращающихся колес и дисков. Для определенности и наглядности логических рассуждений положим, что скорость набегающего потока равна скорости циркуляционного потока. Тогда на верху крыла (или, что то же, движущегося вращающегося колеса или диска) сложение скоростей набегающего и циркуляционного потоков даст двойную скорость воздуха относительно поверхности крыла (заторможенного колеса, диска), а в низу крыла набегающий и циркуляционный потоки, имеющие равные по модулю и встречно направленные векторы скоростей, гасят друг друга, в сумме дают нулевую скорость потока.
  В результате часть направленного вдоль верха профиля динамического напора вычитается из полного напора (давления) на поверхность крыла, в то время как в нижней части крыла напоры набегающего и циркуляционного потоков складываются, то есть дают двойной напор (давление) на нижнюю поверхность крыла. За счет разности сил давлений внизу и вверху возникает подъемная сила крыла. Однако, расчет только указанной аэродинамической составляющей подъемной силы не учитывает каких-то других факторов, поэтому коэффициент подъемной силы определяется экспериментально при продувке профиля в аэродинамической трубе.
  Вокруг профиля крыла, колеса, диска вращается (вместе с двумя последними) воздушный поток, молекулы которого оказывают соответствующее аэродинамическое давление. Кроме того, эти молекулы обладают избыточным статическим электрическим зарядом. В целом заряд воздушной атмосферы - положительный. Концентрация молекул, а следовательно и электрический потенциал, различны вверху и внизу профиля крыла. Объединение внизу набегающего и циркуляционного потоков обусловливает повышенную концентрацию молекул (потенциал). "Убегание"циркуляционного потока от набегающего ("догоняющего") вверху крыла (колеса, диска) обусловливает пониженную концентрацию молекул. Одноименно заряженные среды, как известно, отталкиваются. При этом переток среды и сила действия направлены от большей концентрации (потенциала) к меньшей. Таким образом, к аэродинамическому фактору действия молекул добавляется электростатический, в ту же сторону. Но и это еще не все.
  Вместе с воздушным потоком вращается эфир (электринный газ) и другие более мелкие среды, в том числе, гравитационные структуры окружающего пространства, связанные с движущимися телами (крыло, колесо, диск). Аналогично воздушному потоку внизу крыла происходит сгущение эфира - повышение концентрации (потенциала) положительно заряженных мелких частиц-электрино, благодаря чему за счет разности электринного потенциала внизу и вверху добавляется электринная составляющая как электростатическая, так и динамическая, часть подъемной силы крыла, более существенная, чем молекулярная. Более того, возможный резонанс собственных колебаний крыла с вынужденными дает существенную подкачку (переток) электрино в крыло и обратно, усиливая подъемную силу еще больше.
  С помощью вращающихся предметов (колесо, диск, цилиндр и т.п.) и резонанса аналогично крылу можно получить подъемную силу (положительную плавучесть) предметов, что особенно важно, в эфире. При этом ввиду резонанса затраты мощности на такие движители должны быть минимальны либо сведены к нулю. Однако, вращение материальных макротел не всегда удобно и эффективно. Гораздо эффективнее вращение вихрей мельчайших известных на сегодняшний день элементарных частиц - электрино. Стационарными предметами, возбуждающими потоки электрино, являются магниты, магнитный поток которых и есть поток электрино, причем всегда по замкнутому контуру, часть из которого расположена в воздушной среде. Представьте два стержневых магнита и магнитный поток от одного к другому через их полюса и воздушные промежутки между ними. Пусть магниты расположены параллельно друг другу с некоторой воздушной прослойкой между ними и близостью разноименных полюсов. Циркулирующий по замкнутому контуру электринный (магнитный) поток является аналогом потоков вокруг вращающихся колеса или диска. В то же время, магниты неподвижны.
  Если связать магниты немагнитной системой с какой-либо осью вращения, например, параллельной магнитам, так, чтобы радиальная связь (тяга, нить, спица) была перпендикулярна плоскости расположения магнитов (аналогично плоскости диска или колеса), и начать вращение системы, то получится полная аналогия движению вращающихся колеса и диска, летящего в набегающем потоке крыла. Разница в том, что поток электрино создает магнит, сам оставаясь неподвижным относительно тяги. Такая вращающаяся система, как видно, получит подъемную силу или потерю веса.
  Трансформируем систему следующим образом. По окружности вращения пары магнитов поставим много таких пар. Следующий шаг: внутренний круг магнитов сольем в единое магнитное кольцо - статор. Внешние, например, цилиндрические, магнитики, образуют ротор. Получили двигатель Серла, принцип действия которого подробно рассмотрен выше на примере крыла, колеса, диска. Однако здесь еще сохранился механически вращающийся ротор из цилиндрических магнитов. Вращение магнитиков с обкатыванием их относительно магнитного кольца создает вместо стоячего вихря электрино между парой магнитиков (в самом начале этого примера) перемещающийся по спирали вихрь электрино, который имеет касательную составляющую скорости, аналогично профилю крыла, окружности колеса и диска, необходимую для создания подъемной силы. Набегающим потоком будет электринный газ окружающей среды.
  Чтобы получить вихрь электрино, перемещающийся по круговой спирали как вихрь - тор в двигателе Серла, но без механически вращающегося ротора, вернемся к попарному расположению магнитов по кругу. Когда магниты неподвижны и параллельны друг другу, то вихрь каждой пары является стоячим, так как не перемещается по кругу от одной пары к другой. Но если мы повернем в каждой паре магнитики на некоторый угол от вертикали в разные стороны, то получим, то, что хотим: спиральное круговое движение вихря электрино в виде вихря - тора. Касательная составляющая кругового поступательного движения по спирали каждой частицы - электрино дает возможность получить подъемную силу, как описано выше. Изменяя наклон оси вращения, можно заставить вращающуюся систему развивать нужную силу в нужном направлении, то есть быть движителем с опорой на электринную (эфирную) среду.
  Вращающееся колесо, помещенное на спицу как на (первую) ось вращения, и сама спица с колесом, вращающаяся вокруг другой (второй) оси, представляют систему, в которой на колесо может действовать подъемная сила. В зависимости от значения этой силы колесо поднимется на некоторую высоту относительно точки крепления второго конца спицы. Положение спицы составит некоторый угол со второй осью, в результате чего спица будет описывать конус вокруг второй оси, что называется прецессией. Как видно, причиной прецессии являются все перечисленные выше факторы динамические и электростатические для молекул, электрино и других более мелких структур, включая, видимо, гравитационные.
  Общий алгоритм создания летающих в космосе транспортных средств такой: в движителях размещают резонаторы, например, магниты, с атомным приводом, вгоняют их в резонанс и обеспечивают направленное движение электрино, например, поворотом резонаторов или их формой. Все.
 8.2. Магнитные электроустановки
  Все, о чем выше писали про магниты, можно осуществить на основе резонанса и атомного привода. В отличие от механического, электрического приводов и отсутствия резонанса, эффективность устройств с резонансом повышается на несколько порядков, а задействование кристаллической решетки в качестве задатчика частоты колебаний значительно упрощает конструкцию.
  Те же двигатели Серла можно сделать не только более эффективными, но даже - с неподвижными элементами конструкции (статор, ротор и другие). Для этого при наличии резонанса и атомного привода достаточно поворота магнитов-резонаторов для образования вихря электрино, чтобы конструкция получила положительную или отрицательную плавучесть в электринном газе окружающего пространства, либо - для получения из него энергии.
  В Японии уже получен постоянный магнит на основе использования неодима и европия с держащей силой 900 кг/см2, что соответствует магнитной индукции 15 Тл, на порядок превышающей самые мощные постоянные магниты; длина магнита 2 см, диаметр 1.5 см /9/. Думается, что таких и даже больших значений индукции можно достичь с помощью резонанса с атомным приводом, а также - с помощью пленочных технологий.
 8.3. Катализаторы с резонансом
  Катализ - по-гречески - "разрушение". Катализаторы разрушают крупные молекулы на мелкие фрагменты, чем обеспечивают более легкое проведение химических реакций, в том числе, энергетических - таких, как горение. Катализаторы потоком вихря электрино вокруг их атомов в общем случае, а также потоком электрино в туннельном межатомном пространстве магнитных материалов - магнитным потоком, нейтрализуют межатомные связи, ослабляют их, способствуют разрушению или разрушают молекулы. Без резонанса требуется высокая магнитная индукция в зазоре между полюсами магнита, где проходят обработку, например, вода, растворы, воздух, газы, топливно-горючая смесь, либо требуются достаточно тяжелые металлы - катализаторы с развитой поверхностью (губчатые) и мощным вихрем электрино вокруг их атомов. Если же ввести в резонанс колебания резонаторов, выполненных из катализатора, с колебаниями атомов их кристаллической решетки как задатчиков частоты, то, во-первых, значительно возрастет амплитуда колебаний и, соответственно, мощность вихрей вокруг атомов и магнитный поток в магнитах. Во-вторых, на это не будет затрачиваться искусственно подводимая энергия извне. В-третьих, можно уменьшить габариты и расход материалов (магниты, катализаторы). В-четвертых, можно использовать дешевые материалы с малой индукцией, например, ферриты, и малым вихрем вокруг атомов - более легкие и широко распространенные, а не редкие и дорогие, металлы.
 8.4. Шаровые молнии
  Будучи осколками прямой молнии или специально созданные, они сворачиваются в сферу (аналог капли) по тем же причинам равномерного воздействия со всех сторон. Шаровые молнии так же светятся, как вечная лампочка А.Кушелева, существуют достаточно длительное время. За счет чего? Уместно предположить, что за счет энергии окружающего пространства, перетекающей в виде электрино в шаровую молнию и обратно, при резонансе собственных колебаний тела шаровой молнии с частотой колебаний атомов и молекул, например, воздуха, составляющего это тело или ядро. Вокруг отрицательного заряда ядра вращается вихрь электрино, подпитывающий ядро и подпитываемый электрино-частицами из окружающей среды. Отработанные малоэнергичные электрино испускаются обратно в окружающую среду: они-то и светятся в оптическом диапазоне от желтого до голубого и даже черного цвета. Резонанс предполагает не только совпадение частот или отдельных гармоник, но и - сдвиг фаз колебаний задатчиков-атомов относительно фаз колебаний объекта на четверть периода, а также возможное совпадение всех гармоник. Когда эти условия нарушаются, частоты рассогласовываются, то шаровая молния гаснет.
 9. Некоторые особенности перетока электрино
 в энергетических процессах
  Энергия - это мера движения тел и частиц, в том числе, электрино. Движение всегда направлено от большей концентрации электрино (потенциал) к меньшей.
 9.1. Физический механизм фазовых переходов
  Наиболее привычными процессами фазовых переходов для нас являются конденсация и испарение воды как наиболее распространенного вещества. Однако к фазовым переходам относится также - образование вещества из элементарных частиц и обратный процесс - распад вещества на элементарные частицы - фазовый переход высшего рода (ФПВР) в отличие от частных фазовых переходов, в том числе, объединение и разъединение молекул и атомов, включая процессы в кристаллической решетке.
  Алгоритм любого фазового перехода одинаков и состоит из следующих последовательных этапов:
  1. Охлаждение - уменьшение частоты колебаний структурных элементов среды (атомы, молекулы...).
  2. Уменьшение частоты и амплитуды колебаний приводит к уменьшению выброса электрино из вихря вокруг атома (молекулы). Рост вихря дает увеличение степени нейтрализации статического избыточного отрицательного заряда атома. Это ослабляет межатомные связи.
  3. По мере охлаждения у охлажденных, спокойных, меньше подвижных, а в пределе неподвижных атомов нейтрализуется весь отрицательный заряд, а вихрь электрино возрастает максимально.
  4. Большие вихри электрино объединяются вокруг групп атомов (молекул) под действием сил взаимного отталкивания электрино, реакции отлетающих электрино и действия прилетающих электрино. Это и есть, так называемые, силы межмолекулярного притяжения, являющиеся причиной поверхностного натяжения жидкости, а также атомов химических элементов. Как видно, это - силы не притяжения молекул, а силы их сдавливания общим вихрем электрино.
  Примером конденсации как фазового перехода может служить вода. В зависимости от температуры или, что то же, частоты колебаний, имеет место несколько фазовых состояний воды:

<< Пред.           стр. 7 (из 13)           След. >>

Список литературы по разделу