<< Пред. стр. 2 (из 11) След. >>
Хотя египтяне стали мастерами в астрономии и предсказании разливов и спада воды в Ниле, им, по-видимому, никогда не приходило в голову вмешиваться в подобные процессы и оказывать влияние на будущий ход событий. Их интеллекту, в котором доминировали обычаи, привычка к повторению годового цикла перемен и уважение к прошлому, были чужды перемены и активное отношение к будущему.Около 450 года до Рождества Христова греки изобрели буквенную систему счисления, которая использовала 24 буквы греческого алфавита и три буквы, которые впоследствии вышли из употребления. Каждому числу от 1 до 9 соответствовала буква, а числа, кратные десяти, имели свои буквы. Например, символ я (пи) как первая буква греческого слова tievte (пента), что означало 'пять', представлял 5; 8 (дельта), первая буква от 8Јха (дека), что означало 'десять', представляла 10; а (альфа), первая буква алфавита, представляла 1, и р (ро) представляла 100. Таким образом, 115 писалось как ро-дека-пента, или рбтг. Евреи, пусть и семиты, а не индоевропейцы, использовали такую же буквенно-цифровую систему счисления4.
Хотя относительное удобство этих буквочисел помогало людям строить сложные сооружения, путешествовать на большие расстояния и точнее фиксировать время, такая система счисления накладывала серьезные ограничения. Для сложения, вычитания, умножения и деления буквы можно использовать только с большим трудом, а считать в уме практически невозможно. Эти заместители чисел пригодны только для записи результатов вычислений, выполненных другими методами, чаще всего с помощью счетов. Счеты — древнейшее вычислительное устройство в истории — были незаменимы при выполнении расчетов, пока между 1000-м и 1200 годами после Рождества Христова на сцену не выступила индо-арабская цифровая система счисления.
На счетах каждому разряду числа соответствовали колонки из десяти костей; когда при сложении, например, в соответствующей колонке получалось число, большее десяти, сдвигалась фишка на следующей колонке, а на первой фиксировалось превышение результатом десяти, и т.д. Наши выражения «один в уме» и «три сверху» ведут свое происхождение от счетов5.
Несмотря на ограниченные возможности этих ранних форм математики, они сделали возможным значительное развитие знания, в частности в геометрии — языке фигур — и ее многочисленных приложениях в астрономии, навигации и механике. Наиболее впечатляющих результатов добились греки и их коллеги в Александрии. Только Библия выдержала больше изданий и напечатана в большем количестве экземпляров, чем самая знаменитая книга Евклида «Начала» («Elements»).
Однако не научные открытия представляются нам самым главным достижением греков. В конце концов, храмовые жрецы Египта и Вавилона неплохо изучили геометрию задолго до Евклида, и даже знаменитая теорема Пифагора — квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов — использовалась в долине Тигра и Евфрата за 2000 лет до Рождества Христова.
Уникальной чертой греческого духа была приверженность к доказательствам. «Почему?» было для них важнее, чем «что?». Они смогли заново сформулировать самые сложные вопросы потому, что их цивилизация была первой в истории, относительно свободной от смирительной рубашки всемогущего жреческого сословия. Эти же обстоятельства сделали греков первыми в мире путешественниками и колонизаторами, превратившими бассейн Средиземного моря в сферу своих интересов.
Будучи в большей степени гражданами мира, греки отвергли простые и ясные заветы, оставленные им предшествующими обществами. Их не интересовали образцы; они искали универсальные понятия, применимые везде, в любом случае. Например, с помощью простого измерения можно убедиться, что квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Но греков интересует, почему это так во всех прямоугольных треугольниках, больших и малых, без единого исключения. Именно с этого времени доказательство, а не вычисление стало доминировать в математической науке.
Эта радикальная особенность древнегреческой методологии постижения мира заставляет нас еще раз задать вопрос — как случилось, что греки не открыли законы вероятности, вычислительные методы и даже простую алгебру. По-видимому, это объясняется тем, что, несмотря на все свои достижения, они зависели от неудобной системы счисления, использующей буквы вместо цифр. Тем же недостатком страдала и римская система, в которой для изображения, к примеру, числа 9 нужны две буквы и нельзя написать 32 как III и II, потому что было бы неясно, имеется в виду 32, 302, 3020 или еще большее число, представляемое комбинацией 3, 2 и 0. Такая система непригодна для вычислений.
Открытие более совершенной системы счисления задержалось примерно до 500 года после Рождества Христова, когда индусы изобрели цифры, которыми мы сегодня пользуемся. Кто придумал это удивительное новшество и какие обстоятельства привели к его распространению по всему Индийскому полуострову, остается тайной. Арабы впервые познакомились с новыми числами примерно через девяносто лет после того, как Мухаммед в 622 году основал ислам и его последователи, объединившись в могучую нацию, проникли в Индию и за ее пределы.
Новая система счисления пробудила интеллектуальную активность в странах к западу от Индии. Багдад, уже тогда бывший средоточием арабской культуры, стал центром математических исследований, и халифы приглашали еврейских ученых для перевода трудов таких выдающихся математиков, как Птолемей и Евклид. Математическая литература получила широкое распространение в арабской империи и около IX или X века дошла до Испании.
Вообще говоря, если уж быть точными, на Западе был один человек, предложивший цифровую систему счисления еще за 200 лет до индусов. Около 250 года после Рождества Христова в Александрии математик по имени Диофант написал трактат, в котором доказывал выгодность замены буквенной системы счисления настоящими числами6.
О самом Диофанте мало что известно, но то немногое, что мы знаем, поразительно. Историк математики Герберт Уоррен Тернбулл (Turnbull) приводит посвященную ему греческую эпиграмму, в которой говорится: «Его детство длилось Ve его жизни; борода выросла у него на Vi2 позднее; на i/7 после этого он женился, и через пять лет у него родился сын, который прожил вдвое меньше отца, а отец пережил сына на четыре года». В каком возрасте умер Диофант?7 Ответ на этот вопрос любители алгебры могут найти в конце главы.
Диофанту принадлежит далеко ведущая идея алгебраической символики — использование символов вместо чисел; ему, правда, не удалось воспользоваться ею в полной мере. Он сетует, что «невозможно решение абсурдного уравнения 4 = 4л; + 20»8. Невозможно? Абсурдное уравнение? Уравнение приводит к отрицательному значению: д: = -4. Без понятия ноля, которого Диофант не знал, понятие отрицательного числа логически невозможно.
Замечательные новшества Диофанта, кажется, были проигнорированы последующими поколениями. Прошло полторы тысячи лет, пока его работы были замечены и должным образом оценены: его трактат сыграл центральную роль в расцвете алгебры в XVII веке. Всем известные сегодня линейные алгебраические уравнения ви-да а + Ъх = с носят его имя.
Главным изобретением индо-арабской системы счисления явилось понятие ноля — sunya, как его называли индусы, или cifr по-арабски9().Слово дошло до нас как cipher, что означает 'пусто' и относится к пустой линейке на счетах 3.(Русское слово цифра тоже арабского происхождения).
Людям, использующим ряды камешков для подсчета убитых животных, прошедших дней или пройденного пути, освоить понятие ноля было крайне трудно. Для таких подсчетов ноль не нужен. Как отмечает английский философ XX века Альфред Норт Уайтхед (Whitehead),
относительно ноля следует заметить, что в повседневной жизни мы этим понятием не пользуемся. Никому не придет в голову купить ноль рыбы. В известном смысле ноль — это самое деликатное из всех числительных, и потребность в нем возникает у нас только на более высоком уровне мышления10
Слова Уайтхеда о «более высоком уровне мышления» указывают на то, что понятие ноля расчистило путь чему-то более значительному, чем совершенствование способов счета и вычислений. Уже Диофант осознал, что совершенная система счисления должна обеспечить возможность использования математики в развитии и абстрактных наук, и техники измерений. Ноль раздвинул границы познания и прогресса.
Заслуживают внимания два аспекта развития системы счисления, обусловленных появлением ноля. Во-первых, люди смогли обходиться только десятью символами от 0 до 9 для записи с их помощью любых чисел и выполнения всевозможных вычислений. Во-вторых, последовательность чисел типа 1, 10, 100 показывает, что следующим числом в последовательности является 1000. Ноль, прояснив систему счисления, довел ее до полной прозрачности. Возьмите римские числа I, X и С или V, L и D и попробуйте сказать, каким должно быть следующее число в этой последовательности!
Первая известная нам арабская книга по арифметике была написана ал-Хорезми — математиком, жившим около 825 года, примерно за четыреста лет до Фибоначчи11. Хотя те немногие, кто использовал его работу, вероятно, кое-что слышали о нем, большинству из нас он известен косвенно. Попробуйте быстро произнести «ал-Хорезми». Вы услышите слово «алгоритм», что значит «правило вычислений»12. Именно ал-Хорезми был первым математиком, установившим правила сложения, вычитания, умножения и деления с новыми индийскими цифрами. В другом своем трактате «Hisab al-jabr w'almuqabalah», или «Книге о восстановлении и противопоставлении», он описывает процесс решения алгебраических уравнений. От слова al-jabr произошло слово алгебра, или наука об уравнениях13.
Одним из самых значительных и, уж конечно, самым знаменитым арабским математиком древности был Омар Хайям, живший приблизительно с 1050-го по ИЗО год и известный как автор собрания стихов под названием «Рубайят»14. (В русском переводе В. Державина «Рубайят» содержится 488 четверостиший, см.: Омар Хайям. Рубайят. Душанбе: Изд-во «Ирфон», 1965. — Примеч. переводчика.). Его знаменитый сборник из 75 четверостиший* (слово рубайят определяет поэтическую форму) во времена королевы Виктории был переведен на английский поэтом Эдвардом Фитцджералдом. В этой тоненькой книжице больше воспеваются вино и мимолетность человеческого существования, чем наука и математика. Например, под номером 27 читаем:
Думал, казий и муфтий мне смогут помочь Верный путь обрести, скорбный дух превозмочь, Но, пожив, убедился, что эти всезнайки Знают, друг мой, как я, так же мало точь-в-точь*. (Перевод А. Кушнера. — Примеч. переводчика.)
Как сообщает Фитцджералд, в юности у Омара Хайяма было двое друзей, столь же блистательных, как и он сам: Низам ал-Мунк и Хасан ал-Сабах. Однажды Хасан предложил своим друзьям поклясться, что, если кому-нибудь из троих суждено достичь богатства и могущества, «тот, кому выпадет удача, не станет стремиться к преимуществу перед двумя другими и поделит ее на троих». Они дали клятву, а через какое-то время Низам стал визирем султана. Друзья разыскали его и напомнили про клятву, которую он выполнил, как обещал.
Хасан потребовал и получил место в правительстве, но, неудовлетворенный своим положением, оставил его, чтобы стать потом главой секты фанатиков, терроризировавшей весь мусульманский мир. Много лет спустя он организовал предательское убийство своего друга Низама.
Омар Хайям не просил ни чинов, ни титулов. «Величайшая милость, которую ты можешь оказать мне, — сказал он Низаму, — это позволить мне жить незаметно под сенью твоей славы, углубляясь в науку и молясь о ниспослании тебе Аллахом долгих лет жизни и преуспеяния». Хотя султан любил Омара Хайяма и был благосклонен к нему, «смелое эпикурейство мыслей и высказываний Омара вызывали в его время косые взгляды соотечественников».
Омар Хайям использовал новую систему счисления для совершенствования созданного усилиями ал-Хорезми языка вычислений, послужившего основой нового, более сложного языка алгебры. Кроме того, он использовал математические методы обработки астрономических наблюдений для реформирования календаря и построения числового треугольника, облегчающего вычисление квадратов, кубов и высших степеней; этот треугольник позднее был использован в XVII веке французским математиком Блезом Паскалем, одним из создателей теории выбора, оценки шансов и вероятностей.
Впечатляющие достижения арабов лишний раз показывают, как далеко может зайти и все же застрять на пороге логического завершения фундаментальная идея. Почему арабы со своими выдающимися математическими достижениями не смогли приблизиться к созданию теории вероятностей и управления риском? Я полагаю, это обусловлено их образом жизни. Кто определяет наше будущее: судьба, боги или мы сами? Идея управления риском всплывет только тогда, когда люди поверят, что они обладают некоторой степенью свободы. Подобно грекам и ранним христианам, склонные к фатализму мусульмане еще не были готовы к этому прыжку.
Около 1000 года новая система счисления преподавалась в мавританских университетах в Испании и еще кое-где, а также сарацинами на Сицилии. Сицилийская монета норманнской чеканки, датированная «1134 Anno Domini»* (После Рождества Христова. — Примеч. переводчика.) — первый известный образец использования системы в действии. Однако широкого распространения новые числа не получили вплоть до XIII века.
Несмотря на покровительство, оказанное книге Фибоначчи императором Фридрихом, и широкую известность, которую она получила в Европе, введение индо-арабской системы счисления вызывало сильное и ожесточенное неприятие до начала XVI века. И это можно понять.
Многовековая история учит, что всегда находятся силы, которые встречают в штыки любое изменение; новое всегда с трудом пробивает себе дорогу. Но была и другая причина, куда более серьезная: с новыми числами плутовать было легче, чем со старыми. Превращение 0 в 6 или 9 казалось заманчиво легким, а 1 могла без труда превратиться в 4, 6, 7, 9 (одна из причин, почему европейцы пишут 7 как 7). Даже после того, как новые числа уже утвердились в Италии, где образование было на высоком уровне, в 1229 году во Флоренции был издан эдикт, запрещающий банкирам использование «языческих» символов. В результате многие желающие изучить новую систему были вынуждены выдавать себя за мусульман15.
Изобретение в середине XV века книгопечатания с наборным шрифтом ускорило окончательный переход к использованию новых чисел. Теперь мошеннические подделки больше не проходили, а нелепые сложности римских чисел стали очевидны каждому. Этот переворот привел к резкой активизации коммерческой деятельности. С тех пор таблицы умножения ал-Хорезми стали предметом изучения во всех школах. И наконец, с первыми намеками на проникновение в тайны вероятностных закономерностей повсеместно усилился интерес к играм.
Здесь приводится алгебраическое решение эпиграммы о Диофанте. Приняв за х его возраст в день смерти, имеем:
х х х . х
х + — + — + — + 5 + — + 4.
6 12 7 2
Значит, Диофант умер в возрасте 84 лет.
Глава 3
Игроки Ренессанса
Пьеро делла Франческа, написавший Деву Марию («Мадонна с Младенцем и святыми»), жил с 1420-го по 1492 год, на двести с лишним лет позже Фибоначчи. Время его жизни совпало с расцветом итальянского Ренессанса, и разрыв между новым духом XV столетия и обветшавшим к тому времени духом Средневековья нашел яркое отражение в его творчестве.
На его полотнах фигуры, даже фигура Девы, воплощают земную человеческую жизнь. Они лишены нимбов, твердо стоят на земле, каждая несет на себе печать индивидуальности и занимает свое место в трехмерном пространстве. Хотя предполагается, что все они собрались, чтобы приветствовать Святую Деву и младенца Христа, кажется, что большинство из них занято чем-то своим. Тени, создающие в готической архитектуре атмосферу таинственности, здесь призваны подчеркнуть весомость фактуры и протяженность обрамляющего фигуры пространства.
Яйцо кажется подвешенным над головой Девы. Более внимательное изучение картины заставляет задуматься, на чем, собственно, подвешен этот небесный символ плодовитости. И почему эти земные, хотя и благочестивые мужчины и женщины не замечают эту странную штуку, зависшую над ними?
Греческая философия перевернута вверх ногами. Теперь тайна перенесена на небеса. На земле мужчины и женщины ведут свободную человеческую жизнь. Эти люди уважают все связанное с божественными проявлениями, но ни в коем случае не подавлены ими — черта, вновь и вновь воспроизводимая в искусстве Ренессанса. Чарующая статуя Давида работы Донателло была одной из первых обнаженных мужских скульптур со времен классических Греции и Рима; великий герой и поэт Ветхого Завета, прекрасный в своей юношеской наготе, стоит перед нами без тени стыдливости, с головой Голиафа в ногах. Большой собор Брунеллески, как и кафедральный собор во Флоренции, с их четко вылепленными массами и строгим интерьером демонстрируют, как религия буквально низведена на землю.
Ренессанс был временем открытий. В год смерти Пьеро Колумб отправился искать путь в Индию; вскоре появилась книга Коперника, радикально изменившая взгляд людей на небеса. Его открытия потребовали высокого уровня математического искусства, которое в течение XVI века ознаменовалось впечатляющими достижениями, особенно в Италии. Следом за изобретением примерно в 1450 году книгопечатания с наборным шрифтом произведения многих классиков математической науки были переведены с латыни на итальянский, опубликованы на латыни или на языках других народов Европы. Математики состязались в бурных публичных диспутах о решении сложных алгебраических уравнений, и публика восторженно приветствовала своих фаворитов.
Этот интерес был вызван опубликованной в 1494 году замечательной книгой францисканского монаха по имени Лука Пацциоли1. Пацциоли родился около 1445 года на родине Пьеро делла Франческа в Борго-Сан-Сеполькро. Хотя семья понуждала мальчика готовиться к карьере торговца, Пьеро занимался с ним чтением, рисованием, историей и приучил пользоваться знаменитой библиотекой в соседнем замке Урбино. Полученные здесь знания заложили основу будущей известности Пацциоли как математика.
В двадцатилетнем возрасте он получил в Венеции место учителя сына богатого купца, стал посещать публичные лекции по философии и теологии и продолжил изучение математики с частным преподавателем. Будучи способным учеником, он еще в Венеции опубликовал свою первую работу по математике. Одновременно он изучал архитектуру и военное искусство под руководством своего дяди Бенедетто, офицера на службе Венецианской республики.
В 1470 году Пацциоли переселился в Рим для продолжения своего образования и в двадцатисемилетнем возрасте стал францисканским монахом. Однако его научные занятия не прервались. Он преподавал в Перудже, Риме, Неаполе, Пизе и Венеции, пока в 1496 году не занял место профессора математики в Милане. Десятью годами раньше ему уже была присвоена степень магистра, соответствующая нынешней степени доктора*(В России — кандидата наук. — Примеч. науч. редактора.).
Главный труд Пацциоли «Summa de arithmetic, geometria et proportionality» («Книга об арифметике, геометрии и пропорциях»; самые серьезные академические работы в то время еще писали на латыни) появился в 1494 году. В ней Пацциоли признаёт, что многим обязан «Liber Abaci» Фибоначчи, появившейся тремя столетиями раньше. В «Summa», написанной во славу «величайшей абстракции и утонченности математики», излагаются основы алгебры и содержатся таблицы умножения до 60 х 60 — весьма полезная вещь для времени, когда с помощью книгопечатания получила широкое распространение новая система счисления.
Один из наиболее интересных разделов книги посвящен двойной бухгалтерии. Она не была изобретением Пацциоли, хотя он и занимался ею не один год. Понятие двойной бухгалтерии встречается в «Liber Abaci» Фибоначчи и используется в опубликованной около 1305 года в Лондоне книге лондонского филиала некой итальянской фирмы. Каково бы ни было его происхождение, это революционное новшество в методике бухгалтерских расчетов имело серьезные экономические последствия, сравнимые с изобретением паровой машины тремя столетиями позже.
В Милане Пацциоли познакомился с Леонардо да Винчи, ставшим его близким другом. Пацциоли был поражен талантом Леонардо и восхищался его «бесценной работой о движении в пространстве, столкновениях, весах и всех силах»2. У них, наверно, было много общего, потому что Пацциоли интересовали взаимосвязи между математикой и искусством. Однажды он заметил, что, «если вы говорите, что музыка услаждает одно из наших природных чувств — слух... [перспектива] делает то же со зрением, которое имеет гораздо большую цену, потому что является входной дверью интеллекта».
Леонардо был мало знаком с математикой до встречи с Пацциоли, хотя имел интуитивное понимание пропорций и хорошее геометрическое воображение. Его записные книжки и раньше были заполнены изображениями прямоугольников и кругов, но Пацциоли побудил его к математическому осмыслению понятий, ранее используемых интуитивно. Мартин Кемп, один из биографов Леонардо, отмечает, что Пацциоли «стимулировал внезапно появившиеся у Леонардо математические амбиции, обусловившие переориентацию его интересов в направлении, на котором ни один из ученых современников ему не сопутствовал». Леонардо отблагодарил Пацциоли, снабдив рисунками написанную им большую книгу «De Divine Proportione» («Божественная пропорция»), которая появилась в двух прекрасно оформленных манускриптах в 1498 году. Ее печатное издание вышло в свет в 1509 году.
Леонардо имел экземпляр «Summa» и, должно быть, прилежно проштудировал его. Его записные книжки свидетельствуют о повторяющихся попытках освоить умножение и дроби в применении к использованию пропорций. В одном месте он напоминает себе, что должен «изучить умножение корней по мастеру Луке». По нынешним меркам математические познания Леонардо соответствовали бы уровню третьего арифметического класса.
Тот факт, что у таких гениев Ренессанса, как Леонардо, было столько трудностей с элементарной арифметикой, дает представление о состоянии математических знаний в конце XV века. Каким образом математики нашли в себе силы с этих позиций сделать первые шаги к созданию методов измерения риска и контроля за ним?
Сам Пацциоли чувствовал, какие огромные возможности таятся в волшебстве чисел. В тексте «Summa» он предложил следующую задачу:
А и В играют в balla* (Игра в мяч. — Примеч. переводчика.). Они договорились играть, пока один из них не выиграет шесть конов. На самом деле игра прекратилась, когда А выиграл пять, а В три кона. Как поделить банк?3
В течение XVI и XVII столетий математики вновь и вновь обращались к этой головоломке. Она имела много вариаций, но всегда вопрос сводился к одному: как поделить банк в неоконченной игре? Предлагались разные ответы, разгорались горячие споры.
Головоломка, получившая известность как задача об очках, имела более глубокий смысл, чем кажется на первый взгляд. Ее решение ознаменовало начало систематического анализа вероятности — измерения нашего знания о том, что что-то должно произойти. Оно приводит нас на порог квантификации риска.
Получив представление о том, каким могучим барьером на пути исследования тайн теории вероятностей были предрассудки Средневековья, интересно снова вернуться к вопросу, почему греки и даже римляне не интересовались задачами, подобными головоломке Пацциоли.
Вообще-то греки понимали, что в будущем может произойти больше вещей, чем произойдет на самом деле. Они отмечали, что естественные науки — это, используя терминологию Платона, «науки о возможном». Аристотель в «De Caelo» говорил: «Добиться успеха во многих вещах или много раз трудно; например, выбросить некую комбинацию в кости десять тысяч раз подряд было бы невозможно, но сделать это один или два раза сравнительно легко»4.
Это подтверждалось простыми наблюдениями. Но следует заметить, что правила, по которым греки и римляне играли в случайные игры, в наше время показались бы весьма нелепыми. Это тем более странно, что в античном мире такие игры были очень популярны (грекам уже были известны шестигранные кости) и являлись настоящей лабораторией для изучения шансов и вероятностей.
Рассмотрим игры с применением таранных костей. В отличие от позднейших кубических костей они продолговатые, с двумя узкими и двумя широкими поверхностями. В играх обычно бросали сразу четыре кости. Шансы, что кость выпадет широкой стороной, конечно, выше, чем узкой. Поэтому было бы естественно ожидать, что узкая сторона должна приносить больше очков, чем широкая. Но сумма очков, приносимых менее вероятными узкими сторонами — 1 на одной кости и 6 на другой, — приравнивалась тому, что приносили более вероятные широкие стороны, — 3 и 4. Результат же, называемый «Венера», когда на вас смотрят все возможные игровые грани костей — 1, 3, 4, 6, — приносил максимум очков, хотя столь же вероятны комбинации 6, 6, 6, 6 или 1, 1, 1, 1, приносившие по правилам меньше очков5.
Кроме того, хотя было очевидно, что длинные серии выигрышей или проигрышей менее вероятны, чем короткие, эти ожидания носили не количественный, а качественный характер: Аристотель говорил, что «...сделать это один или два раза сравнительно легко»6. И хотя в эти игры играли повсеместно и с диким азартом, никому не приходило в голову подсчитывать шансы.
Надо полагать, дело было в том, что греки вообще не проявляли интереса к экспериментированию; их занимали только теории и доказательства. Они, кажется, никогда не обсуждали возможность воспроизведения какого-либо явления достаточное для доказательства гипотезы число раз, видимо, потому, что им была чужда мысль об упорядоченности событий на земле. Точность считалась монополией богов.
В отличие от античности во времена Ренессанса каждый, от ученого до изобретателя, от художника до архитектора, испытывал зуд исследований, экспериментирования и демонстрации результатов опыта. В этой интеллектуальной атмосфере кто-то из игроков должен был обратить внимание на регулярности, проявляющиеся при так называемой игре в длинную.
Такой игрок появился в XVI веке. Им оказался лекарь по имени Джироламо Кардано. Одной только репутации Кардано как азартного игрока, пытавшегося осмыслить закономерности игры, достаточно для упоминания его имени в истории освоения риска, но он проявил выдающиеся таланты и во многих других областях. Удивительно, что в наше время он сравнительно мало известен. Он был олицетворением Ренессанса7.
Кардано родился в Милане около 1500 года и умер в 1571 году. Он был современником Бенвенуто Челлини и, подобно Челлини, одним из первых знаменитостей, оставивших автобиографию. Свою книгу он назвал «De Vita Propria Liber» («Книга моей жизни»), и что это была за жизнь! Поистине, его любознательность была сильнее его самого. Характерно увлечение, с которым он, описывая собственную жизнь, обсуждает четыре выдающихся достижения своего времени: вступление в новую эру географических открытий, познакомивших европейцев с двумя третями земной поверхности, о которых древние ничего не знали, изобретение огнестрельного оружия, компаса и книгопечатания с использованием набора.
Кардано был худым, с длинной шеей, тяжелой нижней губой, бородавкой над глазом и таким громким голосом, что вызывал раздражение даже у друзей. По его собственному признанию, он страдал диареей, грыжей, болезнью почек, тахикардией и даже воспалением соска. Не без рисовки он пишет о себе: «Я был горяч, простодушен и падок на женщин», а также «хитер, силен, саркастичен, прилежен, дерзок, печален, вероломен, склонен к чародейству и колдовству, жалок, злобен, похотлив, непристоен, лжив, подобострастен, старчески болтлив».
Кардано был игрок из игроков. Он признавался в «неодолимой тяге к игорному столу и костям... Долгие годы... я играл не время от времени, но, стыдно сказать, каждый день». Он играл во всё — от костей и карт до шахмат. Он зашел так далеко, что признавал благотворность игры: «...в периоды потрясений и бедствий... я находил утешение в постоянной игре в кости». Кардано терпеть не мог непрошеных советчиков и все знал о шулерских проделках, в частности остерегался игроков, «которые натирали карты мылом, чтобы они легко скользили и были послушны в руках». Анализируя в своей книге вероятностные закономерности игры в кости, он не забывал осторожно оговориться: «...если игра ведется честно». Тем не менее ему приходилось проигрывать крупно и достаточно часто, чтобы заключить, что «лучший из возможных выигрышей — это отказ от игры». Он, кажется, первым в истории взялся за серьезный анализ случайных игр.
Кардано был не только игроком и математиком «от случая к случаю», но и самым знаменитым врачом своего времени — его настойчиво стремились заполучить многие европейские дворы и Ватикан. Однако он не терпел придворные интриги и отклонял все высокие приглашения. Ему принадлежит первое клиническое описание симптомов тифа, он писал о сифилисе и предложил новый метод операции грыжи. Он говорил, что «человек есть не что иное, как дух; если дух не в порядке, все плохо, если же он здоров, все остальное лечится просто», и был одним из первых пропагандистов купания и душа. Когда его в 1552 году пригласили в Эдинбург для лечения архиепископа Шотландского от астмы, он на основе своих знаний об аллергии порекомендовал пациенту набить перину не перьями и пухом, а некрученым шелком, заменить кожаные наволочки полотняными, а причесываться гребнем из слоновой кости. Перед отъездом из Милана в Эдинбург ему предложили за услуги ежедневную плату в размере десяти золотых крон; когда же через сорок дней он покидал Эдинбург, благодарный пациент вручил ему 1400 крон, не считая дорогих подарков.
Кажется, Кардано был очень занятым человеком. Он опубликовал 131 печатную работу, сжег, по его словам, еще 170, а после смерти оставил 111 неопубликованных рукописей. В его писаниях затрагиваются самые разные вопросы, касающиеся математики, астрономии, физики, состава мочи, зубов, жизни Девы Марии, гороскопа Иисуса Христа, морали, аморальности, жизни Нерона, музыки, снов. Его «De Subtilitate Rerum» («О сущности вещей») стала тогдашним бестселлером и выдержала шесть изданий подряд; в ней обсуждаются научные и философские вопросы наряду с суевериями и загадочными историями.
У него было два сына, заставивших его испытать много горя. В «De Vita» Кардано пишет о старшем сыне Джамбаттисте, своем любимце, что он был «глух на правое ухо, с маленькими бесцветными беспокойными глазами. На левой ноге у него было два пальца; третий и четвертый, если я не ошибаюсь, срослись с большим, образуя гусиную лапу. Он был немного горбат...». Джамбаттиста женился на девушке с подпорченной репутацией, которая была ему неверна; по ее признанию, муж не был отцом ни одного из ее троих детей. После трех лет семейной жизни, ставшей для него адом, Джамбаттиста приказал своему слуге приготовить пирог с мышьяком и дал его жене, которая тут же умерла. Кардано сделал все для спасения сына, но Джамбаттиста уже после освобождения из тюрьмы признался в убийстве жены. По пути к месту казни, где его обезглавили, палачи отрубили ему левую руку и пытали его. Младший сын, Альдр, постоянно обкрадывал своего отца и время от времени попадал в тюрьму, где побывал не менее восьми раз.
У Кардано был молодой протеже, Лодовико Феррари, блестящий математик, какое-то время служивший секретарем у кардинала Мантуи. В возрасте 14 лет Феррари поселился у Кардано и скрашивал его старость, называя себя «творением Кардано». Он защищал доказательства Кардано в нескольких диспутах с другими математиками, и многие авторитетные ученые считают, что ему принадлежали многие идеи, приписываемые его учителю. Но Феррари не смог утешить Кардано, тяжело переживавшего трагедию собственных сыновей. Темпераментный, щедро растрачивавший себя, Феррари потерял все пальцы на правой руке в трактирной ссоре и в 43 года был отравлен то ли сестрой, то ли ее любовником.
Главный математический труд Кардано «Ars Magna» («Великое искусство») вышел в свет в 1545 году; к этому времени Коперник уже опубликовал описание гелиоцентрической планетной системы, а Везалий закончил свой трактат по анатомии. Пятью годами раньше в «Основах искусств» («Grounde of Artes») англичанина по имени Роберт Рикорд впервые появились символы «+» и «-». Семнадцать лет спустя в английской же книге под названием «Оселок остроумия» («Whetstone of Witte») впервые был использован символ «=», потому что «на свете не может быть большей идентичности, чем у пары параллельных прямых»8.
«Ars Magna» была первой основательной работой эпохи Ренессанса по алгебре. В ней Кардано углубляется в решение кубических и квадратных уравнений и даже ломает голову над квадратными корнями отрицательных чисел, неизвестных до использования цифровой системы счисления и все еще остающихся для многих тайной за семью печатями9. Хотя система алгебраических условных обозначений в то время еще не устоялась и каждый автор произвольно пользовался собственной символикой, Кардано ввел использование символов а, & и с, ныне привычных для всех, изучавших алгебру. Удивительно, но он не сумел решить головоломку Пацциоли об игре в balla. Несмотря на все старания, ему, как и другим математикам его времени, это не удалось.
Игре посвящен трактат Кардано «Liber de Ludo Aleae» («Книга о случайных играх»). Слово aleae имеет отношение к игре в кости. Aleatorius происходит от того же корня и относится к случайным играм вообще. Эти слова дошли до нас в слове «aleatory», обозначающем события с неопределенным исходом. Так элегантная латынь невольно объединила для нас понятия игры и неопределенности.
В «Liber de Ludo Aleae» были предприняты первые серьезные попытки разработать статистические принципы теории вероятностей. Но само слово «вероятность» в тексте не встречается. В названии, которое Кардано дал своей книге, и большей части текста используется слово «шансы». Латинские корни слова probability*(Вероятность, правдоподобность. — Примеч. переводчика.) представлены комбинацией probare, что означает 'испытывать, пробовать' или 'проявлять себя', и His, что означает 'способность быть'; именно в этом смысле могло бы оказаться на поверку верным или стоящим рассмотрения предположение, что Кардано мог знать это слово. Понимание связи между вероятностью и случайностью, составляющей суть случайных игр, еще около ста лет после опубликования «Liber de Ludo Aleae» не смогло стать достоянием обыденного мышления.
По утверждению канадского философа Яна Хакинга (Hacking), латинские корни слова «вероятность» означают нечто вроде 'заслуживающее проверки'10. Это значение слова сохранялось долгое время. В качестве примера Хакинг приводит отрывок из романа Даниэля Дефо «Роксана, или Удачливая любовница», датированного 1724 годом. Леди, убедившая состоятельного мужчину заботиться о ней, именно в этом смысле употребляет слово probable, когда говорит: «Я тогда впервые увидела, что значит вести комфортабельную жизнь, и это стоило испытать (it was a very probable way)». Это значит, что она создала себе образ жизни, соответствующий благосостоянию ее покровителей; как сказал Хакинг, она «сумела выбраться из той грязи, в которой начинала»11.
Хакинг приводит и другой пример толкования этого слова12. Галилео назвал теорию Коперника о вращении Земли вокруг Солнца improbable (неправдоподобной, невероятной), потому что она противоречит тому, что люди могут видеть собственными глазами, — Солнце ходит вокруг Земли. Теория была неправдоподобной, потому что не находила подтверждения. Менее столетия спустя, используя новое (но все же не новейшее) значение слова, немецкий философ Лейбниц охарактеризовал гипотезу Коперника как «несравненно более вероятную». Для Лейбница, пишет Хакинг, «вероятность определяется через очевидность и разум»13. На самом деле в немецком слове wahrscheinlich* (Вероятный. — Примеч. переводчика.) хорошо отображается смысл понятия: оно переводится как «кажущееся правдой, правдоподобное».
Вероятность всегда несет в себе двоякий смысл: с одной стороны, это взгляд в будущее, с другой — истолкование прошлого; с одной стороны, речь идет о наших предположениях, с другой — о том, что мы действительно знаем. Эта двуединость понятия пронизывает все, о чем пойдет речь в этой книге.
В первом смысле вероятность означает степень правдоподобия или приемлемости мнения — хороший взгляд на вероятность. Ученые обозначают такое понимание термином «эпистемологический», т. е. не поддающийся до конца анализу и пониманию, находящийся на границе познаваемого и непознаваемого.
Понимание этого первого аспекта возникло значительно раньше, чем идея об измерении вероятности. Старое понимание развилось с течением времени из идеи проверки: насколько можно принимать на веру то, что мы знаем? В случае Галилео вероятность была оценкой того, насколько можно верить тому, о чем нам сказали. Использование этого понятия у Лейбница ближе к современному: насколько можно доверять собственному восприятию.
Этот более современный подход не мог получить развития, пока математики не разработали теоретическую концепцию частоты событий в прошлом. Кардано мог первым наметить статистический подход к теории вероятностей, но характерное для его времени и психологии игрока отношение к жизни обусловило интерес только к субъективно-волевому аспекту вероятностей, и такое понимание не стыковалось с тем, что он пытался осуществить на пути измерения.
Кардано осознавал, что он стоит перед чем-то значительным. В автобиографии он, оценивая «Liber de Ludo Aleae» как одно из своих главных достижений, отметил, что «открыл разум для тысячи поразительных фактов». Заметьте слова «разум для». Упоминаемые в книге факты о частоте исходов были известны каждому игроку, но не было теории, объясняющей эти частоты. Кардано высказывает характерную для теоретика жалобу: «...эти факты много дают для понимания, но вряд ли что-либо для самой игры».
В автобиографии Кардано сообщает, что написал «Liber de Ludo Aleae» в 1525 году, будучи еще молодым человеком, и переписал заново в 1565-м. При экстраординарной оригинальности книга чрезвычайно беспорядочна. Она собрана из бесчисленных черновых набросков и решений проблем, которые появляются в одном месте, перемежаются с решениями, базирующимися на существенно отличных методах, описанных в другом месте. Отсутствие какой-либо системы в использовании математических символов страшно затрудняет понимание текста. Работа не публиковалась при жизни Кар-дано. Она была найдена среди рукописей после его смерти и впервые опубликована в Базеле только в 1663 году. К этому времени в теории вероятностей был достигнут значительный прогресс силами других ученых, которые не были знакомы с направленными к той же цели усилиями Кардано.
Если бы эта работа не пролежала целое столетие в безвестности, содержащиеся в ней обобщения, касающиеся вероятностей в играх, могли бы значительно ускорить развитие математики и теории вероятностей. Здесь впервые сформулировано общепринятое теперь представление вероятности через отношение числа благоприятных исходов к «совокупности» (circuit), то есть к общему числу возможных исходов. Например, когда мы говорим, что шансы выбрасывания орла или решки составляют 50/5о> эт° значит, что орел выпадает в одном из двух равновозможных случаев. Вероятность достать даму из колоды карт составляет Vis> поскольку в колоде из 52 карт имеется четыре дамы; вероятность же достать даму пик равна !/52' поскольку в колоде только одна дама пик.
Последуем за Кардано в его рассмотрении вероятностей различных результатов бросков при игре в кости1'. В главе 15 его «Liber de Ludo Aleae», в параграфе, озаглавленном «О выбрасывании одной кости», он проясняет некоторые общие принципы, ранее никем не рассматривавшиеся:
Частоты появления значений, относящихся к каждой из двух половин числа граней, одинаковы; отсюда шансы, что данное значение выпадет в трех бросках из шести, равны шансам, что одно из трех заданных значений выпадет в одном броске. Например, я могу легко выбросить один, три или пять, так же как два, четыре или шесть. Ставки должны соответствовать этому равенству, если игра ведется честно14.
Далее Кардано продолжает вычислять вероятность того, что в одном броске выпадет одно из двух чисел, скажем 1 или 2. Ответ: один шанс из трех, или 33%, поскольку речь идет о двух исходах из шести возможных. Он также подсчитывает вероятность повторения благоприятных исходов при бросании одной кости. Вероятность того, что в двух бросках подряд выпадет 1 или 2, равна 1/д, то есть квадрату одного шанса из трех, или 1/3, умноженной сама на себя. Вероятность того, что в трех бросках подряд выпадет 1 или 2, равна 1/27, или */з x Vs x Va» a вероятность выбросить 1 или 2 в четырех бросках подряд равна 1/3 в четвертой степени.
Кардано продолжает определять вероятность выбросить 1 или 2 с двумя костями вместо одной. Если шансы, что в одном броске
выпадет 1 или 2, оцениваются как один к трем, интуиция под
сказывает, что при бросании двух костей они удвоятся и достиг
нут 67%. Правильным ответом будет соотношение пять к девяти,
или 55,6%. Действительно, при выбрасывании двух костей есть
один шанс из девяти, что 1 или 2 выпадут сразу на двух костях
в одном броске, но вероятность того, что на каждой кости выпа
дет 1 или 2, уже подсчитана ранее; значит, мы должны вычесть
1/9 из 67%, предсказанных нами на основе интуиции. Отсюда
1/3 + 1/3 - 1/9 = 5/9.
Далее Кардано углубляется в игры с большим числом костей и большим числом успешных исходов при большем числе бросков. В конце концов это исследование приводит его к обобщению законов о шансах, которое превращает экспериментальный результат в теорию.
Он рассматривает принципиальный переход от бросков одной кости к броскам с двумя костями. Еще раз, но более детально, проследим за его рассуждениями. Хотя две кости имеют в сумме двенадцать граней, Кардано в случае двух костей не определяет вероятность выбрасывания 1 или 2, исходя из предположения, что число возможных исходов равно двенадцати. Он замечает, что игрок может, например, выбросить 3 на первой кости и 4 на второй, но точно так же он может выбросить 4 на первой кости и 3 на второй.
Число возможных комбинаций, образующих совокупность — общее число возможных исходов, — оказывается значительно большим, чем общее число граней на двух костях. Заметив решающую роль комбинаций чисел, Кардано сделал гигантский шаг на пути разработки вероятностных законов.
Игра в крепе дает полезную иллюстрацию важности комбинаций в вычислении вероятностей. Как продемонстрировал Кардано, бросание пары шестигранных костей дает не одиннадцать (от двух до двенадцати), а тридцать шесть возможных комбинаций, от «змеиных глаз» (один-один) до «вагончиков» (шесть-шесть).
Семерку, ключевое число в крепсе, выбросить легче всего. Она в шесть раз более вероятна, чем дубль-один или дубль-шесть, и в три раза более вероятна, чем одиннадцать, другое ключевое число. Шесть возможных исходов, дающих семерку, суть следующие: 6 + 1,5 + 2, 4 + 3, 3 + 4, 2 + 5и 1+6; заметьте, что эти исходы есть не что иное, как варианты представления сумм трех различных комбинаций — 5 и 2, 4 и 3, 1 иб. Одиннадцать получается только в двух исходах, потому что образуется из двух вариантов представления суммы одной комбинации: 5 + 6 и 6 + 5. Есть только по одному варианту для представления дублей — от один-один до шесть-шесть. Игроки в крепе повысят свой класс, если запомнят следующую таблицу:
Вероятность каждой суммы при бросании пары костей
Сумма Вероятность
12 1/36
13 2/36» ИЛИ 1/18
14 3/36> ИЛИ 1/12
15 4/36» ИЛИ !/9
16 5/36
17 6/36, или 1/6
18 5/36
19 4/36, ИЛИ 1/9
10 3/36, ИЛИ 1/12
11 2/36, ИЛИ 1/18
12 Vse
В триктрак, другой игре, в которой игроки бросают две кости, числа на каждой кости могут или складываться, или рассматриваться порознь. Это значит, что, если, например, брошены две кости, 5 может получиться пятнадцатью разными путями:
5 + 1
5 + 2
5 + 3
5 + 4
5 + 5
5 + 6
+ 5
+ 5
+ 5
+ 5
6 + 5
1+4
4 + 1
+ 3
+ 2
Вероятность выбросить пятерку равна 15/з6> или 42%15.
Здесь важна семантика. По определению Кардано, вероятность некоего исхода есть отношение числа благоприятных исходов к общему числу возможных исходов. Шансы (odds) некоего исхода есть отношение числа благоприятных исходов к числу неблагоприятных исходов. Шансы, разумеется, зависят от вероятности, и их удобнее использовать при заключении пари.
Если вероятность выбросить пятерку в триктрак равна 15 удачным броскам на каждые 36 бросков, то шансы выбросить пятерку равны отношению 15 к 21. Если вероятность выбросить 7 в крепсе равна одному удачному на каждые шесть бросков, то шансы выбросить число, отличное от 7, равны 5 к 1. Это значит, что вы должны ставить не более одного доллара за то, что в следующем броске выпадет 7, если ваш партнер поставил 5 долларов против. При подбрасывании монеты орел выпадает с вероятностью один к двум. Поскольку шансы выбросить орел и решку равны, никогда не ставьте больше, чем ваш партнер по игре. Если шансы в заезде на бегах оцениваются как 1 к 20, теоретическая вероятность того, что ваша кляча победит, оценивается как 1 из 21, или 4,8%, т. е. менее 5%.
Мы никогда не узнаем, писал ли Кардано «Liber de Ludo Aleae» как учебник для игроков или как теоретический труд по теории вероятностей. Учитывая место игры в его жизни, правила игры могли послужить только поводом для этой работы, но мы не беремся с уверенностью это утверждать. Игра — идеальная лаборатория для проведения экспериментов по квантификации риска. Необыкновенная интеллектуальная любознательность Кардано и набор математических принципов, которые он имел смелость охватить в «Ars Magna», позволяют предположить, что он мог искать нечто большее, чем путь к выигрышу за игорным столом.
Кардано начал «Liber de Ludo Aleae» в духе экспериментального исследования, а закончил созданием теоретических основ комбинаторики. Более того, оригинальные взгляды на роль вероятности в случайных играх, не говоря уже о математических средствах, примененных Кардано для решения поставленных задач, позволяют считать «Liber de Ludo Aleae» первой в истории попыткой измерения риска. Именно благодаря блестящим достижениям Кардано возникла сама идея и возможность управления риском. Каковы бы ни были мотивы написания книги, она стала выдающимся произведением, полным оригинальности и математической смелости.
Но главным героем этой истории является не Кардано, а время, в которое он жил. Возможность открыть то, что открыл он, существовала тысячи лет. И индо-арабская система счисления достигла Европы по меньшей мере за триста лет до написания «Liber de Ludo Aleae». He хватало свободы мысли, страсти к эксперименту и стремления взять под контроль будущее, которые были пробуждены Ренессансом.
Последним великим итальянцем, бившимся над проблемами вероятности, был Галилео, родившийся, как и Шекспир, в 1564 году, когда Кардано уже состарился16. Подобно очень многим своим современникам, Галилео обожал экспериментировать и не упускал ни одного повода использовать для эксперимента все, что попадалось ему на глаза. Даже собственный пульс он использовал для измерения времени.
Однажды в 1583 году во время службы в Пизанском кафедральном соборе Галилео обратил внимание на лампу, свисавшую с потолка. Порывы сквозняка раскачивали ее то сильнее, то слабее. Он заметил, что все колебания совершались за один и тот же промежуток времени независимо от величины амплитуды. Результатом этого случайного наблюдения стало использование маятника для производства часов. За тридцать лет среднесуточная ошибка таких часов была снижена с пятнадцати минут до десяти секунд и менее. Это был союз времени и технологии. Таков был стиль жизни Галилео.
Около сорока лет спустя, уже будучи Первым и Экстраординарным Математиком Пизанского университета и Математиком Его светлости Козимо II, Великого герцога Тосканского, он написал короткое эссе об игре, «чтобы угодить ему, приказавшему описать, что мне пришло в голову об этой проблеме»17. Эссе называлось «Sopra le Scoperte del Dadi» («Об игре в кости»). Использование итальянского вместо латыни указывает на то, что Галилео не слишком уважал тему своей работы и считал ее не стоящей серьезного обсуждения. Создается впечатление, что он без энтузиазма работал над очередным малопрестижным заданием, полученным от хозяина, Великого герцога, пожелавшего увеличить свои шансы за игорным столом.
При написании этого эссе Галилео удалось использовать работу Кардано, хотя до ее публикации оставалось еще сорок лет. Флоренс Найтингейл Давид (David), историк и статистик, предположил, что Кардано так долго размышлял над этими проблемами, что непременно должен был обсуждать их с друзьями. Более того, он был популярным лектором. Так что математики имели возможность хорошо познакомиться с содержанием «Liber de Ludo Aleae», даже не читая саму книгу18.
Подобно Кардано, Галилео занялся анализом результатов, получаемых при бросании одной или нескольких костей, описал общие выводы о частоте различных комбинаций и типы исходов. Между прочим, он утверждал, что использовал методологию, доступную любому математику. В частности, основанная на понятии случайности концепция вероятности настолько прочно утвердилась к 1623 году, что Галилео полагал, что он здесь мало что способен добавить.
Однако еще оставалось широкое поле для открытий. Идеи о вероятности и риске развивались быстрыми темпами, а интерес к этим проблемам через Францию распространился на Швейцарию, Германию и Англию.
Франция, например, в течение XVII и XVIII веков испытала настоящий математический бум, герои которого пошли значительно дальше экспериментов Кардано с бросанием костей. Успехи вычислительных методов и алгебры привели к бурному развитию абстрактных математических понятий и обеспечили обоснование многих практических приложений вероятности — от страхования и инвестирования до таких, казалось бы, далеких от математики предметов, как медицина, наследственность, поведение молекул, стратегия и тактика военных действий и предсказание погоды.
Первым шагом была разработка измерительных методов, пригодных для определения степени упорядоченности, которая может скрываться в неопределенном будущем. Попытки разработать такие методы впервые были предприняты еще в XVII веке. В 1619 году, например, пуританский священник Томас Гатакер опубликовал нашумевшую работу «О природе и использовании жребия» («Of the Nature and Use of Lots»), в которой утверждал, что исход случайных игр определяет не Бог, а закон природы вещей, или естественный закон19. К концу XVII века, спустя почти сто лет после смерти Кар-дано и менее чем через пятьдесят лет после смерти Галилео, были решены важные проблемы теории вероятностей. Следующим шагом было решение вопроса о том, как люди осознают вероятности и реагируют на них в реальной жизни. Этим в конечном счете и занимаются теории управления риском и принятия решений, и здесь баланс между объективными данными и волевыми качествами приобретает решающее значение.
Глава 4
Французские знакомства
Ни Кардано, ни Галилео не заметили, что они вплотную подошли к формулировке законов вероятности, являющихся главным орудием управления риском. Кардано сделал на основе своих экспериментов ряд весьма важных обобщений, но интересовала его не столько теория вероятностей, сколько оптимизация игры, а Галилео даже теория игры не особо интересовала.
Галилео умер в 1654 году. Двенадцать лет спустя три француза осуществили наконец гигантский прорыв в таинственный мир неопределенности, и затем меньше чем за десять лет рудиментарная идея превратилась в хорошо разработанную теорию, расчистившую путь замечательным практическим достижениям. Голландец Гюйгенс в 1657 году опубликовал ставший очень популярным учебник по теории вероятностей (который в 1664 году внимательно прочел и отметил Ньютон); примерно в это же время Лейбниц размышлял над возможностью применения теории вероятностей к решению юридических проблем; а в 1662 году монахи парижского монастыря Пор-Рояль выпустили новаторскую работу по философии и вероятности под названием «La logique» («Логика»). В 1660 году англичанин Джон Грант опубликовал результаты своего анализа демографических данных на основе статистики смертности, взятой им из записей в церковноприходских регистрационных книгах. К концу 1660 года в голландских городах, традиционно финансировавших городские нужды за счет продажи пожизненной ренты, на этой основе была создана действенная система страхования. К 1700 году, как мы уже отмечали ранее, и английское правительство стало покрывать свой бюджетный дефицит за счет продажи полисов пожизненной ренты.
А началось все со странной троицы французов, которые, глядя на игровой стол, заложили теоретические основы измерения вероятности. Одним из них был Блез Паскаль, блистательный молодой повеса, который стал впоследствии религиозным фанатиком и кончил полным отрицанием ценности разума. Другой, Пьер Ферма, преуспевающий адвокат, для которого математика была побочным занятием. Третьим был аристократ шевалье де Мере, совмещавший свое увлечение математикой с неудержимой страстью к азартным играм; он вошел в историю тем, что сформулировал задачу, решение которой привело двух остальных на тропу открытий.
Ни молодой повеса, ни адвокат не нуждались в экспериментах для подтверждения своих гипотез. В отличие от Кардано они с первых шагов работы над теорией вероятностей пользовались индуктивным методом. Теория позволила измерять вероятности в численном виде и отказаться от принятия решений на основе субъективных мнений.
Склонный к философствованию знаменитый математик Паскаль родился в 1623 году, когда Галилей заканчивал эссе «Об игре в кости». Рожденный во время религиозных войн XVII столетия, он провел полжизни в метаниях между блистательной математической карьерой и уходом в религиозную экзальтацию, по существу своему антиинтеллектуальную. Хотя он был замечательным математиком и гордился своими достижениями как «мастера геометрии», самой сильной страстью его жизни оказались в конечном итоге религиозные переживания1.
Паскаль начинал жизнь как вундеркинд. Очарованный формами и фигурами мальчик самостоятельно доказал большинство теорем евклидовой геометрии, заполняя геометрическими построениями плитки пола детской комнаты. В возрасте 16 лет он написал работу, посвященную коническим сечениям, поразившую великого Декарта.
Увлечение маленького Блеза математикой сослужило хорошую службу его отцу, который тоже был в своем роде математиком и вел обеспеченную жизнь в качестве сборщика, а если говорить точнее, откупщика налогов. Откупщик налогов ссужал деньгами монарха, подобно фермеру, засевающему поле, — и затем собирал деньги с населения, как тот же фермер собирает жатву, в надежде собрать больше, чем посеял.
Когда Паскаль был еще совсем мальчишкой, он изобрел и запатентовал счетную машину для облегчения скучной работы М. Паскаля по ежедневному подведению баланса. Это хитроумное механическое устройство с приводами и колесами, которые вращались взад-вперед, складывая и вычитая, было предшественником современных электронных калькуляторов. Юный Паскаль выполнял на своей машине также умножение и деление и даже начал разрабатывать конструкцию для извлечения квадратных корней. К сожалению, в течение последующих 250 лет клерки и бухгалтеры не могли использовать эту машину из-за очень высокой стоимости.
Заметив гениальные способности своего сына, отец Блеза, когда тому исполнилось четырнадцать лет, ввел его в избранный кружок, еженедельно собиравшийся для дискуссий в доме иезуитского священника по имени Марен Мерсенн, расположенном недалеко от Королевской площади в Париже. В первой половине XVII века дом аббата Мерсенна был центром мировой науки и математики. Не довольствуясь организацией еженедельных дискуссий с участием крупнейших ученых, аббат своим неровным почерком вел обширнейшую переписку с учеными всей Европы, сообщая всем и каждому обо всем, что было нового и интересного2.
В отсутствие ученых обществ, профессиональных журналов и других средств обмена идеями и информацией Мерсенн внес ценный вклад в развитие и распространение новых научных теорий. Парижская Академия наук и Лондонское Королевское общество, основанные лет через двадцать после его смерти, были прямыми наследниками его кружка.
Хотя ранние работы Блеза Паскаля по геометрии и алгебре произвели большое впечатление на сильных математиков, которых он встретил в кружке Мерсенна, у него скоро возникли прямо противоположные интересы. В 1646 году старший Паскаль поскользнулся на льду и сломал бедро; костоправы, приглашенные ухаживать за ним, оказались членами ордена янсенистов. Эти люди верили, что единственный путь к спасению лежит через аскетизм, жертвенность, смирение и самоограничение. Они проповедовали, что человек, который не стремится неустанно ко все более высокому духовному очищению, неминуемо скатится в бездну греха. Утверждая примат чувства и веры, они третировали разум, считая его помехой на пути к искуплению.
Залечив бедро Паскаля-отца, янсенисты в течение трех месяцев обрабатывали душу Паскаля-сына, который с энтузиазмом воспринял их доктрину. Теперь он избегал и математики, и других наук, и всех развлечений своей прежней парижской жизни. Религия поглотила его целиком. Объясняя свое состояние, он смог только сказать: «Кто поместил меня сюда? По чьему повелению и предписанию это место и это время предназначены мне? Вечная тишина этого бесконечного пространства приводит меня в ужас»3.
Ужас неожиданно поразил его и с другой стороны. В 1650 году в возрасте 27 лет он стал жертвой частичного паралича, его преследовали страшные головные боли, и было трудно глотать пищу. В качестве лечения доктора предписали ему встряхнуться и вернуться к прежней рассеянной жизни. Не теряя времени, Паскаль последовал их советам. После смерти отца он сказал своей сестре: «Не будем горевать, подобно язычникам, не имеющим надежды»4. Он встряхнулся настолько, что даже превзошел свой прежний разгульный образ жизни, и стал постоянным посетителем парижских игорных домов.
Вернувшись к мирской суете, Паскаль возобновил свои исследования, касающиеся математики и смежных дисциплин. В одном из экспериментов он, вопреки господствовавшему еще со времен Аристотеля мнению, будто природа боится пустоты, доказал существование вакуума. В ходе этого эксперимента он продемонстрировал, что атмосферное давление может быть измерено на разных высотах с помощью ртути, заключенной в трубку, из которой выкачан воздух.
Примерно в это же время состоялось знакомство Паскаля с шевалье де Мере, который гордился своими математическими способностями и умением просчитывать шансы в казино. Как-то в конце 1650 года в письме к Паскалю он хвастал: «Я открыл в математике вещи весьма необычные, о которых лучшие ученые прежних времен никогда не помышляли и которыми были поражены лучшие математики Европы»5.
Кажется, он сумел произвести впечатление на самого Лейбница, отозвавшегося о шевалье как о «человеке острого ума, который был одновременно игроком и философом». Правда, в другой раз Лейбниц заметил: «Я почти смеялся над важничаньем шевалье де Мере в его письме к Паскалю»6.
Паскаль согласился с Лейбницем. «У месье де Мере, — писал он своему коллеге, — хорошая голова, но он не геометр, а это, сами понимаете, большой недостаток»7. Здесь Паскаль высказался как профессионал, которому приятно уколоть дилетанта. Во всяком случае, он не особенно высоко ставил математические достижения шевалье8.
Однако именно от Паскаля мы узнаём об интуитивном понимании вероятности, которым обладал де Мере. Играя, он ставил вновь и вновь на комбинации, приносившие ему небольшие выигрыши, которые его противники считали чисто случайными. Согласно Паскалю, он знал, что если метнуть одну кость четыре раза, то вероятность увидеть шестерку превысит 50%, а точнее — 51,77469136%. Его стратегия заключалась в том, чтобы выигрывать помалу при большом числе бросков, избегая делать редкие крупные ставки. Эта стратегия требовала много денег, потому что шестерка могла довольно долго не выпадать и приходилось удлинять серию бросков, дожидаясь, пока средний процент появления шестерки превысит 50% 9.
Де Мере пытался варьировать свою систему, ставя на то, что sonnez, или дубль-шесть, в 24 бросках двух костей должен выпадать с вероятностью, большей 50%. На этом он потерял довольно много денег, пока не выяснилось, что эта вероятность при 24 бросках составляет только 49,14%. Если бы он ставил на 25 бросков, при которых вероятность дубль-шесть составляет 50,55%, он мог бы разбогатеть. История освоения стратегии риска окрашена не только в красный цвет, но и в черный.
До встречи с Паскалем шевалье неоднократно обсуждал со многими французскими математиками задачу об очках — как два игрока в balla должны разделить банк в случае прекращения неоконченной игры, однако никто не смог дать ему вразумительный ответ.
Хотя эта задача заинтересовала Паскаля, он не захотел решать ее самостоятельно. В наши дни такая проблема стала бы темой обсуждения для группы специалистов на ежегодном семинаре одного из научных обществ. Во времена Паскаля такой форум был невозможен. В лучшем случае небольшая компания ученых могла обсудить проблему в интимной обстановке гостиной аббата Мерсенна, но обычно в таких ситуациях прибегали к личной переписке с другими математиками, которые могли подсказать что-либо полезное для решения задачи. В 1654 году Паскаль обратился к Пьеру де Кар-кави, члену кружка аббата Мерсенна, который свел его с тулузским адвокатом Пьером де Ферма.
Вряд ли Паскаль мог найти лучшего партнера для решения этой задачи. Ферма был феноменально образованным человеком10. Он говорил на всех основных европейских языках, на некоторых из них даже писал стихи и составлял обширные комментарии к греческим и римским авторам. Кроме того, он обладал редкостным талантом математика. Независимо от Декарта он изобрел аналитическую геометрию, внес большой вклад в раннее развитие численных методов, проводил исследования, направленные на определение веса Земли, изучал оптические явления, в частности рефракцию световых волн. В ходе оказавшейся весьма продолжительной переписки с Паскалем он внес значительный вклад в теорию вероятностей.
Но коронные достижения Ферма относятся к теории чисел — анализу структурных соотношений каждого числа с остальными. Эти соотношения порождают бесчисленные головоломки, некоторые из которых не нашли решения и по сей день. Греки, например, обнаружили то, что они назвали совершенными числами, — это числа, которые равны сумме всех своих делителей, за исключением их самих, подобные 6 = 1 + 2 + 3. Следующее после 6 совершенное число 28 = 1 + 2 + 4 + 7 + 14. Третье такое число — это 496, следующее — 8128. Пятое совершенное число — 33 550336.
Пифагор открыл то, что он называл дружественными числами или «вторыми я» чисел, представляющие собой суммы всех делителей, отличных от самого числа. Все делители числа 284, то есть 1, 2, 4, 71 и 142, в сумме дают 220; все делители числа 220, то есть 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110, в сумме дают 284.
Никому не удалось установить правила для нахождения всех существующих совершенных чисел или всех дружественных чисел, как никто не сумел вывести формулы рядов, в которых они следуют друг за другом. С аналогичными трудностями мы сталкиваемся при рассмотрении простых чисел, подобных 1, 3 или 29, каждое из которых делится только на 1 и на самого себя. С одной стороны, Ферма считал, что он получил формулу вычисления простых чисел, но, с другой стороны, он предупреждал, что не смог теоретически доказать ее всеобщность. Формула, которую ему удалось найти, выдает 5, затем 17, затем 257 и, наконец, 65 537 — всё простые числа, а следующим числом, получаемым на основе его формулы, оказывается 4 294 967 297.
По-видимому, наибольшую славу Ферма принесло нацарапанное на полях «Арифметики» Диофанта утверждение, известное как великая теорема Ферма. Несмотря на трудность его доказательства, суть этого утверждения изложить несложно.
Греческий математик Пифагор впервые показал, что квадрат наибольшей стороны прямоугольного треугольника, гипотенузы, равен сумме квадратов двух других его сторон. Диофант, один из древнейших исследователей квадратных уравнений, написал сходное выражение: х4 + у* + г4 = и2. «Почему, — спрашивает Ферма, — Диофант не искал две [вместо трех] четвертых степени, дающих в сумме квадрат некоего числа? Дело в том, что это невозможно, и мой метод дает возможность доказать это со всей строгостью»11. Ферма заметил, что Пифагор был прав, написав а2 + Ь2 = с2, но а3 + Ь3 не будут равны с3 и ни для одного показателя степени, большего чем 2, такое равенство не будет выполняться: теорема Пифагора верна только для квадратов.
И затем Ферма написал на полях книги: «У меня есть прекрасное доказательство этого утверждения, но здесь негде его записать»12. Этой короткой фразой он ошарашил математиков, которые вот уже 350 лет пытаются найти теоретическое доказательство утверждения, получившего многочисленные эмпирические подтверждения. В 1993 году английский математик Эндрю Уайлс (Wiles) заявил, что он решил эту головоломную задачу после семи лет работы в Принстоне. Его результаты были опубликованы в «Annals of Mathematics» в мае 1995 года, но математики всё еще спорят относительно того, что он, собственно, получил.
Великая теорема Ферма представляет собой скорее курьез, чем постижение окружающего мира. А вот решение, которое Ферма и Паскаль разработали для задачи о разделе банка в незавершенной игре, до сих пор приносит пользу обществу в качестве краеугольного камня современной системы страхования и других форм управления риском.
Решение задачи об очках основывается на том, что игрок, опережающий противника в момент остановки игры, имеет больше шансов на победу, если игра продолжится. Но насколько больше? Насколько малы шансы отстающего игрока? Как, в конце концов, перекинуть мост от этой задачи к науке прогнозирования?
Переписка Паскаля и Ферма, которую они вели по этому поводу в 1654 году, обозначила эпохальное событие в истории математики и теории вероятностей* ( Эта переписка в полном объеме, переведенная на английский язык, опубликована в: [David, 1962, Приложение 4].). Удовлетворяя любопытство, проявленное к этой старой проблеме шевалье де Мере, они создали систематический метод анализа ожидаемых исходов. Поскольку может произойти больше вещей, чем происходит на самом деле, Паскаль и Ферма предложили процедуру определения вероятности каждого из возможных результатов при допущении, что исходы могут быть оценены математически.
Они подошли к проблеме с разных позиций. Ферма обратился к чистой алгебре. Паскаль оказался более изобретательным: он использовал геометрическую форму для представления алгебраических структур. Его методология проста и приложима к широкому спектру проблем теории вероятностей.
Основная математическая идея, стоящая за этим геометрическим представлением алгебраических соотношений, зародилась задолго до Паскаля и Ферма. Омар Хайям обсуждал ее примерно на 450 лет раньше. В 1303 году китайский математик Ху Шайчи, явно не претендуя на оригинальность, подошел к проблеме с помощью способа представления, который он называл «правдивое зеркало четырех элементов». Кардано тоже знал об этом методе13.
Правдивое зеркало Ху приобрело известность как треугольник Паскаля. «Пусть кто-нибудь попробует утверждать, что я не сказал ничего нового, — с гордостью пишет Паскаль в автобиографии. — Новшеством является трактовка предмета. Когда мы играем в теннис, мяч у нас общий, но один из нас играет лучше»14.
1
1 1
121
1331
14641
1 5 10 10 5 1
1 6 15 20 15 6 1
С первого взгляда на треугольник Паскаля рябит в глазах, но его структура достаточно проста: каждое число равно сумме двух чисел, расположенных над ним справа и слева.
Вероятностный анализ начинается с вычисления числа возможных ситуаций, обеспечивающих определенный исход некоего события — circuit Кардано* (См.главу 3, стр. 68. — Примеч. переводчика.). Именно эта совокупность и представлена последовательностью чисел в каждой строке треугольника Паскаля. Первая строка представляет вероятность события, которое не может не произойти. Здесь возможен только один исход с нулевой неопределенностью; это, по сути, не относится к вероятностному анализу. Вторая строка уже представляет вероятностную ситуацию с шансами 50 на 50: вероятность исхода в ситуации, подобной рождению мальчика или девочки в семье, планирующей иметь только одного ребенка, или вероятность того, что при одном броске монеты вам выпадет именно орел или решка. При наличии только двух возможных исходов результат может быть тот или иной: мальчик или девочка, орел или решка; вероятность рождения мальчика, а не девочки или выпадения орла, а не решки равна 50%.
Рассмотрим в том же духе остальные строки треугольника. Третья строка моделирует ситуацию с семьей, в которой двое детей. Возможны четыре варианта: один шанс за двух мальчиков, один шанс за двух девочек и два шанса за то, что в семье есть и мальчик, и девочка — мальчик старше и мальчик младше девочки. Теперь в конечном счете один мальчик (или одна девочка) появляются в трех из четырех исходов, и, таким образом, вероятность наличия мальчика (или девочки) в семье с двумя детьми равна 75%, вероятность наличия мальчика и девочки в одной такой семье равна 50%. Очевидно, что процесс зависит от комбинаций чисел, которые были отмечены в работе Кардано, правда еще не опубликованной к тому времени, когда Паскаль взялся за решение задачи.
Этот же метод анализа приводит к решению задачи об очках. Рассмотрим вместо предложенной Пацциоли игры в balla бейсбол. Какова вероятность того, что ваша команда победит в World Series*(Первенство США по бейсболу. — Примеч. переводчика.) после проигрыша первого матча? Если мы, как в'случайных играх, предположим, что две команды играют одинаково, задача оказывается идентичной задаче об очках, которую решали Ферма и Паскаль15.
Допустим, вторая команда уже выиграла одну игру. Каково число разных последовательностей результатов, возможных в шести играх, и какие из этих побед и поражений приведут вашу команду к победам в четырех играх, необходимым для выигрыша? Ваша команда может выиграть вторую игру, проиграть третью и затем выиграть последующие три. Она может проиграть две игры подряд и выиграть последующие четыре. Или она может выиграть нужные четыре игры сразу, оставив команду-соперника только с одним выигрышем. Сколько существует возможных комбинаций побед и поражений в серии из шести игр? Треугольник дает ответ на этот вопрос. Все, что вам нужно, вы найдете в соответствующей строке.
Заметьте, что вторая строка треугольника, строка с шансами 50 на 50, моделирует задачу о семье, имеющей одного ребенка, или задачу об одном броске монеты и описывает события с числом исходов, равным 2. Следующая строка показывает распределение исходов в задаче о семье с двумя детьми или в задаче о двух бросках монеты и описывает события, у которых число возможных исходов равно 4, или 22. Следующая строка описывает события с числом исходов, равным 8, или 23, и показывает распределение исходов в задаче о семье с тремя детьми. В задаче с шестью играми, оставшимися для определения победителя турнира, вам нужно рассмотреть строку с числом возможных исходов 26 , то есть с 64 возможными последовательностями побед и поражений2). Последовательность чисел в этой строке такова:
1 6 15 20 15 6 1
Помните, что вашей команде для победы нужно выиграть еще четыре игры, а команде соперников нужны только три победы. Возможен случай, когда ваша команда выиграет все игры, а ее соперники не одержат ни одной победы; число 1 в начале строки относится к этому случаю. Следующее число 6. Оно фиксирует шесть разных возможных последовательностей исходов, при осуществлении которых ваша команда В выиграет турнир, а ее соперники С выиграют только одну игру:
OYYYYY YOYYYY YYCYYY YYYCYY YYYYOY YYYYYO
И существует пятнадцать разных возможных последовательностей исходов, при осуществлении которых ваша команда выиграет четыре игры, в то время как команда соперников победит дважды.
Все остальные комбинации в конце концов приводят к трем нужным для победы соперников выигрышам их команды и меньшему, чем необходимо для победы вашей команды (напоминаем: ей нужны четыре победы), числу ее выигрышей. Это значит, что существует 1 + 6 + 15 = 22 комбинации, при осуществлении которых ваша команда победит после поражения в первом матче, и 42 комбинации, при которых чемпионом станет команда соперников. В результате вероятность того, что после первого поражения ваша команда в оставшихся шести играх выиграет четыре прежде, чем команда соперников выиграет три, равна 22/64» или чуть больше одной третьей.
2' Математики заметят, что Паскаль на самом деле ввел здесь биномиальное распределение, или коэффициенты возведения (а + ft) в степени, представленные целыми числами. Например, первой строке соответствует (а + fc)° = 1, в то время как четвертой строке соответствует (а + Ь)3 = 1а3 + За2Ь + Зой2 + 1Ь3.
Из примера следует еще кое-что. Зачем ваша команда будет играть все шесть оставшихся игр в последовательности, в которой она может победить досрочно? Или зачем соперники будут играть все четыре игры, если они могут выиграть в трех и этого им будет достаточно для победы?
Хотя на деле ни одна команда не станет продолжать игру после достижения необходимого для определения чемпиона числа выигрышей, логически законченное решение проблемы было бы неосуществимо без рассмотрения всех математических возможностей. Как заметил Паскаль в переписке с Ферма, в ходе решения задачи математические законы должны доминировать над желанием самих игроков, рассматриваемых только как абстракции. Он поясняет, что «для них обоих абсолютно безразлично и несущественно, будет ли [игра] на деле идти до самого конца».
Переписка была для Паскаля и Ферма восхитительным опытом исследования новых интеллектуальных пространств. Ферма писал Каркави о Паскале: «Я уверен, что он способен решить любую проблему, за которую возьмется». В одном из писем к Ферма Паскаль признаётся: «Ваши числовые построения... превосходят мое понимание». В другом месте он характеризует Ферма как «человека такого выдающегося интеллекта... и такого высочайшего мастерства... [что его работы] сделают его первым среди геометров Европы».
У рассматриваемой задачи были аспекты, которые и Паскаля, глубоко погруженного в религиозные и моральные искания, и юриста Ферма беспокоили больше, чем связанные с ней математические проблемы. Согласно полученному ими решению, раздел банка в неоконченной игре в balla затрагивает проблемы морального права. Хотя игроки могли бы сразу поделить банк поровну, это решение Паскалю и Ферма кажется неприемлемым, потому что оно было бы несправедливым по отношению к игроку, который к моменту прекращения игры оказывается впереди16.
Паскаль явно озабочен моральными аспектами проблемы и осторожен в словах. В своих комментариях к этой работе он отмечает: «...в первую очередь следует признать, что деньги, поставленные игроками на кон, им больше не принадлежат... но взамен они получают право ожидать того, что им принесет удача в соответствии с правилами, на которые они согласились вначале». Если они решат остановить игру, не доведя ее до конца, им придется вновь восстановить исходные права на внесенные в банк деньги. Тогда «должно действовать правило, согласно которому деньги нужно распределить пропорционально тому, что каждому обещала удача. <...> Это справедливое распределение известно как раздел». Справедливые пропорции раздела определяют принципы теории вероятностей.
С учетом этого подхода становится очевидным, что решение Паскаля-Ферма ярко окрашено идеей управления риском, хотя они явно не использовали это понятие. Только безумец идет на риск, если правила не определены, будь то balla, покупка акций IBM, строительство фабрики или согласие на удаление аппендикса.
Но помимо моральных проблем, предложенное Паскалем и Ферма решение приводит к точным обобщениям и правилам вычисления вероятностей, включая случаи участия более чем двух игроков, двух команд, двух полов, двух костей или монет с орлом и решкой. Применение этого подхода позволило им расширить границы теоретического анализа далеко за пределы наблюдений Кардано, что две кости с шестью гранями (или два броска одной кости) дадут б2 комбинаций, а один бросок трех костей дает б3 комбинаций.
Последнее письмо в переписке Паскаля и Ферма датировано 27 октября 1654 года. Меньше чем через месяц Паскаль прошел через своего рода мистический опыт. Он зашил описание этого события в свое платье, чтобы носить его у сердца, провозгласив: «Отречение, абсолютное и сладостное». Он отказался от занятий математикой и физикой, отрекся от роскоши, покинул старых друзей, продал всё, кроме религиозных книг, и вскоре ушел в парижский монастырь Пор-Рояль.
В июле 1660 года Паскаль совершил поездку в Клермон-Фер-ран, недалеко от жилища Ферма в Тулузе. Ферма предложил встретиться, чтобы «обняться и побеседовать пару дней», на полпути между двумя городами; он жаловался на плохое здоровье, объясняя нежелание взять на себя труд проехать все расстояние самому. В августе Паскаль в ответ написал:
Я едва помню, что существует такая вещь, как геометрия [т. е. математика. — П. Б.]. Я почитаю геометрию столь бесполезной, что не могу усмотреть разницу между геометром и хорошим ремесленником. Хотя я считаю ее лучшим в мире ремеслом, это все же не более чем ремесло... Весьма вероятно, что я никогда больше не буду думать об этом17.
Во время пребывания в Пор-Рояле Паскаль собрал воедино свои мысли о жизни и религии и опубликовал их в книге, озаглавленной «Pensees» («Мысли»)18. Во время работы над этой книгой он заполнил с обеих сторон два листа бумаги, по словам Хакинга «написанные разбегающимся во все стороны почерком... полные подчисток, исправлений, производящие впечатление запоздалых раздумий». Этот фрагмент приобрел известность как пари Паскаля (le pari de Pascal). Здесь он задается вопросом: «Есть Бог или нет Бога? К чему нам склониться? Разум молчит».
Опираясь на свой анализ вероятных исходов игры в balla, Паскаль ставит вопрос в терминах случайных игр. Он постулирует игру, которая продолжается до бесконечности. В данный момент бросается монета. На что вы поставите — на орла (Бог есть) или решку (Бога нет)?
Хакинг утверждает, что ход рассуждений Паскаля в предложенном им варианте ответа на этот вопрос представляет собой начало теории принятия решений. «Теория принятия решений, — рассуждает Хакинг, — это теория о том, на что решиться, когда неизвестно, что произойдет»19. Принятие такого решения является первым и важнейшим шагом при любых попытках управлять риском.
Иногда мы принимаем решения на основе прошлого опыта, тех экспериментов, которые мы или другие проводили в течение жизни. Но нам недоступен эксперимент, способный доказать бытие или небытие Бога. Зато в наших силах исследовать будущие последствия веры или неверия в Бога. Мы никогда не сможем избавиться от этой дилеммы, потому что самим актом своего существования принуждены играть в эту игру.
Паскаль объясняет, что вера в Бога — это не решение. Вы не можете проснуться утром и сказать: «Сегодня, кажется, я решу верить в Бога». Вы верите или не верите. Решением, следовательно, является выбор или отказ от таких действий, которые будут вести к вере в Бога, подобно общению с благочестивыми людьми и следованию жизни «святой и праведной». Следующий этим предписаниям ставит на то, что Бог есть. Тот, кто не может смириться с ними, ставит на то, что Бога нет.
Единственный способ выбрать между ставкой на то, что Бог есть, и ставкой на то, что Он не существует, в этой описанной Паскалем бесконечной игре с бросанием монеты заключается в принятии решения, является ли исход, при котором Бог существует, в некотором смысле более предпочтительным, чем исход, в соответствии с которым Бог не существует, даже если шансы могут быть только 50 на 50. Как раз этот взгляд привел Паскаля к решению — к выбору, в котором ценность исхода и вероятность того, что он будет иметь место, различаются, потому что последствия обоих исходов различны3).
Если Бога нет, не важно, ведем мы праведную жизнь или грешим. Но предположим, что Бог есть. Тогда, поставив против Его существования и отказавшись от праведной жизни, вы рискуете быть обреченным на вечные муки; поставив же на существование Бога, вы приобретаете возможность спасения, если Он есть. Поскольку спасение, естественно, предпочтительнее вечных мук, правильным следует признать решение исходить в своем поведении из предположения, что Бог есть. «К чему нам склониться?» Для Паскаля ответ был очевиден.
Здесь Паскаль предвосхитил эпохальное открытие Даниила Бернулли в теории принятия решений, сделанное им в 1738 году, о чем мы поговорим подробно в главе 6. Латинское название этой книги было «Ars Cogitandi», см.: [Hacking, 1975, p. 12, 24].
Когда Паскаль решил пустить в оборот прибыль от принадлежавшей ему омнибусной линии, чтобы оказать финансовую помощь монастырю Пор-Рояль, он получил интересный побочный продукт20. В 1662 году группа его сотоварищей по монастырю опубликовала работу большой важности, «La logique, ou 1'art de penser» («Логика, или Искусство мыслить»), которая между 1662-м и 1668 годами выдержала пять изданий4). Хотя имя ее автора не было названо, основным — но не единственным — автором считается Антуан Арно, которого Хакинг полагает, «по-видимому, самым блестящим теологом своего времени»21. Книга была немедленно переведена на другие европейские языки и еще в XIX столетии использовалась в качестве учебника.
В последней части книги есть четыре главы о вероятности, которые касаются процесса развития гипотезы, основанной на ограниченном наборе фактов; сегодня этот процесс называют статистическим выводом. Среди прочего в этих главах излагаются «правило должного применения разума в определении ситуаций, когда следует подчиниться авторитету других», правила истолкования чудес, основа для истолкования исторических событий и рассказывается о применении количественных измерений вероятности22.
В последней главе описывается игра, в которой каждый из десяти игроков ставит одну монету в надежде выиграть девять монет партнеров по игре. Автор указывает, что есть «девять шансов потерять монету и только один — выиграть девять»23. Несмотря на тривиальность, эта фраза заслужила бессмертие. По утверждению Хакинга, это первый случай в печатной литературе, «когда вероятность, что называется, измерена»24.
Выражение заслуживает бессмертия не только по этой причине. Автор предполагает, что описываемые им игры тривиальны, но он проводит аналогию с событиями, взятыми из жизни. Например, вероятность быть убитым молнией мала, но «многие люди... очень пугаются при звуках грома»25. Затем он высказывает принципиально важное утверждение: «Страх перед ущербом должен быть пропорционален не только величине ущерба, но и вероятности его нанесения»26. Здесь мы сталкиваемся еще с одной важной новой идеей: на решение должны влиять оба фактора — тяжесть последствий и их вероятность. Можно эту мысль сформулировать иначе: решение должно учитывать и силу нашего желания некоего определенного исхода, и оценку того, насколько вероятен желательный исход.
Сила нашего стремления к чему-либо, что представляется полезным, быстро становится чем-то большим, чем простой служанкой вероятности. Полезность занимает центральное место во всех построениях теории принятия решений и готовности к риску. Позже мы не раз вернемся к этой мысли.
Историки любят отмечать случаи, когда что-то очень важное почти случилось, но по той или иной причине все-таки не произошло. История треугольника Паскаля — яркий пример такого случая. Мы видели, как можно строить предположения о возможном числе мальчиков и девочек в многодетных семьях. Мы выяснили, как определять вероятные результаты в чемпионате (для равных по классу команд) после того, как часть матчей уже сыграна. Короче говоря, мы уже делали прогнозы! Паскаль и Ферма сумели завладеть ключом к систематическому методу вычисления вероятности будущих событий. Они еще не повернули этот ключ, но уже вставили его в замок. Значение их открытий для управления риском и принятия решений в бизнесе, в частности в системе страхования, было оценено другими. В «Логике» Пор-Рояля сделан первый важный шаг. От Паскаля и Ферма идея предсказания тенденций экономического развития или использования вероятности для предсказания экономических потерь была еще слишком удалена, чтобы они могли заметить и по достоинству оценить ее. Только ретроспективный взгляд позволяет увидеть, как близко они к этому подошли.
Неизбежная неопределенность будущего никогда не позволит нам полностью изгнать тень рока из наших надежд и страхов, но после 1654 года способ мумбо-юмбо был навсегда вычеркнут из числа методов прогнозирования и выбора решений.
Глава 5
Замечательные идеи
замечательного
галантерейщика
Всем приходится порой принимать решения на основе ограниченных данных. Пригубив, а то и только понюхав вино, мы решаем, стоит ли пить его дальше. Ухаживание за будущей женой длится короче, чем предстоящая жизнь. Анализ нескольких капель крови помогает осудить или оправдать подозреваемого в убийстве. Опрос 2000 человек позволяет судить о настроении нации. Индекс Dow Jones Industrial строится по данным о поведении тридцати выпусков акций, но по нему судят о движении триллионов долларов, принадлежащих миллионам семей и тысячам крупных финансовых учреждений. Джорджу Бушу хватило одного листа капусты, чтобы решить, что это не для него.
Многие критические решения невозможно принять без выборочного обследования. Когда вы уже выпили бутылку, поздно заявлять, что вино непригодно или, напротив, весьма хорошо. Чтобы определить группу крови, врачу незачем выкачивать из вас всю кровь до капли, а президенту не нужно опрашивать всех избирателей, чтобы выяснить желания электората, и не стоит съедать всю капусту на свете, чтобы понять, что она невкусная.
Выборка является важнейшим элементом стратегии риска. Мы постоянно используем выборки из настоящего и прошлого, чтобы судить о будущем. «В среднем» — всем знакомое выражение. Но насколько заслуживает доверия то среднее, к которому мы апеллируем? Насколько представительна выборка, изучив которую мы выносим суждение? Вообще, что значит «в среднем»? Статистики шутят, что сидеть на плите с головой в холодильнике в среднем неплохо. Вспомните притчу о слоне и слепых, которые ощупывали его со всех сторон, чтобы понять, что это такое.
Методы статистического выборочного обследования имеют за плечами долгую историю, и нынешние методы существенно совершеннее тех, которые использовали в прошлом. Любопытно использование выборки в процедуре, известной как «испытание ящика» (Trial of the Pyx), которая была впервые проведена в 1279 году по приказу английского короля Эдуарда 11.
Процедура осуществлялась с целью проверить, соответствуют ли отчеканенные на королевском монетном дворе монеты установленным стандартам по составу золота и серебра. Странное слово рух происходит от греческого слова, обозначающего коробку; в данном случае так именовали ящик, в который клали случайно отобранные монеты, выпущенные монетным двором. В ходе испытаний их сравнивали с королевской золотой пластинкой, которая хранилась в наглухо запертой специальной часовне Вестминстерского аббатства. Поскольку было невозможно добиться абсолютной точности содержания золота в каждой монете, процедура предусматривала определенные допустимые отклонения от стандарта.
Более амбициозные и важные попытки применить метод статистической выборки имели место в 1662 году, восемь лет спустя после переписки Паскаля и Ферма (и в год окончательного принятия Паскалем судьбоносного для него решения о существовании Бога). Речь идет о маленькой книжице, опубликованной в Лондоне под названием «Естественные и политические наблюдения, касающиеся свидетельств о смерти» («Natural and Political Observations made upon the Bills of Mortality»). Она содержит данные о рождаемости и смертности в Лондоне с 1604-го по 1661 год и снабжена пространным комментарием, интерпретирующим эти данные. В истории статистических и социологических исследований она сыграла выдающуюся роль; это был дерзкий и решительный переход к использованию выборочных и вероятностных методов, являющихся основой всех аспектов управления риском — от страхования и измерения экологических рисков до конструирования наиболее сложных производных ценных бумаг.
Любопытно, что автор книжицы Джон Грант не был ни статистиком, ни демографом — тогда таких специальностей просто не существовало2. Не был он и математиком, актуарием, ученым, преподавателем университета или политиком. Грант, которому к тому времени исполнилось 42 года, всю свою сознательную жизнь был галантерейщиком, торговавшим пуговицами и прочей мелочевкой.
Наверно, он был удачливым бизнесменом, потому что имел достаточно денег, чтобы не ограничивать свои интересы только поставкой товара для застегивания одежды. По свидетельству Джона Эбри, современника и биографа Гранта, он был «весьма оригинальным и преданным ученым занятиям человеком... [который] рано утром, до открытия своей лавки, приходил в рабочий кабинет... всегда готовый к шутке и красноречивый»3. Он состоял в дружеских отношениях с самыми выдающимися интеллектуалами своего времени, включая Уильяма Петти, помогавшего ему в обработке статистических данных о народонаселении.
Петти сам был замечательным человеком. Врач по профессии, он побывал таможенным инспектором в Ирландии, профессором анатомии и музыки. Он провернул ряд удачных спекуляций во время войны с Ирландией и был автором книги под названием «Политическая арифметика» («Political Ariphmetic»), которая принесла ему славу основателя современной экономической науки4.
Книжица Гранта выдержала по меньшей мере пять изданий и нашла массу последователей как в Англии, так и за ее пределами. В 1666 году Петти опубликовал рецензию на нее в парижском «Journal des Sgavans», и через год подобное обследование было проведено во Франции. Внимание к работе Гранта было столь велико, что король Карл II предложил принять его в члены Королевского общества. Хотя члены Общества без особого энтузиазма отнеслись к предложению принять в свои ряды простого лавочника, король возразил, что, «если бы таких лавочников было побольше, следовало бы, ни минуты не колеблясь, принять их всех», и Грант стал членом Общества.
У истоков Королевского общества стоял человек по имени Джон Уилкинс (1617-1672), сначала организовавший клуб избранных блестящих знакомых, которые встречались в его доме в Wadham College5. Образцом для клуба послужили собрания в парижском доме аббата Мерсенна. Усилиями Уилкинса созданный им клуб превратился в первую и самую знаменитую из всех академий, которые стали возникать к концу XVII века; образованная вскоре Французская Академия наук построена по образцу Королевского общества.
Позже Уилкинс стал епископом в Чичестере, но более интересен он как автор научной фантастики, украшенной ссылками на вероятность. Одна из его работ, опубликованная в 1640 году, носит многообещающее название «Открытие мира на Луне, или Рассуждение, направленное на доказательство вероятности иного обитаемого мира на этой планете» («The Discovery of the World in the Moone or a discourse tending to prove that 'tis probable there may be another habitable world in that planet»). Кроме того, предвосхищая фантазии Жюля Верна, он работал над конструкцией подводной лодки для плавания подо льдами Северного Ледовитого океана.
Мы не знаем, что побудило Гранта предпринять обследование рождаемости и смертности в Лондоне, но сам он признавался, что ему доставило «большое удовольствие получение многих глубокомысленных и неожиданных выводов из этих несчастных списков смерти... И так приятно сделать что-то новое, даже совсем пустяк»6. Но у него была и серьезная цель: «выяснить, сколько есть людей определенного пола, положения, возраста, религиозной принадлежности, рода занятий, звания и положения и т.д., благодаря чему торговцы и правительство могли бы вести дела с большей уверенностью и определенностью; потому что, если это будет известно, станут известными потребности, и, таким образом, торговцы не будут обольщаться несбыточными надеждами»7. Он очень своевременно первым заговорил о необходимости изучения рынка, одновременно предоставив правительству сведения о числе людей, пригодных к несению военной службы.
Информация о рождаемости и смертности долгое время хранилась в приходских церквях, но с 1603 года лондонские городские власти взяли на себя ведение аналогичных еженедельных записей. Такого же рода данные были и в Голландии, где муниципальные власти финансировали городские нужды за счет продажи пожизненной ренты — полисов, выкупаемых сразу, после чего в течение жизни владельцу полиса, а в некоторых случаях и его наследникам периодически выплачивалась определенная полисом сумма. Во французских церквях также велись записи крещений и смертей.
Хакинг утверждает, что Грант и Петти не знали о работах Паскаля и Гюйгенса, но «по наущению Божьему, или из любопытства, или на основе коммерческих или государственных интересов подобные идеи появились одновременно у многих»8. Грант выбрал очень подходящий момент для публикации и анализа важной информации о населении Англии.
Вряд ли он при этом осознавал, что стал создателем теории выборочных исследований. На самом деле он манипулировал скорее с полным набором данных о смертности, нежели с выборкой. Но примененный им способ рассмотрения наборов данных представлял собой нечто новое. Используемые им методы анализа данных были положены в основу статистической науки9. Слово «статистика» происходит от анализа количественных данных о государстве (state). Грант и Петти могут рассматриваться как создатели этого важного раздела науки.
Грант работал в то время, когда Англия из страны с преимущественно сельскохозяйственным производством постепенно превращалась во все более сложное общество с обширными заморскими колониальными владениями и бурно развивающимся бизнесом. Хакинг отмечает, что, пока в основе налогообложения была земельная собственность и площади обрабатываемых земель, никого не волновало, сколько на них живет людей. Например, кадастровая книга Вильгельма Завоевателя от 1085 года, известная как «Книга Страшного суда» («Domesday Book»), включала кадастр земель и стоимость недвижимости, но не содержала сведений о числе стоящих за этим людей.
С ростом больших и малых городов стали проводиться переписи. Петти обосновывал важность статистических данных о народонаселении необходимостью учета числа людей, пригодных к военной службе, и числа налогоплательщиков. Самого Гранта, который был в первую очередь дельцом периода великого процветания, кажется, не слишком интересовали политические вопросы.
Но были другие факторы, стимулировавшие появление его работы. За два года до опубликования «Наблюдений» был возвращен из Голландии Карл II, где он находился в изгнании. Реставрация избавила англичан от интеллектуальных ограничений, которыми пуританство утомило нацию. Конец абсолютизма и парламентаризм обусловили новое понимание свободы и прогресса в стране. К тому же начался приток громадных богатств из колоний в Америке, Азии и Африке. Исаак Ньютон, которому было тогда 28 лет, заставил людей по-новому посмотреть на планету, на которой они жили. Да и сам Карл II был свободомыслящим жизнерадостным монархом, не требовавшим от своих подданных отказа от радостей жизни.