<< Пред. стр. 9 (из 13) След. >>
Предлагаемый способ осуществляют в описанном устройстве следующим образом.Кольцевые магниты 5, установленные в выемке 3 плоского цилиндра 1, образуют магнитные силовые линии 9, идущие через зазор 6 между ними и корпус цилиндра 1. Воздух, проходя через зазор 6 подвергается воздействию магнитного поля, образованного магнитами 5, величину индукции которого выбирают такой, чтобы обеспечить диссоциацию молекул кислорода и азота. Для усиления эффекта диссоциации молекул кислорода и азота одновременным воздействием магнитного поля и катализатора, внутренняя полость выемки 3 заполнена катализатором 7, через который проходят магнитные силовые линии 9. В качестве катализатора используют, например, платину. Из внутренней полости выемки 3 по каналам 4 диссоциированный воздух (с ионами кислорода и азота) проходит в центральное несквозное отверстие 2, расположенное в цилиндре 1, а затем проходит в трубопровод 8, куда подают горючее, например через форсунку 10, в количестве, обеспечивающим образование предельно бедной топливно-воздушной смеси. Образовавшаяся топливно-воздушная смесь по трубопроводу 8 подается в теплосиловую установку или двигатель.
Источники информации, принятые при составлении заявки:
1. Журнал "Промышленный вестник", № 9, 1999, стр.19.
2. Авторское свидетельство СССР № 1341366, F 02 M 27/00, Бюлл. № 3 от 30.09.87.
3. Авторское свидетельство СССР № 1825887, F 02 M 27/04, Бюлл. № 25 от 07.07.93.
4. Патент РФ № 2028491, F 02 M 27/00, Бюлл. № 4 от 9.02.95.
5. Авторское свидетельство СССР № 1384814, F 02 M 27/00, Бюлл. № 12 от 30.03.88 - прототип.
ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ подготовки топливно-воздушной смеси, заключающийся в предварительной обработке перед сгоранием компонентов топливно-воздушной смеси магнитным полем, о т л и ч а ю щ и й с я тем, что предварительно обрабатывают только воздух путем совместного воздействия на него магнитного поля и катализатора, при этом создают такую индукцию магнитного поля, при которой в присутствии катализатора происходит диссоциация на ионы не только молекул кислорода воздуха, но и молекул азота, затем обработанный воздух смешивают с горючим в пропорции, обеспечивающей получение предельно бедной топливно-воздушной смеси, образовавшуюся топливно-воздушную смесь подают для сгорания в теплосиловую установку или двигатель.
2. Устройство подготовки топливно-воздушной смеси, включающее в себя постоянные магниты, образующие магнитные силовые линии, перпендикулярные потоку воздуха, о т л и ч а ю щ е е с я тем, что выполнено в виде плоского цилиндра, имеющего несквозное центральное отверстие, по внешней боковой поверхности цилиндра сделана выемка, соединенная с центральным несквозным отверстием каналами, при этом на внешней стороне выемки напротив друг друга установлены кольцевые постоянные магниты таким образом, что между ними образуется зазор, позволяющий проходить воздуху между магнитами во внутреннюю полость выемки, заполненную катализатором, и, далее, через каналы в центральное несквозное отверстие, к которому подсоединен трубопровод для смешивания обработанного воздуха с горючим и подачи топливно-воздушной смеси в двигатель или теплосиловую установку.
СПОСОБ ПОДГОТОВКИ
ТОПЛИВНО-ВОЗДУШНОЙ СМЕСИ
И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
(р е ф е р а т)
Изобретение относится к энергетике, теплосиловым установкам и двигателям, в том числе, внутреннего сгорания. Достигаемый технический результат - повышение КПД теплосиловых установок и двигателей, снижение концентрации вредных примесей в отработанных газах и снижение гидравлического сопротивления в топливно-воздушном тракте.
Кольцевые магниты 5, установленные в выемке 3 плоского цилиндра 1, образуют магнитные силовые линии 9, идущие через зазор 6 между ними, полость с катализатором 7, и корпус цилиндра 1. Воздух, проходя через зазор 6 подвергается воздействию магнитного поля, образованного магнитами 5, величина индукция которого выбирается такой, чтобы обеспечить диссоциацию как молекул кислорода, так и молекул азота. Для усиления эффекта диссоциации молекул кислорода и азота, внутренняя полость выемки 3 заполнена катализатором 7, изготовленного, например, из платины. Затем диссоциированный воздух (ионы кислорода и азота) поступает в трубопровод 8, куда подают горючее, например, через форсунку 10 в количестве, обеспечивающим образование предельно бедной топливно-воздушной смеси. Образовавшаяся топливно-воздушная смесь по трубопроводу 8 подается в теплосиловую установку или двигатель для сгорания.
1 илл.
СПОСОБ ПОДГОТОВКИ ТОПЛИВНО-ВОЗДУШНОЙ СМЕСИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Фиг. 1
16.2. Устройство для обработки воздуха топливно-воздушной смеси
Заявка 2002124489 от 06.09.2002 F 02 M 27/00
(Получен патент РФ №2229620)
Изобретение относится к энергетике, теплосиловым установкам и двигателям, в том числе, внутреннего сгорания.
Известен способ повышения энергии рабочей среды для двигателей и теплосиловых установок, заключающийся в пропускании через рабочую среду электровозбуждающего импульса, например, магнитного поля, лазерного луча или электрической дуги (Заявка Великобритании № 2241746, F02 G 1/02. Реферативный журнал "Изобретения стран мира", выпуск № 65, №5, 1993, стр 22).
Известно устройство для обработки воздуха в двигателе внутреннего сгорания (ДВС), предназначенное для озонирования воздуха, перед его смешением с топливом, повышения полноты сгорания топлива и снижения токсичности отработанных газов двигателя. Озонирование воздуха достигается движением воздуха навстречу электронному ветру, образующемуся при коронном разряде между двумя электродами (Авторское свидетельство СССР № 1341366, F 02 M 27/00, Бюлл. № 3 от 30.09.87). Недостатком является сложность конструктивного исполнения устройства и необходимость наличия достаточно мощного генератора электрического тока.
Известно, что при воздействии на воздух электрическим или магнитным импульсами, происходит только диссоциация молекул кислорода на отрицательные ионы. При этом диссоциации молекул азота не происходит, так как энергия диссоциации молекул азота в 2 раза выше, чем у кислорода (Авторское свидетельство СССР № 1825887, F 02 M 27/04, Бюлл. № 25 от 07.07.93).
Известно устройство для обработки компонентов топлива с помощью катализаторов, обеспечивающих повышение эффективности сгорания топлива. Устройство содержит герметичный цилиндр с гранулированным катализатором (Патент РФ № 1799429, F 02 M 27/00, Бюлл. № 8 от 28.02.93).
Известно устройство для магнитной обработки топливно-воздушной смеси, состоящее из проточного канала с установленным в нем полым цилиндрическим магнитом, намагниченным в осевом направлении (Авторское свидетельство СССР № 1477929, F 02 M 27/00, Бюлл. № 17 от 07.05.89). Устройство предназначено для повышения экономичности работы двигателя внутреннего сгорания. Однако данное устройство существенно повышает гидравлическое сопротивление в топливно-воздушном тракте.
Известно устройство для обработки компонентов топлива, включающее в себя постоянные магниты и гранулированный катализатор (Патент РФ № 2028491, F 02 M 27/00, Бюлл. № 4 от 9.02.95). Однако, в указанной установке обработке подвергается только топливо, составляющее 3-5% от объема всей топливно-воздушной смеси и не обрабатывается воздух смеси. Более того, установка устройства по обработке топлива на топливном тракте сопровождается повышением гидравлического сопротивления в нем и повышением коррозии топливного тракта за счет более высокой химической активности топлива.
Технический результат, который может быть получен при осуществлении изобретения заключается в повышении экономичности теплосиловых установок и двигателей и снижении концентрации вредных примесей в отработанных газах.
Для достижения данного технического результата, устройство для обработки воздуха топливно-воздушной смеси, включающее в себя постоянные магниты и катализатор, выполнено в виде полого цилиндра с подводящим и отводящим патрубками, внутри которого радиально расположены постоянные магниты, в виде пластин, образующие магнитное поле таким образом, что между ними и внешней боковой стенкой цилиндра существует зазор для свободного прохода воздуха, а другими концами магниты крепятся к отводящему патрубку, введенному в цилиндр, при этом между магнитами размещают катализатор, а введенная в цилиндр часть патрубка имеет отверстия для прохода воздуха.
Введение в устройство для обработки воздуха топливно-воздушной смеси радиально расположенных магнитов, образующих магнитное поле, и катализатора, через который проходят магнитные силовые линии, позволяет получить новое свойство, заключающееся в повышении химической активности воздуха за счет диссоциации молекул не только кислорода, но и азота, составляющих до 80% воздуха, что позволяет сократить расход горючего, повысить эффективность его горения и снизить концентрацию вредных веществ в отработанных газах.
На фиг. 1 изображено устройство для обработки воздуха топливно-воздушной смеси, на фиг.2 - разрез А-А.
Устройство для обработки воздуха топливно-воздушной смеси представляет собой полый цилиндр 1 с подводящим 2 и отводящим 3 патрубками. Внутри цилиндра радиально расположены постоянные магниты таким образом, что между магнитами 4 и внешней боковой стенкой цилиндра 1 существует зазор 5 для свободного прохода воздуха. Другими концами магниты 4 крепятся к отводящему патрубку 3, введенному в цилиндр 1, при этом между магнитами размещают катализатор 6. Введенная в цилиндр 1 часть отводящего патрубка 3 имеет отверстия 7 для прохода воздуха.
Устройство работает следующим образом.
Обрабатываемый воздух по подводящему патрубку 2 подается во внутрь цилиндра 1. Внутри цилиндра 1 через зазоры 5 воздух равномерно распределяется по всему объему цилиндра 1. После этого воздух двигается к введенной в цилиндр 1 части отводящего патрубка 3, проходя между магнитами 4 и сквозь слой катализатора 6. При воздействии на воздух магнитного поля в присутствии катализатора происходит диссоциация молекул не только кислорода, но и азота, составляющих до 80% воздуха, что обеспечивает значительное повышение химической активности обработанного воздуха и более эффективное сгорание топлива. Диссоциированный воздух проходит через отверстия 7 и поступает в отводящий патрубок 3 для последующего образования топливно-воздушной смеси.
Источники информации, принятые при составлении заявки:
1. Заявка Великобритании № 2241746, F02 G 1/02. Реферативный журнал "Изобретения стран мира", выпуск № 65, №5, 1993, стр 22.
2. Авторское свидетельство СССР № 1341366, F 02 M 27/00, Бюл. № 3 от 30.09.87
3. Авторское свидетельство СССР № 1825887, F 02 M 27/04, Бюл. № 25 от 07.07.93
4. Патент РФ № 1799429, F 02 M 27/00, Бюл. № 8 от 28.02.93
5.Авторское свидетельство СССР № 1477929, F 02 M 27/00, Бюл. № 17 от 07.05.89
6. Патент РФ № 2028491, F 02 M 27/00, Бюл. № 4 от 9.02.95 - прототип.
ФОРМУЛА ИЗОБРЕТЕНИЯ
Устройство для обработки воздуха топливно-воздушной смеси, включающее в себя постоянные магниты и катализатор, о т л и ч а ю щ е е с я тем, что выполнено в виде полого цилиндра с подводящим и отводящим патрубками, внутри которого радиально расположены постоянные магниты, в виде пластин, образующие магнитное поле таким образом, что между ними и внешней боковой стенкой цилиндра существует зазор для свободного прохода воздуха, а другими концами магниты крепятся к отводящему патрубку, введенному в цилиндр, при этом между магнитами размещают катализатор, а введенная в цилиндр часть патрубка имеет отверстия для прохода воздуха.
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ВОЗДУХА
ТОПЛИВНО-ВОЗДУШНОЙ СМЕСИ
(р е ф е р а т)
Изобретение относится к энергетике, теплосиловым установкам и двигателям, в том числе, внутреннего сгорания. Достигаемый технический результат - повышение экономичности теплосиловых установок и двигателей и снижение концентрации вредных примесей в отработанных газах.
Обрабатываемый воздух по подводящему патрубку 2 подается во внутрь цилиндра 1. Внутри цилиндра 1 через зазоры 5 воздух равномерно распределяется по всему объему цилиндра 1. После этого воздух двигается к введенной в цилиндр 1 части отводящего патрубка 3, проходя между магнитами 4 и сквозь слой катализатора 6. При воздействии на воздух магнитного поля в присутствии катализатора, происходит диссоциация молекул не только кислорода, но и азота. Диссоциированный воздух проходит через отверстия 7 и поступает в отводящий патрубок 3 для последующего образования топливно-воздушной смеси.
1 илл.
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ВОЗДУХА
ТОПЛИВНО-ВОЗДУШНОЙ СМЕСИ
Фиг. 1
Фиг. 2.
16.3. Способ повышения энергии рабочей среды для получения полезной работы
Патент № 2179649 от 25.07.2000 г.
F 02 G 1/02, F 02 M 27/04
Изобретение относится к энергетике, силовым установкам и двигателям, работающим на горячих газах, и энергоустановкам, использующим теплоту взаимодействий элементарных частиц.
Известны способы получения полезной механической энергии, включающие в себя процессы всасывания рабочей среды, ее сжатия, нагрева и расширения. Нагрев рабочей среды в них осуществляют как за счет непосредственного горения топлива (химической энергии топлива), так и за счет внешней передачи теплоты, когда продукты горения топлива не контактируют с рабочей средой. Данные способы могут быть реализованы как в поршневых, так и в газотурбинных двигателях (Стационарные газотурбинные установки. Справочник под ред. Л.В.Арсеньева. - Л.: "Машиностроение", 1989. - стр.15). Однако, как правило, для нагрева рабочей среды используется дорогостоящее органическое топливо, а продукты сгорания оказывают негативное воздействие на окружающую среду.
Известны паровые энергоустановки, в которых энергию перегретого пара используют для получения полезной механической работы (А.В.Чечеткин, Н.А.Занемонец. Теплотехника. Учеб. Для спец. Вузов. - М.:Высшая школа, 1986.- стр. 301-302). Однако, для получения пара используются традиционные виды топлива и технологии, не отвечающие современным требованиям ресурсосбережения и экологии.
Известен способ повышения энергии рабочей среды в атомных реакторах путем распада, например, урана-235, на элементарные частицы с образованием радиоактивных изотопов (Т.Х.Маргулова Атомные электрические станции. - М.:Высшая школа, 1978.-360 с.). Однако, такой способ экологически опасен для всего живого на Земле.
Известен способ преобразования теплоты в механическую работу и силовая установка для его осуществления, заключающийся в использовании энергии расширения двухкомпонентного рабочего тела: газообразного и предварительно нагретого жидкостного (Патент РФ № 2075599, F 01 K 21/00. Бюл. № 8 от 20.03.97). Однако, для нагревания жидкостного компонента используют теплоту сгорания топлива.
Известно явление ионизации (холодной плазмохимии), при которой с атомов кислорода, азота, аргона и других газов слетают верхние электронные оболочки, образуются ионы и другие активные частицы. Условие для возникновения ионизации определяется температурой около 3000° С и может быть создано за счет электровозбуждающего импульса (Журнал "Промышленный вестник", № 9, 1999, стр.19).
Известен способ обработки топлива двигателей внутреннего сгорания путем введения в него воды, снижения давления в смеси до образования кавитационных пузырьков и повышения давления для их схлопывания. Устройство кавитации для получения кавитационных пузырьков конструктивно представляет собой специально спрофилированные сужения и расширения (Авторское свидетельство № 1254191, F 02 M 27/00. Бюл. № 32 от 30.08.86). Однако, для получения полезной механической энергии в данных двигателях используется дорогостоящее органическое топливо.
Известен способ получения тепловой энергии на основе ядерных реакций, возникающих при схлопывании кавитационных пузырьков воды. Кавитационные пузырьки в жидкости создаются за счет периодически изменяющегося давления в устройстве кавитации, в качестве которого используют "ультразвуковой активатор". В момент "схлопывания" пузырьков их стенки под действием разности давлений ускоряются, приобретают кинетическую энергию и сталкиваются в центре. Величина приобретенной и сконцентрированной в микрозоне энергии оказывается достаточной для разрыва части связей между атомами в молекулах и нуклонами в атомах и осуществления их частичного распада на элементарные частицы, содержащиеся в обрабатываемом веществе. В результате в локальной области вещества в момент исчезновения кавитационного пузырька (схлопывания) происходит ядерная реакция с выделением большого количества тепловой энергии (Патент РФ № 2054604, F 24 J 3/00. Бюл. № 5 от 20.02.96). Однако, выделяющаяся тепловая энергия является низкопотенциальной, что ограничивает возможность ее использования для получения полезной работы. Кроме того, требуется обязательное жидкое состояния вещества (рабочей среды).
Известен способ повышения энергии рабочей среды, заключающийся в воздействии на кавитационную воду катализатора, например, инертного газа - аргона, усиливающего сонолюминисценцию воды в 30 раз (М.А.Маргулис. Звукохимические реакции и сонолюминисценция. - М.:Химия, 1986. - 288 с.). Однако, абсолютный уровень энергии в данном способе - незначительный.
Известен способ повышения энергии рабочей среды для совершения полезной работы, заключающийся во всасывании рабочей среды, ее сжатии, пропускании через сжатую рабочую среду электровозбуждающего импульса (электрической дуги или лазерного луча) с повышением энергии рабочей среды и расширении этой рабочей среды с получением полезной работы. Для реализации данного способа поршневая машина снабжена цилиндром, в верхней части которого расположены впускной и выпускной клапана и электроды, связанные с генератором электрической энергии электрическими цепями, а также поршнем, совершающим возвратно-поступательное движение в цилиндре (Заявка Великобритании № 2241746, F 02 G 1/02. Реферативный журнал "Изобретения стран мира", выпуск № 65, №5, 1993, стр 22). Однако, для ионизации и получения избыточной энергии в рабочей среде (воздухе) необходим достаточно мощный генератор электрической энергии.
Технический результат, который может быть получен при осуществлении изобретения на основе предлагаемого способа повышения энергии рабочей среды заключается в повышении коэффициента полезного действия (КПД) силовых установок и двигателей, работающих на горячих газах и парах, и энергоустановок, использующих энергию взаимодействия элементарных частиц, решении вопросов экологической чистоты перспективных энергетических установок, за счет исключения использования традиционного органического и ядерного топдива, а также, в исключении опасной радиации при течении ядерных реакций путем организации частичного распада вещества, без изменения химических свойств его атомов, которые рекомбинируют в продукты реакции без остатка и образования радиоактивных веществ, и восстановление (малого) дефекта массы рабочей среды в естественных природных условиях.
Для достижения данного технического результата, в предлагаемом способе повышения энергии рабочей среды для получения полезной работы заключающемся во всасывании рабочей среды, ее сжатии, пропускании через рабочую среду электровозбуждающего импульса, расширении рабочей среды с получением полезной работы, используют двухкомпонентную рабочую среду, состоящую из газовой части - воздуха и жидкостной части -воды, при этом всасывание осуществляют в цилиндре поршневой машины путем движения поршня от верхней мертвой точки (ВМТ) до нижней мертвой точки (НМТ) в три этапа, в первом из них, подают начальную порцию воздуха, во второй, расширяют данную порцию воздуха до низкого давления, в третий, подают дополнительную порцию воздуха одновременно с водой, причем воду предварительно обрабатывают в устройстве кавитации с образованием кавитационных пузырьков и насыщают катализатором, затем производят сжатие рабочей среды путем движения поршня от НМТ к ВМТ, приводящее к "схлопыванию" кавитационных пузырьков и нагреву рабочей среды, после этого, на такте расширения (после перехода поршнем ВМТ) через рабочую среду пропускают электровозбуждающий импульс, обеспечивая повышение энергии рабочей среды за счет парообразования жидкостной части и ионизации рабочей среды, подготовленную двухкомпонентную рабочую среду расширяют в цилиндре поршневой машины путем движения поршня от ВМТ к НМТ с получением полезной работы, затем, отработанную рабочую среду выпускают в атмосферу путем движения поршя от НМТ к ВМТ.
Введение в предлагаемый способ повышения энергии рабочей среды для получения полезной работы двухкомпонентной рабочей среды, состоящей из воздуха и воды, которая предварительно обрабатывается в устройстве кавитации с получением кавитационных пузырьков и насыщается катализатором, деление процесса всасывания на три этапа подачи рабочей среды, а также, "схлопывание" кавитационных пузырьков в процессе сжатия рабочей среды с последующим пропусканием через эту среду электровозбуждающего импульса, позволяет получить новое свойство, заключающееся в комбинированном использовании явлений повышения энергии кавитации жидкости путем добавления катализатора, "схлопывания" кавитационных пузырьков и ионизации двухкомпонентной среды посредством электровозбуждающего импульса, обеспечивающих, в целом, повышение энергии рабочей среды путем увеличения давления рабочей среды за счет парообразования жидкостной части и увеличения количества выделяемой теплоты за счет протекания ядерных реакций в рабочей среде в более широком интервале времени, от начала "схлопывания" кавитационных пузырьков до момента электровозбуждающего импульса.
Предлагаемый способ повышения энергии рабочей среды для получения полезной работы может быть осуществлен в любой энергоустановке, например, в поршневом двигателе.
На рис. 1 изображена схема фрагмента поршневой машины, реализующей предлагаемый способ повышения энергии рабочей среды для получения полезной работы.
Поршневая машина для преобразования теплоты в механическую работу, реализующая предлагаемый способ, содержит цилиндр 1, внутри которого расположен поршень 2, выполненный с полусферическим углублением 3 в центре верхней торцевой части. Цилиндр 1 поршневой машины в верхней торцевой части снабжен впускным 4 и выпускным 5 клапанами, а также электродами 6 и 7, связанными электрическими целями 8 и 9 с генератором электрической энергии 10. Цилиндр 1 в боковой поверхности верхней части снабжен форсункой 11, связанной с линией подачи воды 12 через устройство кавитации 13. Электроды 6 и 7 установлены в цилиндре 1 с помощью втулок 14 и 15, выполненных из изолирующего материала.
Предлагаемый способ реализуется в описанной поршневой машине следующим образом.
Такт всасывания рабочей среды осуществляют в три этапа. Первый этап начинают движением поршня 2 вниз от ВМТ. При этом через открытый всасывающий клапан 4 из окружающей среды в цилиндр 1 засасывается воздух (газовая часть рабочей среды). При прохождение примерно третьей части полного хода поршня 2 (от верхней до нижней мертвой точки) прекращается подача воздуха, закрывается клапан 4 и начинается второй этап - расширение воздуха, при этом поршень 2 проходит примерно 2/3 полного хода (от ВМТ до НМТ). На третьем этапе всасывания одновременно подают, через клапан 4, дополнительную порции воздуха из окружающей среды и впрыскивают воду в цилиндр 1, через форсунку 11, при этом воду из линии 12 предварительно обрабатывают в устройстве кавитации 13, в результате чего в ней образуются кавитационные пузырьки и насыщают катализатором (например, аргоном). Предварительное расширение воздуха (второй этап) и катализатор усиливают эффект кавитации подаваемой в цилиндр 1 воды. Третий этап характеризуется образованием двухкомпонентной рабочей среды, состоящей из газовой (воздух) и жидкостной (вода) частей с кавитационными пузырьками.
При достижении НМТ, поршень 2 двигают вверх к ВМТ, начиная процесс сжатия двухкомпонентной рабочей среды. За счет увеличения давления, при движении поршня 2 к ВМТ, в рабочей среде происходит "схлопывание" кавитационных пузырьков, что приводит к частичному разрушению молекул и атомов рабочей среды, началу ядерных реакций с выделением теплоты, а как следствие повышению энергии рабочей среды. Для дальнейшего повышения энергии рабочей среды, на такте расширения, при движении поршня 2 вниз от верхней мертвой точки, производят электрический разряд между электродами 6 и 7, связанных электрическими цепями 8 и 9 с генератором электрической энергии 10. Электрический разряд приводит к парообразованию жидкостной части и дополнительной ядерной реакции, что в целом резко повышает энергию рабочей среды. Электрический разряд происходит в области полусферического углубления 3 поршня 2, что обусловливает образование сплошной зоны ядерной реакции.
Выделившуюся теплоту ядерных реакций и давление от парообразования рабочей среды реализуют в полезную (механическую) работу при расширении рабочей среды и движении поршня 2 от ВМТ к НМТ, организуя, таким образом, третий рабочий такт поршневой машины.
На четвертом такте отработанная рабочая среда выпускается из цилиндра 1 через выпускной клапан 5 при движении поршня 2 от НМТ к ВМТ. Затем цикл поршневой машины повторяется.
Для безопасности работы электроды 6 и 7 установлены в цилиндре 1 с помощью втулок 14, 15, выполненных из изолирующего материала.
Источники информации, принятые при составлении заявки:
1. Стационарные газотурбинные установки. Справочник под ред. Л.В.Арсеньева. - Л.: "Машиностроение", 1989. - стр.15.
2. А.В.Чечеткин, Н.А.Занемонец. Теплотехника. Учеб. Для спец. Вузов.-М.:Высшая школа, 1986.- стр. 301-302.
3. Т.Х.Маргулова. Атомные электрические станции. - М.:Высшая школа, 1978. - 360 с.
4. Патент РФ № 2075599, F 01 K 21/00. Бюл. № 8 от 20.03.97.
5. Журнал "Промышленный вестник", № 9, 1999, стр.19.
6. Авторское свидетельство № 1254191, F 02 M 27/00. Бюл. № 32 от 30.08.86.
7. Патент РФ № 2054604, F 24 J 3/00. Бюл. № 5 от 20.02.96.
8. М.А.Маргулис. Звукохимические реакции и сонолюминисценция. - М.:Химия, 1986. - 288 с.).
9. Заявка Великобритании № 2241746, F 02 G 1/02. Реферативный журнал "Изобретения стран мира", выпуск № 65, №5, 1993, стр 22 - прототип.
ФОРМУЛА ИЗОБРЕТЕНИЯ
Способ повышения энергии рабочей среды для получения полезной работы, заключающийся во всасывании рабочей среды, ее сжатии, пропускании через рабочую среду электровозбуждающго импульса, расширении рабочей среды с получением полезной работы, о т л и ч а ю щ и й с я тем, что всасывание рабочей среды, состоящей из газовой части - воздуха и жидкостной части -воды, осуществляют в три этапа, в первом из них, подают начальную порцию воздуха, во второй, расширяют данную порцию воздуха до низкого давления, в третий, подают дополнительную порцию воздуха одновременно с водой, причем воду предварительно насыщают катализатором и обрабатывают в устройстве кавитации с образованием кавитационных пузырьков, затем производят сжатие рабочей среды, приводящее к "схлопыванию" кавитационных пузырьков и нагреву рабочей среды, после этого, на такте расширения через рабочую среду пропускают электровозбуждающий импульс, обеспечивая повышение энергии рабочей среды за счет ее ионизации и парообразования жидкостной части, причем после расширения, рабочую среду выпускают в атмосферу.
СПОСОБ ПОВЫШЕНИЯ ЭНЕРГИИ РАБОЧЕЙ СРЕДЫ ДЛЯ ПОЛУЧЕНИЯ ПОЛЕЗНОЙ РАБОТЫ
(р е ф е р а т)
Изобретение относится к энергетике, силовым установкам и двигателям, работающим на горячих газах. Достигаемый технический результат - повышение КПД данных установок и двигателей, решение вопросов экологической чистоты перспективных энергетических установок.
Всасывание рабочей среды осуществляется в три этапа, сначала, при движении поршня 2 от ВМТ, через всасывающий клапан 4 из окружающей среды в цилиндр 1 засасывается воздух, затем, воздух расширяется, а на третьем этапе, одновременно подается дополнительная порция воздуха и вода, через форсунку 11, предварительно обработанная в устройстве кавитации 13, в результате чего в ней образованы кавитационные пузырьки, и насыщенная катализатором. При движении от НМТ, поршень 2 сжимает двухкомпонентную рабочую среду, что приводит к "схлопыванию" кавитационных пузырьков, с выделением теплоты. Для дальнейшего повышения энергии рабочей среды, на такте расширения, при движении поршня 2 вниз от ВМТ, производят электрический разряд между электродами 6 и 7, связанных электрическими цепями 8 и 9 с генератором электрической энергии 10. Электрический разряд приводит к резкому повышению энергии рабочей среды Выделившаяся теплота ядерных реакций рабочей среды и давление от парообразования реализуются в механическую работу при расширении рабочей среды. Затем отработанная рабочая среда выпускается через клапан 5 в окружающую среду и цикл повторяется.
1 илл.
СПОСОБ ПОВЫШЕНИЯ ЭНЕРГИИ РАБОЧЕЙ СРЕДЫ ДЛЯ ПОЛУЧЕНИЯ ПОЛЕЗНОЙ РАБОТЫ
Рис.1
Заключение
Итак, завершена трилогия о естественной энергетике - энергетике XXI века. Оказывается, человечество страдает от дефицита энергии и связанного с ней экологического беспорядка при изобилии энергии, аккумулированной в веществе и в окружающем пространстве. На основе новой, гиперчастотной, физики и прикладных разработок по бестопливной энергетике удалось в сравнительно короткий срок реализовать практически, на автомобильных двигателях, автотермический режим горения воздуха без расходования органического или другого вида топлива.
Традиционная наука, в первую очередь - физика, не допускает даже возможности создания "вечного" двигателя. А мы на нем уже давно ездим. Да и двигатель обычный, без изменений конструкции, и даже без изменения самого процесса энерговыделения (фазовый переход высшего рода - ФПВР), физический механизм которого до сих пор не знали. В кратком заключении снова всего не объяснишь - для этого нужно прочесть и проработать все три книги трилогии. Но некоторые моменты необходимо еще раз напомнить и подчеркнуть. И в первую очередь даже не то, что "научили" двигатель работать в бестопливном режиме, а то, что изъятие топлива как излишнего компонента горения улучшает экологию, оставляя все то хорошее, что было присуще обычному горению, в том числе отсутствие радиации, и добавляя новое положительное: отсутствие СО2 и СО; чистые выхлопные газы; решение топливной проблемы...
Использование естественной природной энергии, запасенной, в частности, в кислороде, как и при обычном горении, происходит очень экономно, за счет всего лишь одной стомиллионной доли его массы, которая восполняется в природных условиях, как и было до сих пор. Так что и в этом смысле экология сохраняется абсолютно.
Развитие естественной энергетики, исключающей использование органического и ядерного топлива, экологически опасных для человечества, надеюсь, позволит обеспечить людей светом, теплом, электричеством в изобилии повсеместно, в том числе, в холодных северных районах, при минимальных затратах и ущербе для природы.
Литература:
1. Андреев Е.И. и др. Естественная энергетика. - СПб: Нестор, 2000.
2. Андреев Е.И. и др. Естественная энергетика-2. - СПб: Невская жемчужина, 2002.
3. Андреев Е.И. Расчет тепло- и массообмена в контактных аппаратах. - Л.: Энергоатомиздат, 1985.
4. Андреев Е.И. Механизм тепломассообмена газа с жидкостью. - Л.: Энергоатомиздат, 1990.
5. Базиев Д.Х. Основы единой теории физики. - М.: Педагогика, 1994.
6. Базиев Д.Х. Электричество Земли. - М.: Коммерческие технологии, 1997.
7. Базиев Д.Х. Заряд и масса фотона. - М.: Педагогика, 2001
8. Чистов А.В. Способ получения энергии. Положительное решение о выдаче патента на изобретение по заявке 94010375 от 24.03.94.
9. Журнал "Парадокс", № 9, 2002.
РАЗДЕЛ ЧЕТВЕРТЫЙ
ГОРЕНИЕ
1. Природные процессы
бестопливной энергетики
В традиционной энергетике применяют органическое и ядерное топливо в процессах расщепления, а также такую возобновляемую природой энергию как гидравлическую, ветровую, солнечную, получаемую в процессах перетока используемых сред от большего потенциала к меньшему.
В нетрадиционной бестопливной энергетике уже применяют или еще будут применять следующие известные в настоящее время процессы получения энергии, которая постоянно возобновляется природой в естественных условиях:
- малодефектное расщепление веществ с сохранением их химических свойств, в том числе, в первую очередь, наиболее распространенных и доступных - воздуха и воды;
- резонансный энергообмен с окружающей средой путем перетока элементарных частиц - электрино;
- магнитное воздействие;
- электретное воздействие /26/;
- самовращение под действием кориолисовых сил;
- разгон звуковой волны в любой среде, в том числе в эфире (электринном газе).
Как видно, природных энергетических процессов не так много: всего шесть процессов, которые можно использовать для получения даровой энергии за счет природы. Большая часть их рассмотрена в книгах /1,2,3/. Однако, это направление новой энергетики настолько быстро развивается, что в настоящем разделе будут изложены дополнения к предыдущим и освещены неохваченные ранее процессы и энергоустановки.
ЧАСТЬ ПЕРВАЯ
ГОРЕНИЕ ЭФИРА
2. Физический механизм энергообмена
Известно, что нет процессов монотонных, а есть только колебательные процессы. Основной причиной колебаний среды и параметров обменных процессов является запирание, экранирование, меньшего потенциала средой, пришедшей от большего потенциала.
Движущей силой любого обменного процесса является разность потенциалов или концентраций вещества и энергии. Порция вещества, пришедшая от большей концентрации в зону с меньшей концентрацией увеличивает концентрацию в ней (локально) и тем самым уменьшает разность концентраций (движущую силу процесса) так, что обмен прекращается. Затем происходит выравнивание потенциала в локальной зоне путем диффузии и других взаимодействий пришедшей порции с окружающей средой. Уменьшение потенциала снова создает условия (наличие движущей силы равно разности потенциалов) для движения новой порции среды от большей концентрации к меньшей, то есть - начала новой фазы колебательного процесса.
Применительно к тепломассообмену при испарении и конденсации жидкости этот физический механизм был описан и изучен в /6/. Измерения колебания температуры в пограничном слое воздуха при испарении воды с ее поверхности при комнатной температуре и давлении показали, что частота колебаний составляет 1/8 Гц, то есть - одно колебание за 8 секунд.
Надо еще учесть, что импульсное движение любой среды всегда сопровождается разгоном звуковой волны в ней от начальной скорости импульса до скорости звука и движением волны между границами зоны с большим и меньшим потенциалами. То есть обменное движение порции среды тоже не бывает монотонным, а сопровождается звуковой волной, движущейся со скоростью звука, что значительно превосходит скорость потока самой порции и имеет ударный, взрывной, характер с повышенным давлением на фронте волны и разрежением за ним (обратной волной). Этот фактор (волна) усиливает колебания среды в обменном процессе.
Электринный газ (эфир) как совокупность мелких элементарных частиц - электрино, имеющих положительный электрический заряд, распространен в любом веществе - твердом, жидком, газообразном, а также - в космосе. Как в любой среде, в эфире также происходят обменные процессы по общим правилам природы: от большей концентрации (потенциала) к меньшей; импульсно; импульс сопровождается звуковой или ударной (взрывной) волной. Надо обратить внимание, что скорости движения электрино (до 1030 м/с) и тем более их звуковые скорости на десятки порядков больше скоростей среды и звука в веществе. Поэтому обменные процессы в эфире более могучие, например, молния, которая сопровождается световым излучением (скорость света ~3?108 м/с) и акустическим излучением (скорость звука ~3?102 м/с), а также перетоком электрино в электрическом разряде с указанной выше скоростью, ударной и звуковой волной со скоростью близкой к бесконечности.
Рассмотрим физический механизм энергообмена между электрическим проводником и окружающей средой. Это один из важнейших процессов, в результате которого обеспечивается генерация электрической энергии за счет ее подкачки из окружающей среды, которым занимались Тесла и многие другие исследователи - новаторы, но который так и не нашел объяснения и применения до сего времени в промышленных энергоустановках. Не нашел применения именно из-за того, что был неизвестен физический механизм энергообмена проводника с окружающей средой, а формальные теории (резонансных контуров и т.д.) не дают должной информации не только для конструирования промышленных энергоустановок, но и для постановки исчерпывающих научных исследований как теоретических, так и экспериментальных.
Конечно, когда проводник обесточен и не подвергается никаким другим воздействиям, то никакого энергообмена с генерацией электрического тока в нем нет, хотя энергообмен (без генерации), как и всякого вещества, с окружающей средой есть. Он описан в главе "Основа жизни и работы энергоустановок". В проводнике без электрического тока всегда есть стоячий вихрь электрино, обращающихся вокруг проводника. Он вызван отрицательным избыточным зарядом металла, притягивающим частицы - электрино противоположного заряда. Но они не падают на него, так как, приблизившись встречают поля положительного заряда вещества металла, которые занимают 99,9% площади поверхности проводника, и, в силу отталкивания одноименных зарядов, заставляют электрино зависать на некоторой высоте над поверхностью проводника в положении неустойчивого равновесия, которое от внешнего асимметричного влияния нарушается, и электрино начинает вращаться вокруг проводника. Колебания атомов кристаллической решетки вещества проводника и колебания вихрей электрино вокруг атомов, поддерживающих энергией атомы и кристаллы в целом путем энергообмена с окружающей средой, как описано в /2/, сопровождаются перетоком электрино и волн эфира из окружающей среды в проводник и обратно.
В проводнике с переменным электрическим током создаются дополнительные условия, а именно:
1) разность потенциалов для поступательного движения тока (вихря электрино) вдоль проводника;
2) повышенное напряжение (концентрация электрино в вихре);
3) отбор части электрино потребителем энергии;
4) возврат оставшейся части электрино к генератору;
5) рассеяние электрино путем столкновительного взаимодействия на проводнике (электрическое сопротивление) и на потребителе (потребляемая мощность);
6) периоды времени с нулевым значением тока при перемене его направления (пересечение оси синусоидой тока) или при прекращении импульса, если ток импульсный.
Последнее условие является решающим для обеспечения подкачки энергией из окружающего пространства с электринным газом. При нулевой концентрации тока на проводнике по условию 6 из окружающей среды под действием движущей силы (разности концентраций электрино, равной разности потенциалов) порция электрино отправляется от большей концентрации к меньшей, к проводнику, и образует вокруг него стоячий вихрь, который потом соединяется с первичным током. Это и есть подкачка энергией проводника с током из окружающей среды.
Как видно, подкачка есть при любой частоте первичного тока, в том числе, при промышленной частоте 50 Гц, но она настолько незначительна, что не ощущается практически. Назовем ток подкачки вторичным, так как он накладывается на первичный и без него не бывает. Даже в краткий период времени около нулевой концентрации электрино на проводнике вторичный ток не является постоянным, монотонным. За первой порцией электрино из окружающего пространства следует вторая, третья... миллионная и т.д., наполняя стоячий вихрь частицами - электрино импульсно, многократной подкачкой за малый промежуток времени. То есть вторичный ток является высокочастотным, и его частота ? и есть собственная частота электрического контура, которая зависит от его электрических параметров. Традиционно собственную частоту определяют как из условий равенства реактивных сопротивлений. Однако, например, при L > 0 частота стремится к бесконечности при индуктивном сопротивлении ?L>0, хотя емкостное сопротивление не равно нулю , как этого требует традиционная формула.
С каждой порцией электрино идет эфирная звуковая или ударная волна, способствующая энергообмену.
С повышением собственной частоты контура существенно увеличивается количество периодов времени с нулевым потенциалом на проводнике. По сравнению с промышленной частотой увеличение количества подкачек энергии возрастает для мегагерцев, соответственно, на 6 порядков; для гигагерцев - на 9 порядков; для терагерцев - на 12 порядков. Это очень большое увеличение энергии. Эти частоты называют резонансными, в том смысле, что их можно получить при совпадении частоты задатчика тока (импульсного генератора или электрической сети) с собственной частотой контура. Последняя подстраивается изменением индуктивности и емкости электрической цепи. При резонансных частотах наблюдается наибольшие амплитуды тока и (или) напряжения, которые могут превышать амплитуды первичного тока (напряжения) задатчика. Это и есть процесс подкачки энергии из окружающей среды. Изъятие из среды энергичных электрино и эквивалентный выброс "обессиленных" электрино понижает температуру окружающей среды (воздуха), по данным информационных источников, на 8...200С. Этот недостаток энергии (тепла, температуры) впоследствии восполняется самой средой, в конечном итоге, за счет притока нейтрино (скоростные электрино) от Солнца.
3. Секреты Тесла
Тесла известен как один из первых новаторов - исследователей, получавших энергию окружающей среды (свободную энергию) успешно и в больших количествах. О своих изысканиях Тесла публиковал открытые статьи и патенты. В них он объяснял получение энергии извне тем, что в своих устройствах создавал потенциалы ниже потенциалов энергии окружающей среды. Для непонятливых пояснял это аналогией с гидравлическим напором, под действием которого вода движется от большего давления (концентрации энергии или высоты) к меньшему. Никаких других объяснений у него нет: ни понятия о свободной энергии, ее составе структуре, движении, параметрах, принципе перехода из окружающей среды к потребителю, физическом механизме процессов. Видимо, он этого просто не знал, так как, судя по его публикациям, никаких секретов не делал.
Одним из основных устройств является трансформатор Тесла /11/. Первичная обмотка выполнена из толстого провода спиральной и бифилярной. Бифилярность дает встречную намотку: один виток в одну сторону, другой тут же навстречу. Это аналогично, например, способу Болотова /12/, который использовал две катушки, включенные встречно для того, чтобы индуктивность стремилась к нулю (L?0), а собственная частота к бесконечности (???).
Поскольку в соседних парных проводниках бифилярной обмотки электрические токи направлены встречно, то электрино на своих орбитах между проводами имеют одинаковое направление движения (попутное). Отталкиваясь друг от друга как одноименные электрические заряды, они смещают свои орбиты, освобождая пространство между проводами и оказывая на них отталкивающее воздействие (говорят: провода отталкиваются, но их отталкивают заряды). В свободном пространстве между парными проводниками бифилярной обмотки заряды - носители электрического тока как бы прижаты к своим проводникам и их орбиты не пересекаются друг с другом. Это и есть то самое состояние, когда индуктивность (взаимное возбуждение, наводка, паразитные токи) стремится к нулю или равна нулю.
Совсем другое состояние будет при обычной послойной намотке проводов. Токи в них имеют одно направление, а электрино на своих орбитах между соседними проводами направлены встречно, орбиты их пересекаются друг с другом. Наружные электрино имеют направление обращения по своим орбитам, совпадающее с их общим контуром циркуляции вокруг этих двух проводов, поэтому образуется общий контур вокруг пары проводов. Общие контуры циркуляции вокруг пар проводов объединяются в общий контур циркуляции вокруг всей обмотки. Эти общие контуры оказывают сжимающее действие на провода (говорят: провода притягиваются). Заряды - носители электрического тока вследствие пересечения их орбит между проводами внутри обмотки образуют паразитные токи: индуктивность стремится к конечной величине.
Известно, что Тесла делал опыты, например, при частоте 160 кГц, а Болотов - при 300 МГц, что уже близко к частоте колебаний атомов и резонансу с ними. Форма плоской спирали бифилярной первичной обмотки объясняется тем, что при обычной послойной намотке практически невозможно конструктивно сделать ее бифилярной. Да еще чисто электрически при этом эффект L?0 вряд ли получится из-за взаимного влияния разных соседних витков.
Вторичная обмотка трансформатора Теслы многовитковая высоковольтная с послойной намоткой провода, размещается внутри первичной, без магнитного сердечника. Контур цепи включает в себя индуктивность, емкость, нагрузку и разрядник. Разрядник всегда нужен был для Теслы как прибор для облегчения настройки в резонанс, так как разрядник обладает широкополосным спектром частот и какая-нибудь частота да попадет в нужный диапазон частоты резонанса. Высокие частоты, напряжения, амплитуды, резонанс обеспечивали прием энергии из внешней среды. При некоторых параметрах электрический ток, напряжение и мощность достигали таких значений, что обеспечивали потребителя полностью, да еще оставалось для передачи энергии взаимной индукцией и взаимосвязанным резонансом в первичную обмотку (обратный ток). В этом случае трансформатор мог работать автономно на собственной частоте контура и питать потребителя электроэнергией.
Возможно, такая же схема или близкая к ней была применена на электромобиле Тесла.
Как видно, не у Теслы были секреты, а у природы и он их не ведал.
Из-за отсутствия теории процессов незнание продолжается и в настоящее время. Так, при ближайшем рассмотрении оказалось, что в системе зажигания автомобильных двигателей применяется схема Теслы, обеспечивающая 20-кратное увеличение энергии искры за счет подпитки из окружающей среды. Но никто об этом даже не догадывается, несмотря на то, что системы зажигания известны уже более века, тиражируются многомиллионными тиражами и состоят из элементов, характерных для схемы Теслы: трансформатор (индукционная катушка), прерыватель и разрядник (свеча зажигания).
Излагаемая в книге теория естественной энергетики позволяет не только раскрыть "секреты" Теслы, но и найти пути практического использования неизвестных ранее природных источников неограниченной и экологически чистой энергии.
4. Электрические машины - генераторы избыточной электрической энергии
4.1. Электрические трансформаторы
Описанный выше принцип работы трансформатора (Тесла) с использованием энергии окружающей среды в виде импульсного высокочастотного перетока электрино подходит также для обычных промышленных трансформаторов с сердечником из электротехнической стали.
А. Чернетский /13/ проводил опыты на обычном трансформаторе без изменения его конструкции, но с включением в контур конденсаторов и разрядника. При этом удалось получить избыточную электрическую мощность в 10...15 раз выше первичной, затраченной. В одном случае вследствие обратного тока вышел из строя трансформатор на промышленной подстанции.
В Оренбурге на одном из предприятий были переоборудованы серийные трехфазные трансформаторы ТМ-40 10/0,4 кВ так, что стали потреблять из сети в 10 раз меньше электроэнергии при той же, номинальной (40 кВт), мощности, выдаваемой потребителю /14/. Вторичные обмотки были сняты и заменены на пластинчатые спиральные, состоящие из трех частей пластинчатых спиралей, соединенных последовательно по три на каждой фазе. Общее количество витков алюминиевой пластины шириной 120 мм и толщиной 0,3 мм и сечение было таким же, как у проводов вторичной обмотки (соответственно: 106 витков и 32 мм2). Можно применять также медную, латунную ленту. Размер ленты и количество частей обмотки на фазе были подобраны не сразу, а с третьей попытки экспериментально. Геологу Кулдошину И.П. на трансформаторе малой мощности также удалось добиться коэффициента избыточной мощности, равного трем. На выставке "Архимед-2002" демонстрировался "Тепловой трансформатор для подогревания воды" из Хорватии (Rijeka, тел. 00 385 51 212 657) с коэффициентом избыточной электрической мощности, равным 10. В нем внутри короткозамкнутой вторичной обмотки вставлена трубка для прохода и нагрева воды.
4.2. Электрические генераторы
Электрические генераторы, обладая индуктивностью также могут выдавать избыточную мощность, затраченную на их привод. Туканов А.С. проводил опыт с включением разрядника в обычную бытовую электросеть с сильно пониженным напряжением, питаемую от дизель - генератора. При установлении вручную дугового разряда лампочка мощностью 500 Вт сильно вспыхивала и давала яркий свет, а электронагреватель (дополнительная нагрузка) тоже нагревался до высокой температуры.
4.3. Электрические двигатели
При включении в электросеть электродвигателя (индуктивность) и специально подобранных конденсаторов (емкость) Мельниченко /15/ удавалось получить в 10...15 раз большую мощность на валу двигателя, чем потребляемую из сети. Были исследованы много типов двигателей, выдававших избыточную мощность.
Естественно, что отобрав часть мощности от трансформатора, генератора, двигателя, можно заставить их работать в автономном режиме без внешнего источника электроэнергии. Примером реализации может быть электромобиль Тили /16/ с электродвигателем, работающим автономно.
При работе трансформаторов, генераторов, двигателей в электросети с промышленной частотой 50 Гц, выдающих потребителю избыточную мощность, на синусоиду промышленного тока (напряжения) должна накладываться высокочастотная составляющая тока (напряжения) подкачки энергии из окружающей среды. Влияние этих излучений на людей и технику не изучено. Поэтому к таким опытам следует относиться с осторожностью, в перспективе необходимо изучить процессы и разработать меры безопасности при эксплуатации указанных электроустановок.
4.4. Электрогенераторы на постоянных магнитах
Ряд магнитных электрогенераторов (МЭГ) были уже описаны в /2/: генераторы Серла, Рощина-Година, Флойда. Все они не только выдавали избыточную энергию, но и работали автономно. Есть возможность познакомиться с магнитным генератором Бердена, выполненным внешне в виде трансформатора. Описание патента с переводом смысловой части дано ниже /17/.
Недавний прогресс в магнитных материалах, которые особенно описаны в книге R.C. O'Handley (Современные магнитные материалы. Принципы и применения. - Нью-Йорк, изд. J.Wiley и сыновья, с.456-468), обеспечивает получение нанокристаллических магнитных сплавов, которые хорошо подходят для режимов работы с быстрым переключением магнитного потока. Эти сплавы составлены из кристалликов, каждый из которых имеет по крайней мере хотя бы одно измерение в несколько нанометров. Нанокристаллические материалы могут быть созданы на основе спекаемых аморфных сплавов, в которые добавляют такие нерастворимые элементы, как медь для увеличения массы зерен, и - стойкие тугоплавкие материалы такие, как ниобий и карбид тантала чтобы ограничить рост зерен. Основной объем сплавов занимают беспорядочно распределенные кристаллики размером около 2 нанометров. Эти кристаллики вырастают из аморфной фазы с нерастворимыми элементами, нетронутыми в течение процесса кристаллизации. Каждый кристаллик (зерно, порошинка) является однодоменной структурой. Оставшийся объем нанокристаллического сплава состоит из аморфной фазы в форме границ зерна, имеющих толщину около 1 нанометра.
Магнитные материалы, имеющие особенно полезные свойства сформированы из аморфного сплава Со-Nb-В (кобальт-ниобий-бор), имеющего почти нулевую магнитострикцию, относительно сильное намагничивание, механическую прочность и стойкость к коррозии. В процессе отжига материалов может быть изменен размер зерен и повышена коэрцитивная сила. Осаждение нанокристалликов также улучшает характеристики работы аморфных сплавов на переменных режимах.
Другие магнитные материалы, сформированные на основе богатых железом аморфных и нанокристаллических сплавов, показывают более сильное намагничивание, чем сплавы на основе кобальта, например, сплав Fe-B-Si-Nb-Cu (железо-бор-кремнии-ниобий-медь). В то время как проводимость богатых железом аморфных сплавов ограничена относительно высоким уровнем магнитострикции формирование нанокристаллического материала из такого аморфного сплава уменьшает уровень магнитострикции, облегчая намагничивание.
Прогресс был достигнут также в создании постоянных магнитов, особенно - из редкоземельных металлов. Такие материалы, включающие SmCo5, имеют наиболее высокое сопротивление размагничиванию из известных. Другие материалы сделаны, например, с использованием комбинации железа, неодима и бора.
Ярмо трансформатора - генератора выполнено из постояннго магнитного материала в виде ярма для трехфазного трансформатора. На крайние сердечники намотаны силовые катушки (обмотки). Из среднего сердечника постоянный магнитный поток разветвляется влево и вправо по магнитопроводам ярма, включая крайние сердечники, и замыкается снова на средний. Слева и справа от среднего сердечника на магнитопроводы намотаны катушки управления. Переключая их поочередно создают магнитный противоток основному потоку, ударную магнитную волну с частотой 87,5 кГц, которая взаимодействует с электринным газом окружающей среды и обеспечивает их переток в силовые обмотки, то есть подкачку энергии извне. Генератор работает автономно. К серийному выпуску по заявлению Бердена подготовлен генератор мощностью 2,5 кВт.
Реализуя изложенные выше принципы генерации мощного магнитного потока с помощью звуковых и ударных волн в нем, можно построить промышленные магнитные электрогенераторы и двигатели, работающие автономно (без привода и электропитания).
5. Физический механизм создания
звуковых и ударных волн
Традиционная физика никак не объясняет возникновение звуковых волн и их разгон от малой скорости движения источника звука до полной скорости звука, которая несоизмерима с первой, так как превышает ее на 2...3 порядка. Первым этот механизм попытался объяснить Д.Х. Базиев /10/. Ниже дано авторское представление об указанном механизме с учетом анализа /10/.
При взаимодействии ударных осцилляторов источника колебаний с осцилляторами среды происходит деформация их глобул. Из сферических (при равномерном со всех сторон взаимодействии с соседями) они становятся выпукло-вогнутыми телами вращения, похожими, например, на каплю жидкости деформированную гравитацией. Такая глобула (среда) имеет вогнутую поверхность (лунку) со стороны силового воздействия соседней молекулы - осциллятора и - выпуклую поверхность - с другой. За счет большей скорости, полученной из-за искусственного насильственного сокращения критического расстояния, молекула - мишень, например газа, в глобуле развивает давление больше, чем в невозмущенном состоянии. Размер глобул уменьшается при сжатии их ударными молекулами - снарядами, что приводит к уплотнению среды в ударной звуковой волне.
На фронте волны деформированные глобулы молекул среды образуют совокупность (цепочки) как бы вставленных друг в друга тел, выпуклости которых входят в вогнутости впереди стоящих (по ходу волны).
Скорость молекул в глобулах начинает увеличиваться сначала в первом ряду, граничащем со стенкой источника колебаний, молекулы - снаряды которой взаимодействуют с молекулами - мишенями этого, первого, ряда. Затем таким же образом молекулы первого ряда, становясь снарядами, действуют на молекулы - мишени второго ряда и т.д. Возникает ударная звуковая волна, которая движется в сторону, определенную действием источника звука - малых возмущений.
Важно, что молекулы в своих глобулах только передают это возмущение в среде, но сами глобулы остаются как бы неподвижными. Задние активированные молекулы подталкивают (электродинамически) передние неактивированные и далее по цепочке вперед. Отдав свою энергию, задние молекулы остаются в среде в своей глобуле, которая не бежит за волной, а остается в неподвижной части газа.
На фронте волны давление повышенное, за волной - разрежение обусловленное взаимодействием компактного уплотнения деформированных глобул молекул на фронте волны с молекулами неподвижной части среды позади волны, которые не успевают возвратиться мгновенно. Это приводит в ряде случаев к разрыву сплошности среды. В эту зону пониженного давления подтягиваются глобулы с молекулами из неподвижной части окружающей среды, включая дезактивированные, в то время как само возмущение (волна) уходит вперед. Волна уходит в заданном источником звука направлении, а глобулы практически остаются на месте. В то же время молекулы в них движутся с повышенной скоростью и взаимодействуют с соседями с большими силами и ускорениями, практически в вакууме.
Отсутствие сопротивления способствует прохождению волны на большие расстояния. Расширение фронта волны способствует ее затуханию.
Итак, звуковая волна как возмущение (изменение давления, температуры и плотности среды) идет в заданном источником звука направлении за счет ударного действия задних активированных молекул по передним. Причем глобулы, внутри которых движутся и те и другие молекулы, остаются на своих местах, но испытывают деформации.
Значение разрежения за звуковой волной зависит от первоначального значения давления невозмущенной среды. В зоне разрежения звуковой волны разрыв сплошности среды (жидкости) идет с образованием полости - каверны. Кавитация при этом имеет локальный характер, как правило, в пучностях стоячих, например, ультразвуковых волн, и, как видно, ограничена первоначальным давлением. Видимо, поэтому в ультразвуковых установках жидкость при кавитации не нагревается: слабы условия для разрушения молекул на атомы и свободные электроны. А к условиям относятся: разрежение, частота и амплитуда колебаний. В звуковой волне они не позволяют образовываться крупным кавитационным пузырькам, схлопывание которых приводило бы к высоким давлениям, температурам, разрушению молекул. А если нет разрушения, то нет и ФПВР как процесса энерговыделения. Кстати и смешивания, например, топлива и воды без их последующего расслоения в ультразвуковых ваннах тоже не происходит. Ультразвук никогда не даст ожидаемого эффекта нагревания и смешивания.
В то же время смешивание без расслоения происходит в устройствах с большой амплитудой и принудительным понижением давления всего объема среды. Энерговыделение происходит тоже при резком перепаде давления с большего на меньшее. Это вызвано тем, что активированные на фронте волны молекулы, попадая в зону разрежения лопаются под действием разности большого давления внутри них и малого давления вне их. Кроме того, этот перепад давления вызывает звуковую и ударную волны.
Таким требованиям отвечает цилиндр двс. В нем поршень производит снижение давления среды, звуковые волны, дающие возможность наряду с другими воздействиями (электрический разряд, температура, катализ...) разрушить молекулы кислорода и азота на атомы, фрагменты и свободные электроны, необходимые для возникновения процесса ФПВР как энерговыделения.
Именно поэтому, наверно, двигатели внутреннего сгорания первыми вышли на автотермический бестопливный режим работы.
5.1. Алгоритм и пример расчета
параметров звуковой волны
Исходные данные /10/:
R=5?10-3 м - радиус цилиндрического стержня генератора звука;
?=6,5?103 с-1 - частота колебаний стержня;
А=8,64?10-5 м - амплитуда колебаний стержня;
Р0=1,03?105 Па - давление воздуха;
Т0=273 К (00С) - температура воздуха;
с0=331,8 м/с - измеренная в опыте скорость звука;
mв=4,81?10-26 кг - масса среднего осциллятора воздуха;
?в=1,293 кг/м3 - плотность воздуха;
v0=4,71?104 м/с - линейная скорость осциллятора воздуха;
h=6,63?10-34 - постоянная Планка;
h=4,11?10-34 - постоянная Герца h=h/а;
- коэффициент сферичности глобулы;
kв=1,38?10-23 Дж/К - постоянная Больцмана (для воздуха);
u0=1,03 м/с - скорость блуждания глобулы воздуха;
f0=5,8?1011 с-1 - частота колебаний осцилляторов воздуха.
Последовательность вычислений:
1. Полный путь кромки стержня за один цикл колебания
L=2А=2?8,64?10-5=17,28?10-5 м
2. Скорость (средняя) кромки стержня
v=L??=17,28?10-5?6,5?103=1,12 м/с
3. Площадь торцевой поверхности стержня
S=?R2=??(5?10-3)2=7,85?10-5 м2
4. Время набора скорости от нулевой до максимальной (среднее время прохождения пути А/2 со средней скоростью)
5. Объем одной глобулы
Vг=mв/?в=3,72?10-26 м3
6. Диаметр глобулы, занимаемой осциллятором воздуха
dг=(6Vг/?)1/3=4,14?10-9 м
7. Объем деформированного стержнем воздуха на участке разгона А/2
V1=S ? А/2=3,39?10-9 м3
8. Число слоев глобул, смещенных стержнем
9. Число смещенных глобул
nг=V1/Vг=9,12?1016
10. Суммарное число глобул после смещения в объеме V1 воздуха над стержнем (в уплотненном слое)
nV1=2nг
11. Объем одной глобулы в уплотненном слое
Vг1=Vг/2=1,86?10-26 м3
12. Диаметр глобулы в уплотнении
dг1=(6Vг1/?)1/3=3,29?10-9 м
13. Амплитуда колебания осциллятора в уплотненной глобуле
А1?dг1=3,29?10-9 м
14. Линейная скорость всех осцилляторов в уплотнении
v1=v0+c0=4,71?104+331,8=4,74?104 м/с
15. Частота колебания осцилляторов в уплотнении