<< Пред.           стр. 9 (из 13)           След. >>

Список литературы по разделу

 94 Hirshleifer, Jack (1995), Anarchy and its Breakdown, 103 Journal of Political Economy, 26.
 95 Gluckman, Max (1956), Custom and Conflict in Africa, Oxford: Basil Blackwell.
 96 Posner, Richard A. (1980), A Theory of Primitive Society, with Special Reference to Law, 23 Jour
 nal of Law and Economics, 1-53.
 180
 
 ние, которое легче обеспечить не по одиночке, а всей группой. Поэтому в таких группах и возникают институты взаимного страхования, включающие в себя распределение внутри группы излишков урожая, приношение даров, брачные и родственные правила и другие институты, способствовавшие относительному выравниванию богатства у всех членов сообщества.
 Наконец, Амбек, исследовавший в своих работах механизмы формирования и поддержания прав собственности во время калифорнийской "золотой лихорадки"97, выделил в качестве еще одного необходимого условия жизнеспособности безгосударственного сообщества относительно равномерное распределение потенциала насилия в таком сообществе. Независимые старатели в модели Амбека распределяют свои усилия между добычей золота на своем участке и насилием, которое принимает форму вытеснения других лиц с участка земли. Отдача от усилий и в том, и в другом случае сокращается, поэтому каждый старатель будет стремиться к равенству предельных продуктов усилий обоих типов. Иначе говоря, индивид, обладающий сравнительными преимуществами в осуществлении насилия будет, при прочих равных условиях, обладать участком большим, по сравнению с другими старателями, участком земли. Если снять предпосылку об относительно равномерном распределении потенциала насилия, увеличивается вероятность появления такого индивида или группы, который найдет для себя выгодным захватить все имеющиеся участки. Если, далее, мы предположим, что потенциал насилия, при прочих равных условиях, распределяется пропорционально богатству членов общества, то выводы Амбека и Познера тесно связаны друг с другом.
 На сегодняшний день спонтанный экономический порядок сохранился только в наименее развитых обществах (да и то, лишь отчасти). Поэтому вопрос о том, почему такой порядок оказывается нежизнеспособен в долгосрочном аспекте представляется более интересным, чем вопрос о механизмах самоподдержания такого порядка. Для того, чтобы ответить на этот вопрос обратимся к теории анархии, предложенной Джеком Хиршлейфером.
  Первоначально в его модели действуют всего два индивида или группы, распределяющие имеющиеся у них ресурсы между производством благ и насилием, целью которого является не только захват чужих ресурсов, но и защита собственных (захват чужих потребительских благ и защита своих в модели не рассматривается):
 Ri=aiEi+biFi
  Где i = 1,2; Е; - производственные усилия i-того индивида, F; - его военные усилия; а, и bj - издержки конверсии единицы ресурсов в производственные и военные усилия соответственно.
 Интенсивность производственных и военных усилий i-того индивида определяется как:
 Соответственно:
  Далее, Хиршлейфер рассматривает доход, получаемый каждым из индивидов как степенную функцию от используемых ресурсов:
 97 См.: Umbeck, John R. (1978), A Theory of Contractual Choice and the California Gold Rush, 2 Journal of Law and Economics, 421-437; Umbeck, John R. (1981), A Theory of Property Rights with Applications to the California Gold Rush, Ames: Iowa State University Press.
 181
 
  Доля ресурсов, которую контролирует каждый из индивидов определяется эффективностью военных усилий и равняется р; (pi + р2 = 1; Rj = PiR). Технология конфликта отражается функцией успеха в соперничестве (Contest Success Function - CSF), которая определяет пропорцию успеха (pi/рг) как функцию относительных военных усилий (F^):
 Рг (А)
  Здесь m - ключевой для дальнейшего анализа "параметр решительности", отражающий эффективность наступательных военных усилий, относительно эффективности оборонительных усилий, m > 0.
  Из предыдущего уравнения можно получить доли ресурсов, контролируемых каждым из индивидов, как функциональные зависимости от Fi и F2:
 
 р"
 
  р""
  1 2
 
  На рис. 5.1 отражена взаимосвязь между долей ресурсов, которую контролирует 1-й индивид и его военными усилиями при фиксированных военных усилиях второго индивида и различных т.
  Здесь на горизонтальной оси отражены военные усилия Fb а на вертикальной - доля ресурсов, контролируемых первым индивидом (р]).
  Стоит заметить, что вообще говоря, термин "военные усилия" условен. Этот показатель может быть применен, например, к ситуации соперничества политических партий за власть в современной демократической стране. Поэтому и действие "параметра решительности" отнюдь не ограничивается ситуацией вооруженного противоборства двух индивидов или групп. Так, например, в современных демократиях такие институты, как права человека и разделение властей сокращают этот параметр.
 Рисунок 5.1. Функция успеха в соперничестве9*
 
 
 1 0,9-
 
 
  + F2 = 25 0,7- 0.6- m = 0,5 05- I 0.4- f ... ¦¦ m = 1 0.3- ,-\ 0,2-
  0.1-
 0
 
  50
 10
 15
  20
 25 3C 35 40 46
 98 Hirshleifer, Jack (1995), Anarchy and its Breakdown, 103 Journal of Political Economy, 32.
 182
 
 Из предшествующих выкладок получаем:
  (f2R2)m
  И, наконец, приходим к условиям равновесия между выбираемыми сторонами уровнями интенсивности военных усилий и долями ресурсов, которые контролирует каждая из сторон:
 
  гт п
 /•т I
  ~ J2 К2
 [ ()
 h)
  Из последнего уравнения следует, что при стремлении m к единице, pi/p2 -> 0, если fi > f2, и pi/p2->¦ оо, если fi< f2 (см. рис. 5.2).
  На этом рисунке по горизонтальной оси отложена относительная интенсивность военных усилий (fi/f2), а по вертикальной - пропорция успеха (pi/p2).
  Из всего предшествующего изложения вытекает первое условие, при соблюдении которого анархическая система будет относительно устойчивой, а именно, для динамической стабильности системы необходимо, чтобы "параметр решительности" был меньше 1. Проиллюстрируем это числовым примером. Положим R = 100, f\ = 0,1, f2 = 0,2, m = 2/3. Тогда:
 
 
 /(l-m)
 
 .99
  Ri = 20, R2 = 80. Рисунок 5.2. Интенсивность военных усилий и пропорция успеха
 
 m = 0.75
 m = 0.9
 в
 7 6-5 4
 3
 1-
 0
 
 0-2 0.4 0.6 0.6
 
 1
 
 1.2 1.4 1.6 1.8
 
  Если первоначальное распределение ресурсов иное, то каждое последующее взаимодействие между противоборствующими сторонами будет асимптотически приближать распределение ресурсов к равновесному уровню. Например, в рассмотренном примере, при сохранении всех остальных параметров, если первоначально ресурсы распределены в пропорции 3/2 (Ri° = 60, R2 = 40), то конфликтное взаимодействие между сторонами в первом периоде приведет к
 
 99
 
 Ibid., 34.
 
 183
 
 новому распределению ресурсов: R/ = 45,2, R2' = 54,8. Продолжение конфликта во втором периоде установит новые параметры распределения ресурсов: R]2 = 35,7, R22 = 64,3. И так далее.
  Если же параметр m > 1, например, m = 2, распределение ресурсов не будет стремиться к равновесному состоянию. Так, в рассматриваемом примере, при Ri° = 60, R20 = 40 и m = 2, Ri1 = 36, R21 = 64; Ri2 = 7,3, R22 = 92,7, и так далее. То есть, система удаляется от равновесия с каждым следующим взаимодействием.
  Другим необходимым условием стабильности анархической системы будет, естественно, наличие у каждой из соперничающих сторон в динамическом равновесии по меньшей мере минимального уровня доходов, у, обеспечивающего выживание каждого из конкурентов (Yj > у, i=l,2).
  Заметим также, что эти два условия являются не достаточными, но только необходимыми условиями устойчивости анархической системы.
  Далее, предположим, что каждая из конкурирующих сторон пытается максимизировать свой собственный доход, выбирая оптимальную интенсивность своих военных усилий и полагая заданной интенсивность усилий конкурента. Очевидно, что в этом случае мы имеем дело с классической дуополией Курно. Целевые функции соперничающих индивидов или групп будут выглядеть как:
 
 
 
 fl \Ji +/2
 Где i = 1,2; aiei + Ъ& = 1; М = m/(l-m).
  Решая это уравнение для каждого из соперников, получаем соответствующие кривые реакции (RQ и RC2):
 f" -м
 /7 м
  Если же принять достаточно реалистичную для условий анархии предпосылку, что и производственные и военные технологии обоих субъектов одинаково эффективны, мы получим условие равновесия при симметричном двустороннем конфликте:
  М т
  Как показывает это уравнение, интенсивность военных усилий сторон при симметричном конфликте обратно пропорциональна издержкам конверсии единицы ресурсов в военные усилия, и прямо пропорциональна "параметру решительности", отражающему эффективность наступательных военных усилий, относительно эффективности оборонительных усилий.
 Симметричное решение при b = 1 отражено на рис. 5.3.
  Здесь по горизонтальной оси отложена интенсивность военных усилий первого индивида или группы, а по вертикальной - второго индивида или группы. Как видно на этом графике, равновесный объем военных усилий увеличивается с ростом т.
  Так как, при симметричном конфликте pi = р2 = 1/2, максимальный для каждой из сторон доход будет представлен следующим уравнением:
  Иначе говоря, доход каждой из сторон растет с увеличением совокупного объема доступных ресурсов R и ростом параметра производительности h; и падает с ростом "параметра решительности" m и издержек конверсии единицы ресурсов в производственные усилия а.
  Следующим шагом будет увеличение числа индивидов или групп, действующих в анархической системе до N. В этом случае целевая функция первого из этих конкурентов будет выглядеть как:
 184
 
 Соответственно, кривая реакции первого конкурента RQ:
 
 /i
 
 м
 
 М
 
 
 М
 /2
 
  = 2/Зш
 Рисунок 5.3. Кривые реакции для т = 1/2 ит = 2/З
 
 
 о.8 о.а
  Если мы, как и в предыдущем случае, предположим, что издержки конверсии единицы ресурсов в производственные и военные усилия равны у всех конкурентов (ai = a; bi = b), то решение этого симметричного конфликта будет выглядеть как:
 М/
  b(N~m)
  Если рассмотренное выше необходимые динамические условия стабильности анархической системы соблюдаются (то есть 0 < m < 1; Y; > у), то увеличение числа конкурентов в этой системе приведет к увеличению равновесной интенсивности военных усилий, и, как следствие, при прочих -равных условия, к сокращению дохода каждого из этих конкурентов.
  Если доступные совокупные ресурсы равны R и не изменяются при изменении числа соперников в анархической системе, равновесный доход i-того соперника в ситуации симметричного конфликта составит:
 
 1-да
 Т, = (etPtRf =
 a(N-m)
  Иными словами, в случае, когда совокупные ресурсы зафиксированы на каком-то уровне R, увеличение числа соперников в симметричной анархической структуре приведет к сокращению дохода каждого из них.
 
 100
 
 Ibid., 36.
 
 185
 
  Если же количество совокупных доступных ресурсов меняется пропорционально изменению числа конкурентов в анархической структуре (R = rN), равновесный доход i-того конкурента при симметричности конфликта будет равен:
 -rN
 a(N-m)
  Однако, даже в этом, не самом реалистичном случае (очевидно, что максимально реалистичный случай - когда совокупные ресурсы увеличиваются с ростом числа конкурентов в анархической структуре, но не таким темпом: 5R/5N > 0; t^R/SN2 < 0) равновесный доход каждого из конкурирующих индивидов или групп будет падать с ростом N, так как вырастет равновесная интенсивность военных усилий f. Рассмотрим следующий числовой пример. При R = 100, N = 2, h = 1, m = 2/3, а = b = 1, равновесная интенсивность военных усилий для каждого из участников конфликта составит: fj = f2 = 1/2, а доход каждого из них (Yj) будет равен 25. Если же равномерно (допустим, вдвое) увеличить R и N, то, ceteris paribus, равновесные военные усилия составят: fi = ?" = f3 = ft ~ 0,857, а равновесный доход каждого: Yj = 20.
 Основные выводы, к которым пришел в своей теории анархического взаимодействия Джек Хиршлейфер, следующие: для устойчивого существования анархической структуры необходимо, во-первых, чтобы "параметр решительности" т, отражающий эффективность наступательных усилий, относительно оборонительных усилий, был не больше 1; во-вторых, чтобы уровень доходов конкурентов был не меньше минимального значения; в-третьих, увеличение числа индивидов или групп в анархическое структуре способствует сокращению среднего дохода членов этой структуры и увеличивает вероятность того, что доходы их части окажутся меньше минимально допустимого значения.
 Важно также заметить, что если анархическая система, под влиянием действия перечисленных параметров, выйдет из равновесия, например, превратившись, в сисе му иерархическую, то если новое изменение указанных параметров будет совместимо с существованием анархии как спонтанного порядка, это не означает, что такой порядок в действительности будет реализован. Имеет место так называемый эффект храповика: если, предположим, в какой-то момент времени параметр m окажется больше 1, это приведет к разрушению анархии и появлению иерархии; если в дальнейшем параметр m (который, вообще говоря, является стохастической величиной) вновь сократится до приемлемого для анархии уровня, разрушения существующей иерархии скорее всего не произойдет.
 Разрушение нестабильной анархической структуры в человеческом обществе, а свой анализ Хиршлейфер распространяет также и на поведение некоторых животных, скорее всего, по его мнению, приведет к одному из двух исходов: к вертикальной или горизонтальной социальной контрактации. Обе эти возможности подробно рассматриваются ниже.
 
 С
 
 оциальныи контракт.
 
 Социальный контракт - это договор мсяоду индивидами, во-первых, о правилах взаимодействия в обществе, а, во-вторых, о создании особого агента (государства), специализирующегося на обеспечении выполнения принятых правил
 186
 
 Современные концепции общественного договора восходят к философии Нового Времени, когда идеи социальной контрактации интересовали таких великих философов, как Гуго Гроций, Томас Гоббс, Джон Локк, Жан-Жак Руссо, Бенедикт Спиноза, Иммануил Кант. Тогда же сформировались и два основных подхода к теории социального контракта, которые условно можно обозначить как подход Гоббса и подход Локка. Для первого из этих подходов, в терминах Хир-шлейфера, характерно представление о вертикальной социальной контрактации. Подходу Локка соответствует горизонтальный социальный контракт.
 По Гоббсу, естественные человеческие законы (как то, справедливость, беспристрастность, скромность, милосердие и т.п.) не могут поддерживаться сами по себе, так как они противоречат "естественным страстям" каждого человека. Именно для защиты этих естественных законов и необходима сила государства: "Для установления общей власти необходимо, чтобы люди назначили одного человека или собрание людей, которые явились бы их представителями; чтобы каждый человек считал себя доверителем в отношении всего, что носитель общего лица будет делать сам или заставит делать других в целях сохранения общего мира и безопасности, и признал себя ответственным за это; чтобы каждый подчинил свою волю и суждение воле и суждению носителя общего лица"101. Власть "единого лица" - государства или суверена - над подданными практически полная. Единственное право, которым обладают подданные перед сувереном - право бороться за свою жизнь. Иными словами, человек, приговоренный государством к смертной казни, имеет право попытаться спасти свою жизнь любым возможным способом: в этом случае индивид разрывает социальный контракт и возвращается в "естественное состояние".
 Интересно, что хотя, по Гоббсу, государство может быть основано двумя способами - власть может быть приобретена силой или передана правителю по доброй воле индивидов - обязанности подданных перед сувереном в обоих случаях одинаковы. Фактически Гоббс не делает различия между государством, "основанном на приобретении" и государством "основанном на установлении". Как мы увидим ниже, этот вывод довольно близок к истине, так как вести себя носители абсолютной власти будут одинаково, независимо от способа, которым эта власть была приобретена.
 Подход Локка отличается от подхода Гоббса тем, что хотя и тот и другой говорят о передаче индивидами государству части своих "естественных прав", государь, по Локку, "обязан править согласно установленным постоянным законам, провозглашенным народом и известным народу, а не путем импровизированных указов; править с помощью беспристрастных и справедливых судей, которые должны разрешать споры посредством этих законов, и применять силу сообщества в стране только при выполнении таких законов"102. Иными словами, даже после образования государства сувереном остается народ. Более того, народ имеет право лишить правителя его власти и заменить его другим в том случае, если правитель не выполняет своих обязанностей, связанных с производством общественных благ.
 101 Гоббс Т. (1991), Левиафан// Гоббс Т., Сочинения в 2-х томах, т.2, М.: Мысль, с. 132.
 102 Локк Дж. (1988), Два трактата о правлении// Локк Дж., Сочинения в 3-х томах, т.З, М.:
 Мысль, с.336.
 187
 
 Основоположники теории общественного договора полагали, что их концепция исторична, то есть сам факт договора неоднократно имел место в человеческой истории. Однако, на сегодняшний день отсутствуют исторические свидетельства того, что такого рода события действительно когда-либо имели место в человеческой истории. Общественный договор - это, скорее, не историческая, а логическая предпосыла во зникновения государства.
 Точка зрения эволюционистского подхода к общественному договору заключается в признании легитимности любой существующей формы государственного устройства постольку, поскольку она является результатом эволюционного процесса.
 Легитимность того или иного общественного устройства для нонконструкцио-нистов определяется тем, насколько в этом государстве соблюдаются "естественные права человека", имеющие высшее, божественное происхождение.
 Для конструкционистов, чей подход на сегодняшний день наиболее популярен среди исследователей, внешние критерии оценки легитимности общественного устройства отсутствуют, то есть оценивать социальный контракт могут лишь индивиды, в этом контракте участвующие. При этом в конструкционистском подходе выделяют два направления. С точки зрения утилитаристов, люди, вовлеченные в процесс социальной контрактации, помещены в так называемую "оригинальную позицию". Иными словами, социальный контракт так или иначе предполагает некие принципы относительно неравномерного распределения богатства между различными группами индивидов. Участник этого процесса, не зная заранее, в какую группу он попадет, действует не в соответствии с собственными будущими интересами (о которых он пока не знает), а в соответствии с интересами общества в целом. В силу этого возрастает роль тех участников социального контракта, которые обладают информацией, необходимой для осознанного выбора оптимальной для данного общества формы этого контракта, то есть возрастает роль экспертов в контрактном процессе.
 Нас, однако, в данном разделе больше всего интересует подход другой части конструкционистов - подход редукционистов, к которым, в частности, принадлежит лауреат Нобелевской премии по экономике Дж. Бьюкенен. С точки зрения редукционистов, общественный договор заключается между реально живущими в обществе индивидами, каждый из которых обладает собственными интересами и предпочтениями, а сам контракт предполагает максимально возможный учет всех этих предпочтений.
 Предложенная Бьюкененом концептуальная схема общественного договора выглядит следующим образом. На первом этапе происходит "естественное распределение" благ, которое определяется усилиями, затрачиваемыми индивидами на захват и защиту ограниченных благ. Фактически, "естественное распределение" благ по Бьюкенену соответствует "естественному состоянию" общества Томаса Гоббса. Это "естественное состояние" "служит для идентификации, определения индивидов, на основе чего становится возможным заключение договорных соглашений"103. После этой идентификации заключается конституционный договор, предметом которого является "государство защищающее", то
 103 Бьюкенен Дж.М. (1997), Границы свободы. Между анархией и Левиафаном// Нобелевские лауреаты по экономике. Джеймс Бъюкенен, М.: Таурус-Альфа, с.241.
 188
 
 есть, определяются права свободы и права собственности индивидов, и права государства, функцией которого является защита этих прав.
 Третий этап - постконституционный договор, или договор о "государстве производящем". На этом этапе устанавливаются правила, по которым государство и должно действовать, занимаясь производством общественных благ.
 Общественный договор, по Бьюкенену, не является, разумеется, раз и навсегда установленной, жесткой схемой: он может и должен быть пересмотрен на конституционной стадии в том случае, если государство пытается установить правила, противоречащие конституционным. Общественный договор может и должен быть пересмотрен также и на постконституционной стадии, если государство поддерживает неэффективный, с точки зрения общественного благосостояния, способ производства общественных благ.
 Предложенные Бьюкененом и другими редукционистами модели общественного договора, очевидно, отражают процесс горизонтальной социальной контрактации, характерный, в основных своих чертах, для современных развитых демократий. Однако, прежде чем перейти к описанию процесса горизонтальной социальной контрактации, остановимся на предложенной Олсоном и МакГиром модели оседлого бандита, которая представляет собой один из наиболее интересных примеров описания вертикальной социальной контрактации.
 М
 одель оседлого бандита МакГира - Олсона. Итак, как было показано выше, анархическая система может оказаться нежизнеспособной по целому ряду причин, важнейшей из которых для человеческого общества представляется рост "параметра решительности" т, отражающий развитие технологии вообще и военной технологии в частности. При таком развитии событий на месте прежней анархической структуры через какое-то время возникает система, в которой некоторые индивиды или группы обладают сравнительными преимуществами в осуществлении насилия перед всеми остальными индивидами или группами, но не обладают такими преимуществами друг перед другом. Иными словами, в рассматриваемом случае речь идет об обществе, в котором господствуют так называемые бандиты-гастролеры.
 У таких бандитов нет стимулов не только содействовать производству общественных благ, у них отсутствуют стимулы к какому-либо самоограничению своей бандитской деятельности. Действительно, каждый бандит-гастролер понимает, что любое богатство, не изъятое им у своей жертвы, скорее всего станет добычей другого бандита-гастролера, поэтому никакой заинтересованности в сохранении у жертвы стимулов и физических возможностей для осуществления производительной деятельности у бандита-гастролера нет.
 Иными словами, гастролер действует в условиях структурной неопределенности, заставляющей его дисконтировать свои ожидаемые будущие доходы по очень высокой ставке. Это приводит к тому, что бандит-гастролер будет стремиться максимизировать свой краткосрочный доход.
 Конкуренция между бандитами-гастролерами, однако, рано или поздно должна так или иначе привести к появлению такого субъекта или группы, который будет обладать сравнительными преимуществами в осуществлении насилия перед всеми остальными обитателями данной территории. Появляется так называемый
 189
 
 оседлый бандит, структура стимулов которого существенно отличается от структуры стимулов бандита-гастролера. Это выражается, в первую очередь, в сокращении ставки дисконтирования ожидаемых будущих доходов у оседлого бандита: будущее для него становится дороже, так как уменьшается неопределенность. Последнее объясняется тем, что оседлый бандит, благодаря своему сравнительному преимуществу в осуществлении насилия, способен контролировать определенную территорию, то есть пресекать появление на этой территории бандитов-гастролеров.
  Для иллюстрации этого факта рассмотрим простую математическую модель. Предположим существует два индивида, каждому из которых доступны две альтернативные стратегии: краткосрочная и долгосрочная. Реализация первой из этих стратегий обеспечивает индивиду получение достаточно большого дохода в течение относительно короткого промежутка времени. Этот доход равен площади прямоугольника ОАВТ на рис. 4.
  Предположим также, что наши индивиды дисконтируют свои ожидаемые будущие доходы по различным процентным ставкам. Пусть ожидаемый доход первого индивида в периоде i составит:
 7/ =
  Где Rj - чистый доход 1-го индивида в i-том периоде, а г - его ставка дисконтирования. Общая сумма потока ожидаемых будущих доходов 1-го индивида будет равна площади под кривой RL на рис. 5.4. Так как дисконтированный поток будущих платежей у первого индивида превышает доход, который он может получить, если выберет краткосрочную стратегию (площадь прямоугольника ОАВТ), первый индивид предпочтет долгосрочную стратегию краткосрочной.
  Второй индивид дисконтирует свои будущие доходы по более высокой ставке процента, и его ожидаемый будущий доход в i-том периоде будет равен, соответственно:
  Где е " 1. Общая сумма потока ожидаемых будущих доходов 2-го индивида будет равна площади под кривой RH на рис. 4. Так как эта площадь меньше площади прямоугольника ОАВТ, то для второго индивида краткосрочная максимизационная стратегия будет предпочтительнее долгосрочной
 Рисунок 5.4. Ожидаемые будущие доходы и максимизационные стратегии
 индивидов
 
 
 L
 
 
 190
 
 Первый индивид в нашей модели - это оседлый бандит, второй - бандит-гастролер.
 Таким образом, для максимизации потока ожидаемых будущих доходов оседлый бандит (или автократ) должен решить две взаимосвязанные задачи (помимо задачи недопущения конкурентов на контролируемую территорию): во-первых, он должен обеспечить физическую возможность производства благ; во-вторых, он должен сохранить стимулы к производству этих благ. Моделирование решения этих взаимосвязанных задач приводится в известной работе Мансура Олсо-на и Мартина МакГира104.
  В модели Олсона - МакГира G - объем предоставляемых оседлым бандитом общественных благ (в данном случае единственной целью предоставления общественных благ является спецификация и защита частной собственности подданных автократа, а цена единицы общественного блага принимается равной 1); Y - потенциальный объем производства частных благ, то есть такой их объем, который был бы произведен, если бы налогообложение не приводило к появлению потерь от мертвого груза: Y = Y(G), Y'(G) > 0, Y"(G) < 0, Y(0) = 0; t - постоянный средний уровень налогообложения; r(t) - % от потенциального объема производства частных благ (Y), который производится при уровне налогообложения t, r(t) не зависит от G, r'(t) < 0, г(0) = 1; 1 - r(t) - доля потерь от мертвого груза в потенциальном объеме производства частных благ Y; tr(t) - % от потенциального Y, достающийся оседлому бандиту в виде налогов; r(t)Y = I - реальный объем произведенных частных благ, при условии, что налогообложение не подрывает стимулы к их производству.
  Решая задачу максимизации собственного приведенного ожидаемого будущего дохода, автократ должен выбрать оптимальный уровень налогообложения t* и оптимальный количество общественных благ G*:
 max tr(t)Y(G)-G
 t,G V ' V '
  При этом, необходимым условием является то, что объем расходов на производство общественных благ G (при условии, что цена единицы общественного блага равна 1) не должен превышать доходов, получаемых оседлым бандитом от налогообложения (G < tr(t)Y(G)). Обратим также внимание на то обстоятельство, что доход автократа от налогообложения зависит от G, в то время как оптимальный уровень ставки налога (t) от этого параметра не зависит.
  Решая задачу максимизации чистого дохода оседлого бандита по t, мы получим следующее уравнение:
  Так как Y(G) > 0, условие максимизации чистого дохода оседлого бандита по ставке налогообложения приводится к виду:
 Отсюда, оптимальная ставка налога t:
  И, соответственно, максимальная доля потенциального дохода Y, достающаяся автократу:
 
  Иначе говоря, максимизация этой доли достигается в том случае, когда предельное сокращение доходов автократа от увеличения потерь от мертвого груза (tr'(t)dt) равно предельному увеличению его доходов от роста ставки налога (rdt).
  Параметр, обратный оптимальной ставке налогообложения - это показатель самоограничения или реципрокности оседлого бандита:
 104 McGuire, Martin С. and Olson, Mancur Jr. (1996), The Economics of Autocracy and Majority Rule: The Invisible Hand and the Use of Force, 34 Journal of Economic Literature, 72-96.
 191
 
 
  Максимизация функции чистого дохода автократа по расходам на производство общественных благ при оптимальной ставке налогообложения достигается при условии:
 Или:
 
  Так как, по определению, rY = I, предельное изменение реальных общественных доходов I по уровню расходов оседлого бандита на производство общественных благ G равно показателю его реципрокности:
  Иными словами, автократ будет увеличивать производство общественных благ до тех пор, пока предельный прирост реальных доходов общества от увеличения количества предоставляемых общественных благ не станет равно показателю самоограничения оседлого бандита.
  Вводя в модель новые зависимые переменные Q и Р, Олсон и МакГир получают возможность представить все условия равновесия в модели оседлого бандита на одном графике:
 
  Установление равновесной ставки налогообложения подданных оседлого бандита и равновесного объема предоставляемых им общественных благ позволяют определить как равновесный реальный доход общества, так и распределение этого дохода между автократом и его подданными (см. рис. 5.5).
  Во втором квадранте рис. 5.5 отражен выбор автократом оптимальной ставки налогообложения (tA*), при которой максимизируется доля потенциального дохода Y, достающаяся ему
 (tA*r).
  Пересечение кривых, отражающих уровень самоограничения оседлого бандита (1/tr и 1/t) с кривыми Q(tA*) и P(tA*) определяют оптимальный предельный прирост, соответственно, потенциального и реального доходов общества по количеству производимых автократом общественных благ. Определяемое таким образом оптимальное количество последних вместе с функциями rA*Y(G) и tA* (G) показывает в квадранте IV распределение реальных доходов общества между автократом (отрезок АВ), его подданными (отрезок ВС) и расходами на поддержание порядка (отрезок ОА).
  Важно заметить, что хотя каждой оптимальной ставке налогообложения соответствует определенное количество предоставляемых оседлым бандитом общественных благ, выбор из всех возможных ставок налогообложения оптимальной от G не зависит, поэтому автократ сначала определяет оптимальное t, а уже потом, на основании этого t определяет оптимальную для себя величину расходов на общественные блага.
 Из модели Олсона - МакГира можно сделать вывод, что оседлый бандит всегда будет стремиться обеспечить некий оптимальный уровень спецификации и защиты прав собственности для своих подданных, однако, история знает достаточно обратных примеров. В частности, в качестве одного из таких примеров можно привести деятельность английской династии Стюартов. С того момента, когда в 1603-го году им досталась Корона, и до Славной Революции Стюарты обладали фактически неограниченной властью, однако, несмотря на стимулы к увеличению ожидаемых доходов казны, Корона преследовала краткосрочные цели, нарушая, при этом, данные обязательства. Среди основных источников
 192
 
 пополнения королевской казны были слабо согласующаяся с долгосрочными интересами Стюартов продажа королевских земель, вызывавшая возмущение наследственной аристократии торговля новыми дворянскими титулами, подрывавшая основы конкуренции продажа монопольных прав, введение новых налогов и практика заимствований, которые Стюарты далеко не всегда возвращали. Все это, в конечном итоге и привело к революции.
 
 Рисунок 5.5. Равновесие в модели оседлого бандита
 
 105
 
 
 
 
 
 
 
 
 105
 
 Ibid., 79.
 
 193
 
 Возникает естественный вопрос: почему автократы далеко не всегда ведут себя так, как они должны себя вести в соответствии с логикой модели Олсона -МакГира? Существует как минимум три возможных варианта ответа на этот вопрос. Во-первых, монарх может быть настолько оторван от реальной действительности, что он может просто не обладать информацией, необходимой для выбора оптимальной стратегии. Во-вторых, автократ может действовать в такой институциональной среде, которая не способствует сколько-нибудь удовлетворительной спецификации и защите прав собственности, и автократ не в состоянии эти правила изменить. Наконец, третий аргумент, на котором, в частности, акцентирует свое внимание Мансур Олсон106, заключается в том, что автократ может по каким-то причинам не интересоваться будущим. Именно в силу этой последней причины, по мнению Олсона, многие современные диктаторы в странах третьего мира склонны к грабительской внутренней политике.
 "В таких обстоятельствах для общества может оказаться выгодным достижение согласия по вопросу о том, кто будет следующим руководителем государства, так как это снижает издержки, возникающие из-за отсутствия при автократическом режиме независимой силы, которая могла бы установить мирную преемственность государственной власти"107.
 Таким образом, Олсон выдвигает серьезный экономический аргумент в оправдание монархических династий.
  ^ онтрактная модель государства. Если в предыдущем разделе речь 1^^ шла об абсолютно вертикальном социальном контракте, то здесь мы ос--*- ^-тановимся на его полной противоположности - контракте совершенно горизонтальном. Строго говоря, и то и другое - суть абстракции: совершенно вертикальный, равно как и совершенно горизонтальный социальные контракты невозможны. Однако, если модель оседлого бандита во многих случаях оказывается полезной для анализа автократической власти, то модель консенсусной демократии, которой посвящен этот раздел, полезна для анализа современного демократического общественного устройства. Рассматриваемая здесь модель консенсусной демократии, так же как и рассмотренная в предыдущем разделе модель оседлого бандита, была предложена Мансуром Олсоном и Мартином МакГиром108.
 Для общества консенсусной демократии характерны следующие условия: во-первых, все средства, которые общество собирает в виде налогов идут на производство общественных благ; во-вторых, достающееся каждому индивиду количество общественных благ прямо пропорционально его вкладу в производство этих благ, иными словами, отсутствует какое-либо перераспределение доходов.
  Прежде всего необходимо заметить, что в отличие от автократа, для которого выбор оптимальной ставки налогообложения не зависит от объема предоставляемых им общественных благ G, при консенсусной демократии параметры G и t связаны между собой обоюдной связью. Поэтому вместо двух задач, которые последовательно решает оседлый бандит (выбор оптимальной ставки налогообложения t* и затем уже на этой основе выбор оптимального количества
 106 Olson, Mancur Jr. (1993) , Dictatorship, Democracy, and Development, 87 American Political Sci
 ence Review, 567-576.
 107 Ibid., 572.
 108 McGuire, Martin С and Olson, Mancur Jr. (1996), The Economics of Autocracy and Majority Rule:
 The Invisible Hand and the Use of Force, 34 Journal of Economic Literature, 80-83.
 194
 
 общественных благ G*), общество в условиях консенсусной демократии должно решить одну, но более сложную задачу, которая отражена в следующей системе уравнений:
 W = max(l -t)r{t)Y(G) U = max([r(f[G])7(G)]- G)
 G
 G
  Решение первого из этих уравнений приводит к нахождению оптимальной ставки налогообложения в демократическом обществе, решение второго позволяет определить оптимальное количество производимых общественных благ. При этом, так как все собранные налоги тратятся без остатка на производство общественных благ, необходимо выполнение следующего условия:
  tr(t)Y(G)-G = O Решая второе из уравнений представленной системы, получим:
 rT{G)+Yr}{t)- -1 = 0 W K'dG
  Здесь rY'(G) - предельные выгоды общества от увеличения количества производимых общественных благ на единицу, Yr'(t)<5t/<5G - предельные издержки связанные с этим увеличением, вызванные ростом потерь от мертвого груза, 1 - себестоимость производства единицы общественных благ.
 Далее, решая первое из уравнений системы получаем:
 Отсюда:
 dG_Y(
 dt 1-trY1 trT-l
  Подставляя полученное таким образом значение <5G/<5t в решение второго уравнения нашей системы получим:
 r{t)T{G)-фУ(0 f ^'(G)~! 4i-1 = 0 W V ; W K;Y(Glr(t)+tr'(t)]
 Отсюда:
 r{t)
  Значения переменной t, являющееся решением данного уравнения и будет оптимальной ствкой налогообложения в условиях консенсусной демократии tN*, соответственно, r(tN*) = rN*.
  Так как r(tN*)Y'(G) = I'(tN*, G), умножив обе части предыдущего уравнения на rN*, мы получим условие оптимального производства общественных благ в обществе без перераспределения:
  Здесь MSCN* - общественные издержки предоставления одной дополнительной единицы общественных благ при оптимальной ставке налога tN*. Выражение {-[(l-t*)(r*)7r*]} - это предельные потери мертвого груза при оптимальной ставке налогообложения, а 1 - издержки производства единицы общественных благ G. Так как r'(t*) < 0, MSCn* > 1, то есть увеличение производства общественных благ на единицу обойдется обществу дороже себестоимости единицы общественных благ, так как для финансирования дополнительного производства общественных благ необходимо увеличить ставку налога t, а это приведет к увеличению издержек мертвого груза.
  Графическая иллюстрация равновесных параметров общества консенсусной демократии приводится на рис. 5.6. Здесь во втором квадранте представлены оптимальная ставка налогообложения tN* и соответствующие ей оптимальные показатели предельных издержек предоставления общественных благ для реального (MSC) и оптимального (V) общественного дохода. В первом квадранте рис. 6 определяется оптимальное, для условий консенсусной демократии, коли-
 195
 
 чество общественных благ GN*. В четвертом квадранте рис. 6 отражен оптимальный, для общества без перераспределения доходов, объем налоговых поступлений (tN*IN = GN*).
 
 Рисунок 5.6. Равновесие в модели консенсусной демократии
 
 109
 

<< Пред.           стр. 9 (из 13)           След. >>

Список литературы по разделу