<< Пред.           стр. 26 (из 55)           След. >>

Список литературы по разделу

  Автор. У нас радиолокационные измерения расстояний до
 Венеры проводились в 1962--1975 годах. Нет ли других данных,
 свидетельствующих о трудностях, к которым приводят
 релятивистские расчеты, и ошибках навигации в современной
 космонавтике?
  Прфессор. События, связанные с полетами космических
 летательных аппаратов "Фобос-I" и "Фобос-II" к Марсу, и их
 загадочное исчезновение, навигационные просчеты при запусках
 других летательных аппаратов имеют прямое отношение к проблеме
 распространения электромагнитных сигналов. Наиболее
 показательны в данном плане неудачи с "Фобосами". Напомню, что
 эти аппараты, оснащенные новейшей исследовательской и
 навигационной аппаратурой, после длительного полета достигли
 окрестностей Марса. Предполагалось, что "Фобос-I" будет
 проводить изучение поверхности планеты Марс, а "Фобос-II"
 осуществит посадку на спутник Марса Фобос. Связь с "Фобосом-I"
 прекратилась внезапно, в это время второй аппарат, "Фобос-II",
 продолжал процесс сближения с марсианским спутником. Однако,
 несмотря на принятые меры предосторожности в процессе дальнего
 наведения аппарата по радиосигналам с Земли, и "Фобос-II" также
 прекратил взаимодействие с наземными станциями. В итоге
 космическая эпопея завершилась безрезультатно. Конечно, у
 подобной неудачи может быть много случайных причин. Однако есть
 одна возможная причина, носящая не случайный, а систематический
 характер. Если навигацию осуществлять, опираясь на постулат
 постоянства скорости света (радиосигналов), то в этом случае
 неизбежны роковые ошибки наведения, которые могут служить
 причиной провала всей операции.
  Автор. Можно ли оценить масштабы подобных ошибок?
  Профессор. К сожалению, в печати не приводятся сведения о
 навигационной космической обстановке и методике проведения
 локационных измерений. Поэтому оценку подобной ситуации можно
 дать, исходя из общих положений небесной механики. Как
 известно, "Фобосы" успешно преодолели весь путь от Земли до
 Марса. Радиолокационный сигнал, который посылался с наземной
 радиостанции на летательный аппарат, принимался его бортовой
 станцией, а затем переизлучался и возвращался обратно на Землю,
 преодолевая расстояние туда и обратно за время более 10 минут.
 Навигация осложняется тем, что планеты -- Земля и Марс --
 движутся по своим орбитам с разными скоростями (Земля -- со
 скоростью 29,76 км/сек, а Марс -- 24,11 км/сек), а естественный
 марсианский спутник Фобос летает вокруг Красной планеты со
 скоростью около 3 км/сек и периодом обращения 7,68 часа.
 Интересно отметить, что Фобос вращается вокруг Марса в 3,2 раза
 быстрее, чем Марс вращается вокруг своей оси, -- это
 единственный случай в Солнечной системе.
  Если при навигационных расчетах скорость света
 (радиосигналов) принималась постоянной в относительном движении
 небесных тел, то погрешности локационных измерений достигают
 следующих величии. Вследствие неучета скорости Марса
 относительно Земли, равной 5,65 км/сек, и длительности
 прохождения прямого и обратного радиосигналов около 10 минут
 погрешность в определении расстояния до Марса может достигать
 до 1000--2500 км. Такая ошибка в определении расстояния от
 поверхности Марса до летательного аппарата "Фобос-I" уже могла
 служить причиной его гибели. Для навигации же "Фобоса-II"
 особую коварность представляет орбитальная скорость спутника
 Марса -- Фобоса. В течение половины периода обращения, когда
 спутник не закрыт от наблюдателя Марсом, он совершает движение
 навстречу Земле, а затем удаляется со скоростью 3 км/сек.
 Вследствие этого ошибка радиолокации со стороны Земли может
 периодически меняться в пределах ± 1500 км в течение 3,84 часа
 (половина периода обращения). Если "Фобос-II" вышел на ту же
 орбиту, что и спутник Фобос, и летел на некотором постоянном
 расстоянии от него, то наземные радиолокационные станции
 фиксировали расстояние между ними со знакопеременной ошибкой в
 течение каждого полупериода вращения (3,84 часа). Так,
 например, если расстояние между аппаратом и спутником
 составляло четверть длины орбиты, то ошибка в измерении этого
 расстояния была не менее ± 1500 км. Поскольку дальность
 действия автономной системы наведения "Фобоса-II" может быть
 меньше указанной ошибки измерения, то вероятность столкновения
 и гибели аппарата становится существенной. Избежать всех этих
 ошибок можно при условии проведения навигационных измерений на
 основе классического сложения скоростей распространения
 радиосигналов в относительном движении небесных тел.
  Автор. Из этого примера видно, как дорого платит
 человечество за ошибочные гипотезы, если оно слепо принимает их
 на веру. Уточнение особенностей распространения света при
 относительном движении тел, по-видимому, позволяет выяснить и
 весьма интересный вопрос: почему скорость света, идущего от
 звезд, больше, чем скорость света земных источников излучения
 почти на 3000 км/сек?
  Профессор. Да, основание для этого вполне достаточное.
 Звезды как источники светового излучения отличаются тем, что их
 раскаленная поверхность представляет собой бурно кипящую,
 фонтанирующую среду. Каждая раскаленная частица этой сферы,
 излучающая свет, совершает беспорядочные движения с огромными
 скоростями. Вследствие этого потоки света, идущие от звезды в
 окружающее пространство, приобретают скорость, которая
 складывается от скорости излучения частицей (300000 км/сек) и
 скорости ее теплового движения относительно поверхности звезды.
 Именно эта добавочная скорость звездных источников излучения (в
 среднем около 3000 км/сек) и не регистрируется наблюдателями,
 расположенными на Земле.
  Автор. Ну вот, кажется, мы вплотную подошли к анализу
 всего комплекса загадок Солнечной системы и ее освоения...
 
 СОЛНЦЕ И ЕГО СЕМЬЯ
 
 
  Звездную систему, с которой навсегда связана космическая
 судьба человечества, уместно сравнить с гигантской цирковой
 ареной, где по замкнутым круговым (точнее, эллиптическим)
 орбитам бегают 5 маленьких собачек, 2 верблюда и 2 слона (рис.
 76). Конечно, здесь много и всякой другой космической мелочи:
 спутники планет (рис. 77.), астероиды, кометы, метеоры,
 искусственные летательные аппараты, -- но в данный момент этой
 малозначительной мелюзгой можно пренебречь. Хотя, по подсчетам
 астрономов, только астероидов в окрестностях солнечной системы
 не менее четверти миллиарда.
  Начнем с крупной "дичи". 5 собачек -- это планеты, как
 принято говорить, земного типа (их размеры приближаются к
 земным): сама Земля, Марс, Венера, Меркурий, Плутон. 2 верблюда
 -- холодные Уран и Нептун. 2 слона -- газообразные гиганты
 Юпитер и Сатурн (рис. 78). На первый взгляд представляется
 чистой случайностью, что ближайшая к Солнцу планета названа
 именно Меркурием (а не в честь какого-то другого Божества),
 вторая -- по имени Богини любви. И так далее. Но это только на
 первый взгляд. Все имеет свое объяснение. У каждой из видимых
 невооруженным глазом планет с самого начала был подмечен свой
 "характер". Под него, как станет понятным ниже, и подбиралось
 название.
  Как уже говорилось, что наша Галактика имеет размеры
 диаметра около 100 000 световых лет. Так вот, Солнечная система
 расположена на расстоянии 27 000 световых лет от центра
 Галактики и на расстоянии 46 световых лет к северу от плоскости
 ее симметрии (так называемой галактической плоскости).
 Галактика вращается, и вместе с ней со скоростью 220 км/сек
 вращается Солнечная система со всеми большими и малыми
 планетами. Полный оборот и возвращение в условно исходную точку
 происходит за 2,2Ч108 лет. Этот промежуток времени именуется
 космическим годом.
  Пять ярких планет на ночном небосклоне известны человеку
 давным-давно. Существовал даже культ поклонения планетам (а
 заодно и другим священным звездам), известный под названием
 сабеизма. Термин этот, как и сама религия, мало что говорит
 современному человеку. В действительности существовало древнее
 Сабейское царство, населенное племенами сабеев, говоривших на
 сабейском языке. Располагалось оно во времена позднеегипетской,
 древнегреческой и древнеримской истории на юге Аравийского
 полуострова. Это та самая "Счастливая Аравия" античных авторов,
 о богатстве и чудесах которой в старину слагались легенды. В
 современном Йемене от тех времен сохранилось множество развалин
 домусульманских храмов -- сабеистских святилищ, воздвигнутых в
 честь звездных и планетных Божеств. Сабеизм достаточно хорошо
 известен через библейских халдеев -- чародеев и
 звездопоклонников. Однако "халдеи" -- несколько размытое
 этническое и лингвистическое понятие. Считается, что народ под
 таким названием, говоривший на одном из семитских языков,
 переселился, по одной из версий, именно из Аравии в Месопотамию
 (Двуречие) в начале 1-го тысячелетия до н.э., смешавшись здесь
 с коренными семитскими племенами. Но главное -- халдеи принесли
 в Вавилонию свою "звездную культуру": астрономические навыки,
 книги, каталоги, результаты многовековых наблюдений за
 небесными объектами (кстати, по халдейским исчислениям,
 человеческая история начинается примерно за 400 тысяч лет до
 новой эры; с этой цифрой соглашался и Ломоносов). Во всяком
 случае, нет сомнения в том, что своими достижениями астрономия
 Вавилона -- одна из самых развитых астрономий Древнего Мира -
 во многом обязана халдеям, а через них и
 сабеям-звездопоклонникам.
  Обнаружить и зафиксировать перемещение планет среди других
 относительно неподвижных светил сравнительно нетрудно. Поэтому
 в лексиконе разных народов им нашлось подходящее и одинаковое
 по смыслу наименование -- "блуждающие звезды". Уже в древности
 наблюдатели пришли к выводу, что "блуждающие звезды" находятся
 к Земле ближе, чем неблуждающие. На эту мысль навели затмения
 -- заслонение Луной Солнца, звезд и планет. На этом основании
 древние звездочеты в разных странах и независимо друг от друга
 объявили Луну самым близким к нам небесным телом. Оригинальным
 способом определялось и расстояние до планет -- по скорости их
 перемещения по небосклону. Сатурн возвращался в исходную точку
 отсчета среди звезд каждые 29,5 лет, Юпитер -- через 12 лет,
 Марс -- через 2 года, Венера -- через 225 дней, Меркурий --
 через 88 дней, а Луна -- через 28 дней. Было разгадано, что
 этот порядок соответствует последовательности расстояния планет
 до Земли. Другими словами, Сатурн с самого начала считался
 самой отдаленной из всех видимых невооруженным глазом планет, а
 Луна -- самым близким. Кроме того, планеты подразделялись на
 верхние и нижние -- в соответствии с различием в их движении.
 Меркурий и Венера как бы сопровождают Солнце, находясь в его
 близи и никогда не удаляясь, соответственно, больше чем на 29о
 и 47о. Они получили название нижних (точнее -- внутренних)
 планет. Напротив, верхние (точнее -- внешние) планеты -- Марс,
 Юпитер, Сатурн -- более свободно располагаются возле Солнца и
 менее привязаны к нему в своем движении.
  Далеко не сразу люди осознали , что облик "звезды"
 обманчив. На самом деле планеты -- массивные шары, состоящие из
 горных пород, металлов и газов, и светят они отраженным
 солнечным, а не собственным светом. С каждым веком все более
 совершенными становились наблюдения с помощью телескопов и
 других хитроумных приборов, вроде спектрографа. Они позволили
 непрерывно увеличивать общий массив научных данных о строении и
 природе больших и малых спутников Солнца.
  Во все века сохранялся стойкий интерес к вопросу: откуда
 что взялось? как и когда появились во Вселенной Солнце и его
 семья? в какой последовательности? и сколько еще тысячелетий
 будут они являть себя миру на земном небосклоне? По существу,
 лишь чуть больше три столетия ответы на поставленные вопросы
 стали даваться, исходя из опытного естествознания и
 скрупулезных математических расчетов. И с самого начала в
 центре внимания ученых и читающей публики оказались
 космогонические гипотезы о происхождении Солнечной системы. Для
 того, чтобы такие гипотезы не противоречили научным данным, они
 должны объяснять следующее:
 
  1) почему орбиты всех планет лежат практически в плоскости
 солнечного экватора, 2) почему планеты движутся вокруг Солнца
 по орбитам, близким к круговым, 3) почему направление обращения
 вокруг Солнца одинаково для всех планет и совпадает с
 направлением вращения Солнца и собственным вращением планет
 вокруг осей, 4) почему 98% массы Солнечной системы приходится
 на Солнце и лишь 2% на планеты, тогда как планеты обладают 98%
 момента количества движения всей Солнечной системы, 5) почему
 планеты делятся на две группы, резко различающиеся между собой
 средней плотностью?
 
  И все же гипотез, удовлетворяющих вышеперечисленным
 требованиям, оказалось слишком много. Среди них есть вихревые,
 объясняющие происхождение планет и других космических объектов
 на основе теории вихреобразных движений, якобы доминирующих в
 Космосе. В пользу таких концепций, восходящих еще к знаменитому
 французскому мыслителю Рене Декарту (1596-1650), говорят
 сегодня и спиральные галактики, и торсионные (скрученные) поля,
 и другие спиралевидные феномены. Поэтому "вихревые подходы" не
 утратили своего значения и в наши дни.
  Начиная с ХVIII века достаточное распространение получили
 катастрофические гипотезы происхождения небесных тел. Так,
 знаменитый в прошлом французский естествоиспытатель Жорж Бюффон
 (1707-1788) считал, что Земля и планеты образовались в
 результате столкновения Солнца с кометой. Катастрофические
 гипотезы, хотя и не имеют всеобщей поддержки, продолжали
 обосновываться в ХХ веке. К наиболее известным их авторам
 относятся Дж. Джинс и И. Великовский.
  Самыми популярными, однако же, оказались эволюционные
 гипотезы (рис. 79). Исторически первой в их далеко не
 ограниченном ряду оказалась гипотеза крупнейшего немецкого
 философа И. Канта. Он предполагал, что первоначально мировое
 пространство было заполнено холодным рассеянным веществом в
 виде пылевого облака. Постепенно, под воздействием сил
 тяготения пылинки стали слипаться и образовывать плотные
 сгустки, которые после длительного периода разогревания
 превратились в знакомые небесные тела.
  Спустя четыре десятилетия П.С. Лаплас (1749-1827)
 предложил еще одну небулярную гипотезу по, так сказать,
 диаметрально противоположной схеме. Согласно Лапласу, Солнце
 первоначально представляло собой огромную медленно вращающуюся
 раскаленную туманность. Силы тяготения заставляли увеличивать
 скорость этой колоссальной огненной массы, которая от этого
 постепенно сплющивалась. Далее вокруг протосолнца образовалось
 гигантское огненное кольцо; в процессе охлаждения оно распалось
 на отдельные сгустки. Из них в конечном итоге образовались все
 планеты и их спутники. Хотя после обнародования классических
 космогонических гипотез Канта и Лапласа на протяжении более чем
 двух веков было предложено еще несколько десятков возможных
 объяснений, все же именно две первые доминировали в науке до
 последнего времени и даже, несмотря на свою альтернативность,
 фигурировали как нечто единое целое, именуясь небулярной
 гипотезой Канта--Лапласа.
  Относительно неизбежного вопроса: откуда же в Космосе
 взялось первичное вещество -- строительный материал для планет
 и Солнца -- возможны различные ответы:
  1) планеты образуются из того же газо-пылевого облака, что
 и Солнце (Кант); 2) это облако было захвачено Солнцем при его
 обращении вокруг центра Галактики (О. Ю. Шмидт); и 3) оно
 отделилось от Солнца в процессе его эволюции (Лаплас, Джинс и
 др.).
  Многим отечественным ученым сегодня наиболее вероятным
 представляется первый вариант. Большую роль в его разработке
 сыграли труды О. Ю. Шмидта, который был крупным математиком и
 дал математическое обоснование целому ряду вопросов (например,
 распределение планет по расстояниям от Солнца, направление
 осевого вращения планет и др.). Работы О. Ю. Шмидта успешно
 продолжены его учениками и последователями.
  Как же представляется общая схема развития нашей
 планетной системы, исходя из предположения, что планеты и
 Солнце образовались из газо-пылевого облака? Предполагается,
 что около пяти миллиардов лет назад в таком облаке, пронизанном
 магнитными силовыми линиями, образовалось сгущение --
 протосолнце, которое медленно сжималось. Другая часть облака с
 массой примерно в десять раз меньшей медленно вращалась вокруг
 него. В результате столкновений атомов, молекул и частиц пыли
 туманность постепенно сплющивалась и разогревалась. Так вокруг
 протосолнца образовался протяженный диск, пронизанный
 магнитными силовыми линиями. В значительной его части
 происходило интенсивное конвективно-турбулентное перемешивание
 вещества. Это благоприятствовало быстрому перераспределению
 энергии, освобождающейся при гравитационном сжатии облака. В
 результате этого газо-пылевой диск существенно охлаждался.
  Под действием светового давления легкие химические
 элементы водород и гелий "выметались" из близких окрестностей
 Солнца. И, наоборот, попадая на пылинки, световые лучи
 тормозили их движение вокруг Солнца. При этом пылевые частицы
 теряли свой орбитальный момент количества движения и
 приближались к Солнцу. Такой механизм торможения срабатывает
 даже в случае, если размеры частицы достигают нескольких
 метров. В конечном итоге это и привело к существенному различию
 в химическом составе планет, их разделению на две группы.
  После достижения "критической" плотности пылевой диск

<< Пред.           стр. 26 (из 55)           След. >>

Список литературы по разделу