<< Пред.           стр. 4 (из 5)           След. >>

Список литературы по разделу

  УВЧ - радиолокация, навигация, медицина, пищевая промышленность.
  Пространство вокруг источника эл. поля условно подразделяется на зоны:
  - ближнего (зону индукции);
  - дальнего (зону излучения).
  Граница между зонами является величина: R=?/2?.
  В зависимости от расположения зоны, характеристиками эл.магн. поля является:
  - в ближней зоне ? составляющая вектора напряженности эл. поля [В/м]
  составляющая вектора напряженности магнитного поля [А/м]
  - в дальней зоне ? используется энергетическая характеристика: интенсивность плотности потока энергии [Вт/м2],[мкВт/см2].
 10.2. Вредное воздействие эл. магнитных полей
  Эл. магн. поле большой интенсивности приводит к перегреву тканей, воздействует на органы зрения и органы половой сферы. Умеренной интенсивности: нарушение д-ти центральной нервной системы; сердечно-сосудистой; нарушаются биологические процессы в тканях и клетках. Малой интенсивности: повышение утомляемости, головные боли; выпадение волос.
 10.3. Нормирование эл. магн. полей
  ГОСТ 12.1.006-84
  Нормируемым параметром эл. магн. поля в диапазоне частот 60 кГц-300 МГц является предельно-допустимое значение составляющих напряженностей эл. и магнитных полей.
  Нормируемым параметром эл. магн. поля в диапазоне частот 300 МГц-300 ГГц является предельно-допустимое значение плотности потока энергии.
 ППЭПД - предельное значение плотности потока энергии [Вт/м2],[мкВт/см2]
  Пред. величина ППЭпд не более 10 Вт/м2 ; 1000 мкВт/см2 в производственном помещении.
 В жилой застройке при круглосуточном облучении в соответствии с СН ==> ППЭпд не более 5 мкВт/см2.
 10.4. Мероприятия по защите от воздействия электромагнитных полей.
 1. Уменьшение составляющих напряженностей электрического и магнитного полей в зоне индукции, в зоне излучения - уменьшение плотности потока энергии, если позволяет данный технологический процесс или оборудование.
 2. Защита временем (ограничение время пребывания в зоне источника эл. магн. поля).
 3. Защита расстоянием (60 - 80 мм от экрана).
 4. Метод экранирования рабочего места или источника излучения электромагнитного поля.
 5. Рациональная планировка рабочего места относительно истинного излучения эл. магн. поля.
 6. Применение средств предупредительной сигнализации.
 7. Применение средств индивидуальной защиты.
 11. Инфракрасное излучение.
 Истинным ИФ излучением являются нагретые поверхности (? 0?С).
 ИФ излучения играют важную роль в теплообмене человека с окружающей средой ==> терморегуляции организма человека.
 В области А ИФ излучение обладает следующими вредными воздействиями :
 1. Большая проникающая способность через поверхность кожи.
 2. Поглощение кровью и подкожной жировой клетчаткой.
 3. На органызрения (хрусталик ? помутнение).
 11.1. Нормирование ИФ излучения.
  Воздействие ИФ излучения оценивается плотностью потока энергии на рабочем месте. ГОСТ 12.1.005 - 88 Общие санитарно-гигиенические требования в области рабочей зоны.
 Область ИФ излучения.
 Область ИФ излучения ? Доп. АПЭ Вт/м2 не более Доп. Интер. ППЭ, Вт/м2 не более Примечание А 760 - 1500 100 35 С учетом облучения поверхности тела не более S ? 50 ? В 1500 - 3000 120 70 25 ? S ? 50 ? С 3000 - 4500
  4500 - 1000 150
 120 100
 140 S ? 25 ?
 от открытых ист. S ? 25 ? 11.2. Защита от воздействия ИФ излучения.
 Снижение ИФ в источнике. Ограничение по времени пребывания. Защита расстоянием. Индивидуальная защита. Экранирование (теплоизомерные матениалы).Воздушное душирование. Вентиляция.
 Приборы контроля ИФ
 Актинометр (1 - 500) Вт/м2 .Радиометры. Спектрорадиометр. Радиометр оптического излучения .Дозиметр оптического излучения.
 12. Ультрафиолетовое излучение
 ? = 1 - 400 нм.
 Особенности :
  По способу генерации относятся к тепловым излучениям, и по характеру воздействия на вещества к ионизирующим излучениям.
 Диапазон разбивается на 3 области :
 1. УФ - А (400 - 315 нм)
 2. УФ - В (315 - 280 нм)
 3. УФ - С (280 - 200 нм)
 УФ - А приводит к флюаресценции.
 УФ - В вызывает изменения в составе крови, кожи, воздействует на нервную систему.
 УФ - С действует на клетки. Вызывает коагуляцию белков.
  Действуя на слизистую оболочку глаз, приводит к электро-офтамии. Может вызвать помутнее хрусталика.
  Источники УФ излучения:
 * лазерные установки;
 * лампы газоразрядные, ртутные;
 * ртутные выпрямители.
 12.1. Нормирование УФ излучения
  С учетом оптико-физиологических свойств глаза, а также областей УФ излучений (волновые) установлены: допустимая плотность потока энергии, которой обеспечивают защиту поверхностей кожи и органов зрения.
  УФ-А не более 10; УФ-В не более 0,005; УФ-С не более 0,001 [Вт/м2]
 12.2. Меры защиты
 1. Экранирование источника УФИ.
 2. Экранирование рабочих.
 3. Специальная окраска помещений (серый, желтый,...)
 4. Рациональное расположение раб. мест.
 12.3. Средства индивидуальной защиты
 1. ткани: хлопок, лен
 2. специальные мази для защиты кожи
 3. очки с содержанием свинца
  Приборы контроля: радиометры, дозиметры.
 13. Ионизирующее излучение
 Ионизирующее излучение - излучение, взаимодействие которого со средой приводит к возникновению ионов различных знаков.
 13.1. Характеристики ионизирующего излучения
 * Экспозиционная доза - отношение заряда вещества к его массе [Кл/кг];
 * Мощность экспозиционной дозы [Кл/кг?с];
 * Поглощенная доза - средняя энергия в элементарном объеме на массу вещества в этом объеме [Гр=Грей], внесистемная единица - [Рад];
 * Мощность поглощенной дозы [Гр/с], [Рад/с];
 * Эквивалентность - вводится для оценки заряда радиационной опасности при хроническом воздействии излучения произвольным составом [Зв=Зиверт], внесистемная единица [бэр].
  1 Зв=1Гр/Q, где Q - коэффициент качества (зависит от биологического эффекта ИИ).
 * Радиоактивность - самопроизвольное превращение неустойчивого нуклида в другой нуклид, сопровождающееся испусканием ионизирующего излучения
  Активностью радионуклида называется величина, которая характеризуется числом распада радионуклидов в ед. времени или числом радиопревращений в ед. времени.
 [Беккерель - Бк]
 Виды и источники ИИ в бытовой, произв. и окружающей среде:
  - корпускулярная (?, ? нейтроны);
  - (?,лент,электромагн.)
  По ионизирующей способности наиболее опасно ? излучение, особенно для внутреннего излучения (внутр. органы, проникая с воздухом и пищей).
  Внешнее излучение действует на весь организм человека.
  Фоновое облучение организма человека создается космическим излучением, искусственными и естественными радиоактивными веществами, которые содержатся в теле человека и окружающей среде.
  Фоновое облучение включает:
  1) Доза от космического облучения;
  2) Доза от природных источников;
  3) Доза от источников, испускающих в окружающую среду и в быту;
  4) Технологически повышенный радиационный фон;
  5) Доза облучения от испытания ядерного оружия;
  6) Доза облучения от выбросов АЭС;
  7) Доза облучения, получаемая при медицинских обследованиях и радиотерапии;
  Эквивалентная доза - от космического облучения - 300 мкЗв/год.
  В биосфере Земли находится примерно 60 радиоактивных нуклидов. Эффективность дозы облучения ТЭЦ в 5 - 10 раз выше, чем АЭС в увеличении фона.
  При полете в самолете на высоте 8 км дополнительное облучение составляет 1,35 мкЗв/год.
  Цветной телевизор на расстоянии 2,5 метра от экрана 0,0025 мкЗв/час, 5 см. от экрана - 100 мкЗв/час.
  Ср. эквивалентная доза облучения при медицинских исследованиях 25 - 40 мкЗв/год. Дополнительные дозы облучения 0,5 млБэр/час на расст. 5 м. от бытовой аппаратуры 28 млРент/час.
 13.2. Биологическое действие ионизирующих излучений
  1. Первичные (возникают в молекулах ткани и живых клеток)
  2. Нарушение функций всего организма
  Наиболее ралиочувствительными органами являются:
  - костный мозг;
  - половая сфера;
  - селезенка
 13.2.1. Изменения на клеточном уровне различают:
 1. Соматические или телесные эффекты, последствия которых сказываются на человеке, но не на потомстве.
 2. Стохастические (вероятностные): лучевая болезнь, лейкозы, опухоли.
 3. Нестохастические - поражения, вероятность которых растет по мере увеличения дозы облучения. Существует дозовый порог облучения.
 4. Генетические. 100%-я доза летальности при облучении всего тела 6 Гр, доза 50% выживания - 2,4-4,2 Гр. Лучевая болезнь - более одного Гр. У большинства кажущиеся клиническое улучшение длится 14 - 20 суток.
 Период восстановления продолжается 3-4 месяца. Повышенной опасностью обладают радионуклиды, попавшие внутрь (с пищей, воздухом, водой).
  Наиболее опасен воздушный путь (за 6 ч. вдыхает 9 м воздуха, 2,2 л воды).
 Биологические периоды выведения радионуклидов из внутренних органов колеблется от нескольких десятков суток до бесконечности.
 ? Стронций - 90; Несколько десятков суток ? C14,Na24
 13.3. Нормирование ИИ
 Нормы радиационной безопасности (НРБ - 76/87)
 Регламентируются 3 категории облучаемых лиц:
  А - персонал, связей с источником ИИ;
  Б - персонал (ограниченная часть населения), находящихся вблизи источника ИИ;
  В - население района, края, области, республики.
 Группа критических органов (по мере уменьшения чувствительности):
 1. Все тело, половая сфера, красный костный мозг
 2. Мышцы, щитовидная железа, жировая ткань и др. органы за исключением тех, которые относятся к 1 и 3 группам
 3. кожный покров, костная ткань, кисти, предплечья, стопы.
  Основные дозовые пределы, допустимые и контрольные уровни, которые приводятся в НРБ - 76/87 установлены для лиц категории А и Б.
  Нормы радиационной безопасности для категории В не установлены, а ограничение облучений осуществляются регламентацией или контролем радиоактивных объектов окр. среды.
  А дозовый предел - ПДД - наибольшее значение индивидуальной эквивалентной дозы за календарный год, которое при равномерном воздействии в течении 50 лет не вызывает отклонении в состоянии здоровья обслуживающего персонала, обнаруживаемые современными методами исследования.
  Б дозовый предел - ПД - основной дозовый предел, который при равномерном облучении в течение 70 лет не вызывает отклонений у обслуживающего персонала, обнаруживаемые современными методами исследования.
  Основные дозовые пределы для категорий А и Б:
 Категории группы критических органов I II III А 50 150 300 Б 5 15 30 13.3.1. Основные санитарные правила (ОСП) работы с источниками ионизирующих излучений
  ОСП 72/78 - нормативный документ
  Включает:
 1. Требования к размещению установок с радиоактивными веществами и источниками ионизирующих излучений.
 2. Требования к организации работ с ними.
 3. Требования к поставке, учету и перевозке.
 4. Требования к работе с закрытыми источниками.
 5. Требования к отоплению, вентиляции и пыле-, газоочистки при работе с источниками.
 6. Требования к водоснабжению и канализации.
 7. Требования к сбору, удалению и обезвреживанию отходов.
 8. Требования к содержанию и дезактивации раб. помещений и оборудования.
 9. Требования по индивидуальной защите и в личной гигиене.
 10. Требования к проведению радиационного контроля.
 11. Требования к предупреждению радиац. аварий и ликвидаций их последствий.
  Проектированние защиты от внешнего ионизирующего излучения, рассчитанные по мощности экспозиционной дозы, коэф. защиты равен 2.
  Все работы с открытыми источниками радиокт. веществ подразделяются на три класса:
  I. (самый опасный). Работа осуществляется дистанционно.
  Работа с ист. III-го класса осуществляется при использовании систем местной вентиляции (вытяжные шкафы).
  Работа с источником II-го класса осуществляется в отдельно расположенных помещениях, которые имеют специально оборудованный вход (душевой и средства проведения радиоционного контроля).
  При выполнении работ с веществами I, II и III классов проведение радиационного контроля обязательно.
 13.4. Методы защиты от ионизирующих излучений
 Основные методы:
 1) Метод защиты количеством, т.е. по возможности снижение нормы дозы облучения, 2) Защита временем , 3) Экранирование (свинец, бетон),4) Защита расстоянием
 Приборы радиационного контроля:
 1.дозиметры , 2.радиометры , 3.спектрометры , 4.сигнализаторы, 5. универсальные приборы (дозиметры + другие), 6.устройство детектирования.
 14. Пожарная безопасность.
 Горение - химическая реакция, которая сопровождается выделением тепла и света.
 Для осуществления горения необходимо:
 * окислитель (кислород);
 * источник возгорания;
 * источник пламени.
 Если речь идёт о горючих веществах, то степень пожарной опасности горючих веществ характеризуется:
 * температурой вспышки;
 * температурой воспламенения;
 * температурой самовоспламенением.
 По температуре вспышке горючие вещества делятся на:
 * легковоспламеняющиеся жидкости (до 45() температура вспышки;
 * горючие (более 45().
 Температура вспышки - минимальная температура, при которой над поверхностью жидкости образуется смесь паров этой жидкости с воздухом, способная гореть при поднесении открытого источника огня. Процесс горения прекращается после удаления этого источника.
 Температура воспламенения - минимальная температура, при которой вещество загорается от открытого источника огня и продолжает гореть после его удаления.
 Температура самовоспламенения - минимальная температура, при которой происходит его воспламенение на воздухе за счет тепла химической реакции без поднесения открытого источника огня.
 Горючие газы и пыль имеют концентрационные пределы взрываемости.
 14.1. Классификация помещений и зданий по степени взрывопожарноопасности.
 ОНТП 24-85
 Все помещения и здания подразделяются на 5 категорий:
 А - взрывопожароопасные. Та категория, в которой осуществляются технологические процессы, связанные с выделением горючих газов, легковоспламеняющихся жидкостей с температурой вспышки паров до 28 ?С,
 tВСП ? 28 ?С; Р - свыше 5 кПа.
 Б - помещения, где осуществляются технологические процессы с использованием ЛВЖ с температурой вспышки свыше 28 ?С, способные образовывать взрывоопасные и пожароопасные смеси при воспламенении которых образуется избыточное расчетное давление взрыва свыше 5 кПа.
 tВСП > 28 ?С; Р - свыше 5 кПа.
 В - помещения и здания, где обращаются технологические процессы с использованием горючих и трудногорючих жидкостей, твердых горючих веществ, которые при взаимодействии друг с другом или кислородом воздуха способны только гореть. При условии, что эти вещества не относятся ни к А, ни к Б.
 Эта категория - пожароопасная.
 Г - помещения и здания, где обращаются технологические процессы с использованием негорючих веществ и материалов в горячем, раскаленном или расплавленном состоянии (например, стекловаренные печи).
 Д - помещения и здания, где обращаются технологические процессы с использованием твердых негорючих веществ и материалов в холодном состоянии (механическая обработка металлов).
 14.2. Причины возникновения пожаров, связанные со специальностью студентов
 При эксплуатации ЭВМ возможны возникновения следующих аварийных ситуаций:
 * короткие замыкания;
 * перегрузки;
 * повышение переходных сопротивлений в эл. контактах;
 * перенапряжение;
 * возникновение токов утечки.
  При возникновении аварийных ситуаций происходит резкое выделение тепловой энергии, которая может явиться причиной возникновения пожара.
  На долю пожаров, возникающих в эл. установках приходится 20%.
 
 
 14.2.1. Статистические данные о пожарах
 Основные причины: %
 - короткое замыкание 43
 - перегрузки проводов/кабелей 13
 - образование переходных сопротивлений 5
 Режим короткого замыкания - появление в результате резкого возрастания силы тока, эл. искр, частиц расплавленного металла, эл. дуги, открытого огня, воспламенившейся изоляции.
 14.2.2. Причины возникновения короткого замыкания:
 * ошибки при проектировании;
 * старение изоляции;
 * увлажнение изоляции;
 * механические перегрузки.
 Пожарная опасность при перегрузках - чрезмерное нагревание отдельных элементов, которое может происходить при ошибках проектирования в случае длительного прохождения тока, превышающего номинальное значение.
  При 1,5 кратном превышении мощности резисторы нагреваются до 200-300 ?С.
 Пожарная опасность переходных сопротивлений - возможность воспламенения изоляции или других близлежащих горючих материалов от тепла, возникающего в месте аварийного сопротивления (в переходных клеммах, переключателях и др.).
  Пожарная опасность перенапряжения - нагревание токоведущих частей за счет увеличения токов, проходящих через них, за счет увеличения перенапряжения между отдельными элементами электроустановок. Возникает при выходе из строя или изменении параметров отдельных элементов.
 Пожарная опасность токов утечки - локальный нагрев изоляции между отдельными токоведущими элементами и заземленными конструкциями.
 14.3. Классификация взрыво- и пожароопасных зон помещения в соотв-вии с ПУЭ
  Для обеспечения конструктивного соответствия эл. технических изделий правила устройства эл. установок - ПУЭ-85 выделяется пожаро- и врывоопасные зоны.
 Пожароопасные зоны - пространства в помещении или вне его, в котором находятся горючие вещества как при нормальном осуществлении технологического процесса, так и в результате его нарушения.
  Зоны:
 П-I - помещения, в которых обращаются горючие жидкости с температурой вспышки паров свыше 61 ?С.
 П-II - помещения, в которых выделяются горючие пыли с нижних концентрационных пределах возгораемости > 65 г/м3.
 П-IIа - помещения, в которых обращаются твердые горючие вещества.
 П-III - пожароопасная зона вне помещения, к которой выделяются горючие жидкости с температурой вспышки более 61 ?С или горючие пыли с нижним концентрационным пределом возгораемости более 65 г/м3.
  Взрывоопасные зоны - помещения или часть его или вне помещения, где образуются взрывоопасные смеси как при нормальном протекании технологического процесса, так и в аварийных ситуациях.
  Для газов:
 В-I - помещения, в которых образуются горючие газы или пары ЛВЖ, способные образовывать взрывоопасные смеси в нормальном режиме работы.
 В-Iа - помещения, в которых образуются горючие газы или пары ЛВЖ, способные образовывать взрывоопасные смеси в аварийном режиме работы.
 В-Iб - зоны, аналогичные В-Iа, но процесс образования взрывоопасных смесей в небольших колическтвах и работа с ними осуществляется без открытого источника огня.
 В-Iв - зоны, аналогичные В-I, только процесс образования взрывоопасных смесе в небольших колическтвах и работа с ними осуществляется без открытого источника огня.
 В-Iг - зоны вне помещения (вокруг наружных эл. установок), в которых образуются горючие газы или пары ЛВЖ, способные образовывать взрывоопасные смеси в аварийном режиме работы.
  Для паров:
 В-II - взрывоопасная зона, которая имеет место при осуществлении операций технологического процесса при выделении горючих смесей при нормальном режиме работы.
 В-IIа - взрывоопасная зона, которая имеет место при осуществлении операций технологического процесса при выделении горючих смесей при аврийном режиме работы.
 14.4. Меры по пожарной профилактики
 * строительно-планировочные;
 * технические;
 * способы и средства тушения пожаров;
 * организационныё
 Строительно-планировочные определяются огнестойкостью зданий и сооружений (выбор материалов конструкций: сгораемые, несгораемые, трудносгораемые) и предел огнестойкости - это количество времениЁ в течение которого под воздействием огня не нарушается несущая способность строительных конструкций вплоть до появления первой трещины.
  Все строительные конструкции по пределу огнестойкости подразделяются на 8 степеней от 1/7 ч до 2ч.
  Для помещений ВЦ используются материалы с пределом стойкости от 1-5 степеней. В зависимости от степени огнестойкости опрё наибольшие дополнительные расстояния от выходов для эвакуации при пожарах (5 степень - 50 м).
 Технические меры - это соблюдение противопожарных норм при эвакуации систем вентиляции, отопления, освещения, эл. обеспечения и т.д.
  - использование разнообразных защитных систем;
  - соблюдение параметров технологических процессов и режимов работы оборудования.
 Организационные меры - проведение обучения по пожарной безопасности, соблюдение мер по пожарной безопасности.
 14.5. Способы и средства тушения пожаров
 1. Снижение концентрации кислорода в воздуче;
 2. Понижение температуры горючего вещества, ниже температуры воспламенения.
 3. Изоляция горючего вещества от окислителя.
  Огнегасительные вещества: вода, песок, пена, порошок, газообразные вещества не поддерживающие горение (хладон), инертные газы, пар.
  Средства пожаротушения:
 1 Ручные
 1.1 огнетушители химической пены;
 1.2 огнетушитель пенный;
 1.3 огнетушитель порошковый;
 1.4 огнетушитель углекислотный, бромэтиловый
 2 Противопожарные системы
 2.1 система водоснабжения;
 2.2 пеногенератор
 3 Системы автоматического пожаротушения с использованием средствв автоматической сигнализации
 3.1 пожарный извещатель (тепловой, световой, дымовой, радиационный)
  Для ВЦ используются тепловые датчики-извещатели типа ДТЛ, дымовые радиоизотопные типа РИД.
 4 Cистема пожаротушения ручного действия (кнопочный извещатель).
  Для ВЦ используются огнетушители углекислотные ОУ, ОА (создают струю распыленного бром этила) и системы автоматического газового пожаротушения, в которой используется хладон или фреон как огнегасительное средство.
  Для осуществления тушения загорания водой в системе автоматического пожаротушения используются устройства спринклеры и дренкеры. Их недостаток - распыление происходит на площади до 15 м2.
  Способ соединения датчиков в системе эл. пожарной сигнализации с приемной станцией м.б. - параллельным (лучевым); - последовательным (шлейфным).
 14.5.1. Классификация пожаров и рекомендуемые огнегасительные вещества
 Класс пожара Характеристика гор. Среды, объекта Огнегасительные средства А обычные твердые и горючие материалы (дерево, бумага) все виды Б горючие жидкости, плавящиеся при нагревании материала (мазут, спирты, бензин) распыленная вода, все виды пен, порошки, составы на основе СО2 и бромэтила С горючие газы (водород, ацетилен, углеводороды) газ. составы, в состав которых входят инертные разбавители (азот, порошки, вода) Д металлы и их сплавы (Nа, К, Al, Mg) порошки Е эл. установки под напряжением порошки, двуокись азота, оксид азота, углекислый газ, составы бромэтил+СО2 14.5.2. Организация пожарной охраны на предприятии
  Военизированная структура, которая подчиняется МВД. Ответственный директор, гл. инженер. В ведении гл. инженера находится пожаро-техническая комиссия, которую он возглавляет.
 15. Безопасность оборудования и производственные процессы
  Эксплуатация любого вида оборудования связана потенциально с наличием тех или иных опасных или вредных производственных факторов.
  Основные направления создания безопасных и безвредных условий труда.
 
  Цели механизации: создание безопасных и безвредных условий труда при выполнении определенной операции.
  Исключение человека из сферы труда обеспечивается при использовании РТК, создание которых требует высоко научно-технического потенциала на этапе как проектирования, так и на этапе изготовления и обслуживания, отсюда значительные капитальные затраты.
 15.1. Требования безопасности при проектировании машин и механизмов
  ГОСТ 12.2... ССБТ
  Требования направлены на обеспечение безопасности, надежности, удобства в эксплуатации.
 Безопасность машин определяется отсутствием возможности изменения переметров технологического процесса или конструктивных параметров машин, что позволяет исключить возможность возникновения опасных факторов.
 Надежность определяется вероятностью нарушения нормальной работы, что приводит к возникновению опасных факторов и чрезвычайных (аврийных) ситуаций. На этапе проектирования, надежность определяется правильным выбором конструктивных параметров, а также устройств автоматического управления и регулирования.
 Удобства эксплуатации определяются психо-физиологическим состоянием обслуживающего персонала.
  На этапе проектирования удобства в эксплуатации определяются правильным выбором дизайна машин и правильно-спроектированным раб. местом оператора (пользователя).
 ГОСТ 12.2.032-78 ССБТ. Рабочее место при выполнении работ сидя. Общие эргономические требования.
 ГОСТ 12.2.033-78 ССБТ. Рабочее место при выполнении работ стоя. Общие эргономические требования.
 
 15.2. Опасные зоны оборудования и средства защиты от них
 Опасная зона оборудования - производство, в котором потенциально возможно действие на работающего опасных и вредных факторов и как следствие - действие вредных факторов, приводящих к заболеванию.
  Опасность локализована вокруг перемещающихся частей оборудования или вблизи действия источников различных видов излучения.
  Размеры опасных зон могут быть постоянные, когда стабильны расстояния между рабочими органами машины и переменно.
  Средства защиты от воздействия опасных зон оборудования подразделяется на: коллективные и индивидуальные.
 1 Коллективные
 1.1 Оградительные
 1.1.1 стационарные (несъемные);
 1.1.2 подвижные (съемные);
 1.1.3 переносные (временные)
 Оградительные средства предназначены для исключения возможности попадания работника в опасную зону: зону ведущих частей, зону тепловых излучений, зону лазерного излучения и т.д.
 2 Предохранительные
 2.1 наличие слабого звена (плавкая вставка в предохранитель);
 2.2 с автоматическим восстановлением кинематической цепи
 3 Блокировочные

<< Пред.           стр. 4 (из 5)           След. >>

Список литературы по разделу