<< Пред.           стр. 3 (из 13)           След. >>

Список литературы по разделу

 Описанные выше эксперименты относятся к электронам, однако схожие эксперименты позволяют сделать вывод о том, что все вещество имеет волновые свойства. Но как это согласуется с нашим повседневным опытом, говорящем о том, что вещество - это нечто сплошное и твердое, и уж никак не похожее на волны? Де Бройль предложил формулу для длины волны частиц вещества, которая показывает, что длина волны пропорциональна постоянной Планка h. (Если говорить более точно, длина волны определяется как частное от деления на импульс материального тела.) Поскольку величина очень мала, длина волны также является очень малой по обычным масштабам. Именно по этой причине волновые характеристики материи становятся наблюдаемыми только в высокоточных микроскопических исследованиях. Точно так же, как большая величина скорости света с скрывает истинные свойства пространства и времени, малость маскирует волновые свойства материи в окружающем нас мире.
 Волны чего?
 Явление интерференции, открытое Дэвиссоном и Джермером, реально продемонстрировало, что электроны подобны волнам. Но при этом возникает естественный вопрос: волнам чего? Одно из первых предположений на эту тему, сделанное австрийским физиком Эрвином Шредингером, заключалось в том, что эти волны представляют собой "размазанные" электроны. Это предположение отчасти улавливало "сущность" электронной волны, но было слишком неточным. Когда вы размазываете что-нибудь, часть его находится здесь, а другая часть в другом месте. Однако никому и никогда не приходилось иметь дело с половиной или с третью, или с иной частью электрона. Это усложняло понимание того, что представляет собой размазанный электрон. В 1926 г. немецкий физик Макс Борн существенно уточнил предложенную Шредингером интерпретацию электронной волны, и именно этой интерпретацией, усиленной Бором и его коллегами, мы пользуемся
 
 Глава 4. Микроскопические странности 77
  Рис. 4.9. Волна, ассоциированная с электроном, имеет наибольшую амплитуду в тех местах, где обнаружение электрона наиболее вероятно; амплитуда волны убывает по мере уменьшения вероятности обнаружения электрона и сегодня. Утверждение Борна касается одного из самых странных свойств квантовой теории, тем не менее, оно подтверждается огромным количеством экспериментальных данных. Согласно этому утверждению электронная волна должна интерпретироваться с точки зрения вероятности. В тех областях, где амплитуда (или, точнее, квадрат амплитуды) волны больше, обнаружение электрона более вероятно; в местах, где амплитуда мала, вероятность обнаружить электрон меньше. Пример показан на рис. 4.9.
 Это действительно необычная идея. Какое отношение имеет вероятность к формулировке фундаментальных законов физики? Мы привыкли к тому, что вероятность присуща лошадиным бегам, подбрасыванию монеты или игре в рулетку, но в этих случаях она просто является отражением неполноты нашего знания. Если мы точно знаем скорость колеса рулетки, вес и твердость шарика, который бегает по нему, положение и скорость шарика в тот момент, когда он падает на колесо, свойства материала ячеек и т. п., и если мы используем для наших вычислений достаточно мощные компьютеры, мы можем, в соответствии с законами классической физики, совершенно точно предсказать, где остановится шарик. В казино полагаются на неспособность игрока получить всю эту информацию и провести необходимые вычисления перед тем, как сделать ставку. Однако ясно, что вероятность, с которой приходится сталкиваться во время игры в рулетку, не отражает никаких фундаментальных свойств Вселенной. Напротив, квантовая механика вводит понятие вероятности в устройство мироздания на гораздо более глубоком уровне. Согласно утверждению Борна, подкрепленному собранными более чем за полвека экспериментальными данными, наличие у материи волновых свойств подразумевает, что фундаментальное описание материи должно иметь вероятностный характер. Закон де Бройля показывает, что для макроскопических объектов, таких как кофейная чашка или рулеточное колесо, волновые свойства являются практически ненаблюдаемыми, и в обычных ситуациях связанная с ними квантово-механическая вероятность может полностью игнорироваться. Но этот же закон говорит, что на микроскопическом уровне мы, в лучшем случае, можем указать только вероятность того, что электрон будет обнаружен в любом заданном месте.
 Допустим, что электронные волны обладают теми же свойствами, что и все другие волны, например, они могут сталкиваться с препятствиями и образовывать вторичные волны. Однако в рамках вероятностного описания из этого не следует, что сам электрон распадается на части. Это означает лишь, что имеются области, в которых электрон может появиться с ненулевой вероятностью. На практике это означает, что если мы будем снова и снова повторять совершенно одинаковым образом какой-либо эксперимент с электроном, касающийся, например, измерения его положения, мы не будем всегда получать одинаковый результат. Повторяющиеся эксперименты дадут набор различных результатов, в которых частота появления электрона в заданном месте будет функцией плотности вероятности электронной волны. Если функция плотности вероятности для волны (или, точнее, квадрат плотности вероятности) для точки А в два раза больше, чем для точки В, то при многократном повторении опыта мы увидим, что электрон будет обнаруживаться в точке А в два раза чаще, чем в точке В. Точный результат эксперимента не может быть предсказан; лучшее, что можно сделать - предсказать вероятность данного возможного исхода.
 
 78 Часть II. Дилемма пространства, времени и квантов
 Однако если математическое выражение для функции плотности вероятности известно точно, то даже при такой неопределенности исходов вероятностный прогноз может быть проверен путем многократного повторения эксперимента, что позволяет экспериментально определить вероятность того или иного конкретного результата. Всего через несколько месяцев после появления гипотезы де Бройля Шредингер сделал важный шаг в этом направлении, предложив уравнение, которое определяет форму и эволюцию таких вероятностных волн, или, как они теперь называются, волновых функций. Вскоре уравнение Шредингера и вероятностная интерпретация были использованы для получения фантастически точных предсказаний. Таким образом, к 1927 г. классическая наивность была утрачена. Ушли те дни, когда Вселенная представлялась работавшим как часы механизмом, объекты которого, приведенные в движение в какой-то момент в прошлом, покорно следовали к неизбежному, единственным образом определяемому пункту назначения. Согласно квантовой механике Вселенная развивается в соответствии со строгими и точными математическими законами, но эти законы определяют только вероятность того, что может наступить то или иное конкретное будущее, и ничего не говорят о том, какое будущее наступит в действительности.
 Многие сочтут этот вывод обескураживающим или даже совершенно неприемлемым. Одним из таких людей был Эйнштейн. В одном из наиболее известных в истории физики высказываний он предостерегал сторонников квантовой механики: "Бог не играет в кости со Вселенной". Он считал, что вероятность появляется в фундаментальной физике по той же причине, по которой она появляется в игре в рулетку: вследствие существенной неполноты нашего знания. С точки зрения Эйнштейна, во Вселенной нет места для будущего, точное содержание которого включает элементы вероятности. Физики должны предсказывать, как будет развиваться Вселенная, а не определять вероятность того, что события могут пойти каким-то путем. Но эксперимент за экспериментом (некоторые из наиболее впечатляющих были выполнены уже после его смерти) убедительно подтверждали, что Эйнштейн был не прав. Как заметил однажды по этому поводу британский физик-теоретик Стивен Хокинг. "Заблуждался Эйнштейн, а не квантовая теория"6).
 Тем не менее, споры о том, что же в действительности представляет собой квантовая механика, не утихают. Все согласны в том, как использовать уравнения квантовой механики для получения точных предсказаний. Нет согласия в вопросах о том, что в действительности представляют собой волновые функции, каким образом частица "выбирает", какому из многих вариантов будущего ей следовать. Нет согласия даже в вопросе о том, действительно ли она выбирает или вместо этого разделяется, подобно разветвляющемуся руслу реки, и живет во всех возможных будущих, в вечно расширяющемся мире параллельных вселенных. Эти интерпретации сами по себе заслуживают отдельной книги, и, в действительности, есть немало превосходных книг, пропагандирующих тот или иной взгляд на квантовую теорию. Но совершенно определенным кажется тот факт, что независимо от интерпретации квантовой механики, она неопровержимо доказывает, что Вселенная основана на принципах, которые являются неестественными с точки зрения повседневного опыта.
 Общий урок, который дают теория относительности и квантовая механика, состоит в том, что в ходе глубоких исследований основ мироздания можно столкнуться с фактами, которые очень сильно отличаются от наших ожиданий. Отвага при постановке новых вопросов может потребовать непредвиденной гибкости, когда нам придется принимать неожиданные точки зрения.
 Точка зрения Фейнмана
 Ричард Фейнман был одним из величайших физиков-теоретиков со времен Эйнштейна. Он полностью принял вероятностную интерпретацию квантовой механики, но после Второй мировой войны предложил новый взгляд на эту теорию. С позиций численных
 
 Глава 4. Микроскопические странности 79
 предсказаний точка зрения Фейнмана полностью согласуется с тем, что было известно ранее. Но ее формулировка существенно отличается от общепринятой. Рассмотрим ее в контексте экспериментов с электронами и двумя щелями.
 Проблема с интерпретацией рис. 4.8 возникает потому, что в нашем представлении электрон проходит либо через левую щель, либо через правую, и поэтому мы рассчитываем увидеть комбинацию картин рис. 4.4 и 4.5, показанную на рис. 4.6. Электрону, проходящему через правую щель, должно быть все равно, существует ли левая щель, и наоборот. Но каким-то образом он ее чувствует. Получаемая интерференционная картина требует взаимодействия и сообщения между чем-то, чувствительным к обеим щелям, даже если электроны выстреливаются поодиночке. Шредингер, де Бройль и Борн объясняли этот феномен, приписывая каждому электрону волновую функцию. Подобно волнам на поверхности воды, показанным на рис. 4.7, волны функции плотности вероятности электрона "видят" обе щели и испытывают своего рода интерференцию при наложении. На тех участках, где вероятностная волна усиливается при наложении, подобно участкам значительного усиления колебаний на рис. 4.7, обнаружение электрона вероятно, а там, где вероятностная волна ослабляется при наложении, подобно местам с минимальной амплитудой или отсутствием колебаний на рис. 4.7, обнаружение электрона маловероятно или невероятно. Электроны сталкиваются с фосфоресцирующим экраном один за другим, распределенные в соответствии с функцией плотности вероятности и, в конечном итоге, образуют интерференционную картину, схожую с той, которая показана на рис. 4.8.
 Фейнман выбрал другой подход. Он усомнился в основном классическом предположении, согласно которому каждый электрон проходит либо через левую щель, либо через правую. На первый взгляд это предположение настолько фундаментально, что сомневаться в нем нелепо. В конце концов, разве вы не можете заглянуть в область, расположенную между щелями и фосфоресцирующим экраном, и посмотреть, сквозь какую щель проходит каждый электрон? Да, вы можете. Но тем самым вы измените эксперимент. Чтобы увидеть электрон, вы должны сделать с ним что-нибудь - например, осветить его, т. е. столкнуть с ним фотон. В повседневных масштабах фотон действует как исчезающе малый зонд, который отскакивает от деревьев, картин и людей, не оказывая практически никакого влияния на движение этих сравнительно больших материальных тел. Но электрон - это ничтожно малая частица материи. Независимо от того, насколько осторожно вы будете определять щель, через которую он прошел, отражающиеся от электрона фотоны неизбежно повлияют на его последующее движение. А это изменение движения изменит результат нашего эксперимента. Если ваше вмешательство будет достаточно сильным для того, чтобы вы смогли определить щель, через которую прошел электрон, результат эксперимента изменится, и вместо картины, показанной на рис. 4.8, вы получите картину, подобную той, которая изображена на рис. 4.6! Квантовый мир гарантирует, что как только вы установили, через какую щель, правую или левую, прошел каждый электрон, интерференция между этими двумя щелями исчезнет.
 Таким образом, Фейнман укрепился в своих сомнениях: хотя повседневный опыт говорит о том, что электрон должен проходить через одну из двух щелей, к концу 1920-х гг. физики поняли, что любая попытка проверить это якобы фундаментальное свойство неизбежно приведет к искажению результатов эксперимента.
 Фейнман провозгласил, что каждый электрон, который проходит через преграду и попадает на фосфоресцирующий экран, проходит через обе щели. Это звучит дико, но не торопитесь возмущаться, вас ждут еще более сумасшедшие заявления. Фейнман высказал утверждение, что на отрезке от источника до некоторой точки на фосфоресцирующем экране каждый отдельно взятый электрон на самом деле перемещается по всем возможным траекториям одновременно; некоторые из этих траекторий показаны на рис. 4.10. Электрон вполне упорядоченным образом проходит через левую щель.
 
 80 Часть П. Дилемма пространства, времени и квантов
  Рис. 4.10. Согласно формулировке квантовой механики, предложенной Фейнманом, частица, перемещающаяся из одной точки в другую, движется одновременно по всем возможным путям. Здесь показано несколько из бесконечного числа возможных траекторий для одного электрона, движущегося от источника к фосфоресцирующему экрану. Обратите внимание, что этот один электрон на самом деле проходит через обе щели Одновременно он столь же упорядоченно проходит через правую щель. Он направляется к левой щели, но вдруг меняет направление и устремляется к правой. Он петляет вперед и назад и, наконец, проходит через левую щель. Он отправляется в долгое путешествие к туманности Андромеды, там он разворачивается, возвращается назад и проходит через левую щель на пути к экрану. Он движется и так и этак - согласно Фейнману, электрон одновременно "рыщет" по всем возможным путям, соединяющим пункт отправления и пункт назначения.
 Фейнман показал, что каждому из этих путей можно поставить в соответствие некоторое число, и общее среднее этих чисел даст ту же вероятность, что и расчет с использованием волновой функции. Итак, с точки зрения Фейнмана, с электроном не нужно связывать никакой вероятностной волны. Вместо этого мы должны представить себе нечто столь же, если не более, странное. Вероятность того, что электрон, - который во всех отношениях проявляет себя частицей, - появится в некоторой заданной точке экрана, определяется суммарным эффектом от всех возможных путей, ведущих в эту точку. Этот подход к квантовой механике известен как фейнмановское "суммирование по путям"7).
 Здесь начинает протестовать наше классическое образование: как может один электрон одновременно перемещаться по различным путям, да еще и по бесконечному числу путей? Это возражение кажется неоспоримым, но квантовая механика - реальная физика нашего мира - требует, чтобы вы держали столь тривиальные возражения при себе. Результаты расчетов с использованием фейнмановского подхода согласуются с результатами, полученными с применением метода волновых функций, которые, в свою очередь, согласуются с экспериментальными данными. Вы должны позволить природе самой определять, что является разумным, а что - неразумным. Как написал в одной из своих работ Фейнман: "[Квантовая механика] дает совершенно абсурдное с точки зрения здравого смысла описание Природы. И оно полностью соответствует эксперименту. Так что я надеюсь, что вы сможете принять Природу такой, как Она есть - абсурдной"8'.
 Однако независимо от того, насколько абсурдной является природа на уровне микромира, при переходе к нашим обычным масштабам любая теория должна приводить к привычным прозаичным событиям. Как показал Фейнман, для движения больших тел, таких как бейсбольные мячи, аэропланы или планеты, каждое из которых является огромным по сравнению с субатомными частицами, его правило определения весов различных траекторий гарантирует, что все траектории, кроме одной, взаимно сократятся при суммировании их вкладов. В действительности, когда дело касается движения классического тела, значение имеет только одна траектория из бесконечного их количества. И это именно та траектория, которая следует из ньютоновских законов движения. Вот почему в нашем повседневном мире нам кажется, что тела (такие, как брошенный в воздух мяч) следуют вдоль единственной, уникальной и предсказуемой траектории из начальной точки в пункт назначения. Но для объектов микромира фейнмановское правило назначения весов траекториям показывает, что свой вклад в движение объекта могут вносить (и часто вносят) многочисленные возможные траектории. Например, в эксперименте с двумя щелями некоторые из траекторий проходят через разные щели, приводя к образованию интерференционной
 
 Глава 4. Микроскопические странности 81
 картины. В микромире мы не можем гарантировать, что электрон пройдет только через одну щель или только через другую. Интерференционная картина и фейнманов-ская альтернативная формулировка квантовой механики недвусмысленно поддерживают друг друга.
 Как разные мнения о книге или фильме могут оказаться полезными для понимания различных моментов этого произведения, так и различные подходы к квантовой механике помогают углубить понимание этой теории. Хотя предсказания метода волновых функций и фейнмановского суммирования по траекториям полностью согласуются друг с другом, в их основе лежат совершенно различные представления. Как мы увидим позднее, для разных приложений тот или иной подход может стать неоценимым средством объяснения.
 Квантовые чудеса
 К настоящему моменту у вас должно было появиться некоторое представление о волнующем новом образе мироздания согласно квантовой механике. Если вы еще не впечатлились от поразительных высказываний Бора, квантовые чудеса, о которых пойдет речь ниже, заставят вас, по крайней мере, испытать головокружение.
 Квантовую механику трудно понять на интуитивном уровне, еще труднее, чем теорию относительности - для этого нужно начать мыслить подобно миниатюрному человечку, родившемуся и выросшему в микромире. Существует, однако, одно положение этой теории, которое может служить путеводителем для интуиции, своего рода пробным камнем, который отличает квантовую логику от классической. Это соотношение неопределенностей, открытое немецким физиком Вернером Гейзенбергом в 1927 г.
 Это соотношение выросло из проблемы, с которой мы уже сталкивались выше. Мы установили, что процедура определения щели, через которую проходит каждый из электронов (т. е. определение положения электронов), неизбежно вносит возмущения в их последующее движение. Однако вспомним, что убедиться в присутствии другого человека можно разными способами - можно дать ему увесистый шлепок по спине, а можно нежно коснуться его. Тогда что мешает нам определить положение электрона с помощью "более нежного" источника света, который бы оказывал меньшее влияние на его дальнейшее движение? С точки зрения физики XIX в. это вполне возможно. Используя все более слабую лампу (и все более чувствительный датчик светового излучения), мы можем оказывать исчезающе малое влияние на движение электрона. Но квантовая механика демонстрирует изъян в наших рассуждениях. Известно, что уменьшая интенсивность источника света, мы уменьшаем количество испускаемых фотонов. Когда мы дойдем до излучения отдельных фотонов, мы уже не сможем далее уменьшать интенсивность света без того, чтобы не выключить его совсем. Это фундаментальный квантово-механический предел "нежности" нашего исследования. Таким образом, всегда существует минимальное возмущение, которое мы вносим в движение электрона путем измерения его положения.
 Что ж, все это верно. Однако закон Планка говорит, что энергия единичного фотона пропорциональна его частоте (и обратно пропорциональна длине волны). Следовательно, используя свет все меньшей и меньшей частоты (и, соответственно, все большей длины волны), мы можем делать отдельные фотоны все более "нежными". Однако и здесь есть загвоздка. Когда волна направляется на объект, получаемая информация будет достаточной для того, чтобы определить положение объекта с некоторой неустранимой погрешностью, равной длине волны. Для того чтобы получить интуитивное представление об этом важном факте, представим, что мы пытаемся определить положение большой скалы, находящейся немного ниже уровня моря, по влиянию, которое она оказывает на проходящие морские волны. Приближаясь к скале, волны образуют замечательно упорядоченную последовательность следующих одни за другими гребней и впадин. После прохождения над скалой форма волн искажается - верный признак наличия подводной скалы. Но подобно
 
 82 Часть И. Дилемма пространства, времени и квантов
 самым мелким делениям на линейке, отдельный цикл волны, образованный гребнем и впадиной, является мельчайшей единицей в последовательности волн, поэтому, если мы наблюдаем только возмущение в движении волн, мы можем определить положение скалы лишь с точностью, равной одному волновому циклу, или длине волны. В случае света составляющие его фотоны представляют собой, грубо говоря, отдельные волновые циклы (при этом высота циклов определяется числом фотонов); следовательно, при определении положения объекта фотон дает точность, равную длине волны.
 Таким образом, мы сталкиваемся со своего рода квантово-механической компенсацией. Если мы используем высокочастотный свет (малой длины волны), мы можем с высокой точностью определить положение электрона. Но высокочастотные фотоны несут очень большое количество энергии и поэтому вносят большие возмущения в скорость движения электронов. Если мы используем низкочастотный свет (большой длины волны), мы минимизируем его влияние на движение электрона, поскольку фотоны, составляющие этот свет, имеют относительно низкую энергию, но в этом случае мы вынуждены пожертвовать точностью определения положения электрона. Гейзенберг выразил все это в виде математического соотношения между точностью измерения положения электрона и точностью определения его скорости. Он установил, что эти величины обратно пропорциональны друг другу: большая точность в определении положения неизбежно ведет к большей погрешности в определении скорости, и наоборот. Что еще более важно, хотя мы и ограничили наше обсуждение одним конкретным способом определения местоположения электрона, согласно Гейзенбергу компромисс между точностью определения положения и скорости является фундаментальным фактом, который остается справедливым независимо от используемого оборудования и метода измерения. В отличие от теорий Ньютона и даже Эйнштейна, в которых движущаяся частица описывается ее положением и скоростью, согласно квантовой механике на микроскопическом уровне вы не можете знать оба этих параметра с одинаковой точностью. Более того, чем точнее вы знаете один параметр, тем больше погрешность другого. Хотя мы ограничили наше описание электронами, то же самое относится ко всем составным элементам мироздания.
 Эйнштейн пытался минимизировать этот отход от позиций классической физики, утверждая, что хотя квантовая механика определенно ставит предел нашему знанию положения и скорости, электрон, тем не менее, имеет определенное положение и скорость в том смысле, который мы привыкли вкладывать в эти слова. Однако в течение последних двух десятилетий прогресс в теоретической физике, достигнутый группой исследователей, возглавляемых ирландским физиком Джоном Беллом, и экспериментальные данные Алана Аспекта и его коллег убедительно продемонстрировали, что Эйнштейн был не прав. Про электроны, как и про любые другие частицы, нельзя одновременно сказать, что они находятся в таком-то месте и имеют такую-то скорость. Квантовая механика показывает, что это утверждение не только не может быть проверено экспериментально (по причинам, объясненным выше), но оно, кроме того, прямо противоречит другим, совсем недавно полученным экспериментальным данным.
 В действительности происходит так: если вы поместите электрон в большую коробку и затем начнете медленно сдвигать ее стенки, чтобы определить его положение с увеличивающейся точностью, вы обнаружите, что движение электрона будет становиться все более и более неистовым. Электрон, будто охваченный своего рода клаустрофобией, будет возбуждаться все сильнее - отскакивая от стенок коробки со все возрастающей и непредсказуемой скоростью. Природа не позволяет загнать в угол свои компоненты. Как вы помните, в Н-баре, где мы сделали значение гораздо большим, чем оно есть в реальном мире, чтобы квантовые эффекты могли непосредственно влиять на объекты реального мира, кубики льда в напитках Джорджа и Грейс находились в неистовом движении, как будто тоже страдали от квантовой клаустрофобии. Хотя Н-бар является фантазией - в действитель-
 
 Глава 4. Микроскопические странности 83
 ности значение исчезающе мало - точно такая же квантовая клаустрофобия является неотъемлемым свойством микромира. Движение микрочастиц становится все более хаотическим, по мере того как их положение ограничивается при исследовании все меньшими областями в пространстве.
 Соотношение неопределенностей лежит в основе еще одного потрясающего явления, известного под названием квантового туннелирования. Если вы выстрелите пластиковой пулей в бетонную стенку толщиной в десять футов, то результат будет полностью соответствовать и вашим интуитивным представлениям, и классической физике: пуля отскочит назад. Причина состоит в том, что у пули просто недостаточно энергии, чтобы пробить такое прочное препятствие. Однако если перейти на уровень фундаментальных частиц, то, как совершенно определенно показывает квантовая механика, в волновую функцию (или, иначе, вероятностную волну) каждой составляющей пулю частицы заложена небольшая вероятность того, что эта частица может пройти сквозь стену. Это означает, что существует маленькая, но ненулевая, вероятность того, что пуля на самом деле сможет пройти сквозь стену и оказаться на другой стороне. Как такое может случиться? Причина снова содержится в соотношении неопределенностей Гейзенберга.
 Чтобы понять это, представьте, что вы живете в полной нищете и вдруг узнаете, что ваш дальний родственник отошел в лучший мир, оставив вам огромное состояние. Единственная проблема состоит в том, что у вас нет денег для покупки билета на самолет. Вы объясняете ситуацию своим друзьям: если они помогут вам преодолеть барьер между вами и наследством, ссудив деньги на билет, вы вернете им долг с процентами после возвращения. Но ни у кого нет денег, чтобы дать вам в долг. Тут вы вспоминаете про вашего старого друга, который работает в авиакомпании, и обращаетесь к нему с той же просьбой. Он тоже не может дать вам денег взаймы, но предлагает другое решение. Система учета в авиакомпании такова, что если вы вышлете деньги в уплату за билет телеграфным переводом в течение 24 часов с момента прибытия в пункт назначения, никто не узнает, что вы не уплатили их до вылета.
 Система учета в квантовой механике довольно схожа с этой. Показав, что существует компромисс между точностью измерения местоположения и скорости, Гейзенберг, кроме того, продемонстрировал существование компромисса между точностью измерения энергии и тем, сколько времени занимают эти измерения. Согласно квантовой механике вы не можете утверждать, что частица имеет в точности такую-то энергию в точно такой-то момент времени. За возрастающую точность измерения энергии приходится платить возрастающей продолжительностью проведения измерений. Грубо говоря, это означает, что энергия частицы может флуктуировать в очень широких пределах, если измерения проводятся в течение достаточно короткого периода времени. Поэтому точно так же как система учета в авиакомпании "позволяет" вам занять "деньги" на билет при условии, что вы вернете их достаточно быстро, квантовая механика "позволяет" частице "занять" энергию при условии, что она может вернуть ее в течение промежутка времени, определяемого сотношением неопределенностей Гейзенберга.
 Математический аппарат квантовой механики показывает, что чем выше энергетический барьер, тем меньше вероятность того, что такой созидательный микроскопический переучет произойдет. Однако если говорить о микроскопических частицах, находящихся перед бетонной плитой, они имеют возможность занять достаточное количество энергии и иногда делают то, что с точки зрения классической физики является невозможным: они мгновенно проходят через область, для проникновения в которую у них раньше не хватало энергии. При переходе к более сложным объектам, состоящим из большего числа частиц, возможность квантового туннелирования сохраняется, но становится очень маловероятной, поскольку требует, чтобы все частицы совершили переход одновременно. Однако шокирующие эпизоды, подобные исчезновению сигары Джорджа, перемещению кубика льда сквозь стенку бокала и проход Джорджа и Грейс сквозь стенку бара, могут происходить. В фантастическом
 
 84 Часть II. Дилемма пространства, времени и квантов
 месте, подобном Н-бару, в котором значения велики, квантовое туннелирование является обычным делом. Однако квантовой механикой правят законы вероятности. В частности, малость значения в реальном мире означает, что если вы будете каждую секунду атаковать бетонную стену, вам придется потратить время, превышающее возраст Вселенной, прежде чем у вас появится сколько-нибудь заметный шанс пройти сквозь стену в одной из попыток. Однако, имея бесконечное терпение (и такую же продолжительность жизни), рано или поздно вы можете оказаться с другой стороны.
 Соотношение неопределенностей является сердцевиной квантовой механики.
 Свойства, которые кажутся нам обычно столь фундаментальными, что не вызывают никаких сомнений, - что объекты имеют определенное положение и скорость, и что в определенные моменты времени они имеют определенную энергию, - теперь представляются всего лишь следствием того, что постоянная Планка так мала в масштабах нашего повседневного мира. Первостепенное значение имеет то, что применение этих квантовых принципов к структуре пространства-времени демонстрирует фатальное несовершенство "основ гравитации" и приводит нас к третьему и наиболее серьезному противоречию, с которым столкнулись физики в течение последнего столетия.
 
 Глава 5. Необходимость новой теории: общая теория относительности versus квантовая механика
 За последнее столетие наше понимание физического мира чрезвычайно углубилось. Теоретический аппарат квантовой механики и общей теории относительности позволил понять и предсказать доступные экспериментальной проверке физические явления, происходящие как на масштабах атомного и субатомного мира, так и на масштабах галактик, скоплений галактик и самой Вселенной в целом. Это фундаментальное достижение. Поистине вдохновляет то, что существа, обитающие на одной из планет, обращающейся вокруг заурядной звезды на окраине ничем не примечательной галактики, сумели путем размышлений и эксперимента выяснить и постичь ряд самых загадочных свойств физического мира. Тем не менее физики так устроены, что они никогда не будут удовлетворены до тех пор, пока не почувствуют, что достигли глубочайшего и наиболее фундаментального понимания Вселенной. Это то, что Стивен Хокинг назвал первым шагом к познанию "замысла Бога"1).
 Существует много свидетельств того, что квантовая механика и общая теория относительности не позволяют достичь этого глубочайшего уровня понимания. Поскольку их обычные области применения столь сильно различаются, в большинстве случаев требуется использование либо квантовой механики, либо общей теории относительности, но не обеих теорий одновременно. Но в некоторых экстремальных условиях, когда тела очень массивны и одновременно чрезвычайно малы по размерам (например, вещество вблизи центра черных дыр или Вселенная в целом в момент Большого взрыва), для полного понимания требуется как общая теория относительности, так и квантовая механика. Однако, подобно встрече огня и дороха, попытка объединения квантовой механики и общей теории относительности приводит к разрушительной катастрофе. При объединении уравнений этих теорий правильно поставленные физические задачи дают бессмысленные ответы. Бессмыслица часто принимает форму прогноза, что квантово-механическая вероятность некоторых процессов равна не 20, 73 или 91 %, а бесконечности. Но что же может означать вероятность, превышающая единицу, не говоря уже о бесконечности? Мы вынуждены заключить, что здесь есть какой-то серьезный порок. Внимательно анализируя основные понятия общей теории относительности и квантовой механики, можно выяснить, что же это за порок.
 Суть квантовой механики
 Когда Гейзенберг открыл соотношение неопределенностей, в физике произошел резкий поворот, и назад пути нет. Вероятности, волновые функции, интерференция и кванты - все это требует радикально новых способов видения мира. Однако не исключено, что какой-нибудь твердолобый физик-"классик" продолжает держаться за тонкую нить надежды, что когда все уляжется, эти отклонения от "классики" удастся встроить в систему понятий, не слишком сильно отличающуюся от прежних представлений. Однако соотношение неопределенностей ясно и недвусмысленно отрицает любую возможность возврата к прошлому.
 Соотношение неопределенностей утверждает, что при переходе к меньшим расстояниям и меньшим промежуткам времени жизнь Вселенной становится все более неистовой. Мы столкнулись с некоторыми
 
 86 Часть II. Дилемма пространства, времени и квантов
 свидетельствами этого при описании в предыдущей главе попыток точного определения положения элементарных частиц, таких как электроны. Освещая электроны светом все возрастающей частоты, мы измеряем их положение со все большей точностью, но за это приходится платить тем, что сами измерения вносят все большие возмущения. Высокочастотные фотоны обладают большой энергией и, следовательно, дают электронам резкий "толчок", значительно изменяющий их скорости. Подобно беспорядку в комнате, полной детей, мгновенное положение которых вам известно с большой точностью, но скорость которых, точнее, величину скорости и направление перемещения, вы почти не можете контролировать, эта неспособность определить одновременно положение и скорость элементарных частиц свидетельствует об изначальной хаотичности микромира.
 Хотя этот пример выражает фундаментальную связь между неопределенностью и хаосом, на самом деле он раскрывает только часть обшей картины. Например, можно было бы думать, что неопределенность возникает только тогда, когда мы - бестактные наблюдатели - вмешиваемся в происходящее на сцене мироздания. Это не верно. Пример попытки удержать электрон в небольшой коробке и его бурная реакция на это - увеличение скорости и хаотичности движения - подводит нас немного ближе к истине. Даже без "прямых столкновений" с вносящими возмущение "экспериментаторскими" фотонами скорость электрона резко и непредсказуемо изменяется от одного момента времени к другому. Но и этот пример не раскрывает все ошеломляющие свойства микромира, следующие из открытия Гейзенберга. Даже в самой спокойной ситуации, которую только можно себе представить, например, в пустой области пространства, согласно соотношению неопределенностей в микромире имеет место невероятная активность. И эта активность возрастает по мере уменьшения масштабов расстояния и времени.
 В понимании этого ключевую роль играет принцип квантово-механического баланса. Мы видели в предыдущей главе, что точно так же, как вы можете занять денег, чтобы решить важные финансовые проблемы, частица (например, электрон) может временно занять энергию, чтобы преодолеть реальный физический барьер. Это так. Но квантовая механика заставляет нас углубить эту аналогию. Представьте себе маниакального заемщика, который ходит от одного приятеля к другому, прося денег взаймы. Чем короче период времени, на который приятель может дать ему деньги, тем большую сумму он просит. Занимает и отдает, занимает и отдает - снова и снова он берет деньги в долг только для того, чтобы вскоре вернуть их. Как цены на акции в те дни, когда биржа ведет себя подобно американским горкам, количество денег, которые есть у маниакального заемщика в любой заданный момент времени, испытывает чрезвычайно сильные колебания, но по завершении всех этих операций его финансовый баланс находится в том же состоянии, в котором он был в начале.
 Из соотношения неопределенностей Гейзенберга следует, что подобный хаотический перенос энергии и импульса непрерывно происходит во Вселенной на микроскопических расстояниях и в микроскопическом временном масштабе. Согласно соотношению неопределенностей, даже в пустых областях пространства (например, в пустой коробке) энергия и импульс являются неопределенными: они флуктуируют между крайними значениями, которые возрастают по мере уменьшения размеров коробки и временного масштаба, на котором проводятся измерения. Это выглядит так, как если бы область пространства внутри коробки являлась маниакальным "заемщиком" энергии и импульса, непрерывно беря "в долг" у Вселенной и неизменно "возвращая долг". Но что участвует в этих обменах, например, в пустой области пространства? Все. В буквальном смысле слова. Энергия (как и импульс) являются универсальной конвертируемой валютой. Формула Е = тс2 говорит нам, что энергия может превращаться в материю и наоборот. Например, если флуктуации энергии достаточно велики, они могут привести к мгновенному возникновению электрона и соответствующей ему античастицы - позитрона, даже в области, которая первоначально была пустой! Поскольку энергия
 
 Глава 5. Необходимость новой теории: ОТО versus квантовая механика 87
 должна быть быстро возвращена, данные частицы должны спустя мгновение аннигилировать, высвободив энергию, заимствованную при их создании. То же самое справедливо для всех других форм, которые могут принимать энергия и импульс - при рождении и аннигиляции других частиц, сильных колебаниях интенсивности электромагнитного поля, флуктуациях полей сильного и слабого взаимодействий. Квантово-механическая неопределенность говорит нам, что в микроскопическом масштабе Вселенная является ареной, изобилующей бурными и хаотическими событиями. Как заметил однажды Фейнман, "возникать и аннигилировать, возникать и аннигилировать - какая пустая трата времени"2). Поскольку заем и возврат в среднем компенсируют друг друга, пустая область в пространстве продолжает выглядеть тихой и спокойной, если исследовать ее в любом масштабе, кроме микроскопического. Однако соотношение неопределенностей указывает, что макроскопическое усреднение скрывает интенсивную микроскопическую активность3). Как мы увидим вскоре, этот хаос и является препятствием к слиянию общей теории относительности и квантовой механики.
 Квантовая теория поля
 На протяжении 1930-х и 1940-х гг. физики-теоретики во главе с такими личностями, как Поль Дирак, Вольфганг Паули, Юлиан Швингер, Фриман Дайсон, Син-Итиро Томонага и Фейнман, не покладая рук пытались разработать математический аппарат, который помог бы справиться с буйством микромира. Они установили, что квантовое волновое уравнение Шредингера (упомянутое в главе 4) на самом деле дает только приближенное описание физики микромира. Это приближенное описание работает очень хорошо, пока вы не пытаетесь (экспериментально или теоретически) слишком глубоко залезть в микроскопический хаос, но определенно отказывается работать, если кто-то делает такую попытку.
 Основным разделом физики, которым Шредингер пренебрег в своей формулировке квантовой механики, была специальная теория относительности. На самом деле Шредингер сначала сделал попытку включить специальную теорию относительности, но полученное в результате квантовое уравнение давало предсказания, находившиеся в противоречии с экспериментальными данными для атома водорода. Это побудило Шредингера воспользоваться широко применяемым в физике подходом "разделяй и властвуй": вместо того, чтобы пытаться одним махом объединить в новой теории все, что известно о физическом мире, часто гораздо выгоднее бывает делать небольшие шаги, которые последовательно включают новейшие открытия, сделанные на переднем крае исследований. Шредингер искал и нашел математический аппарат, который позволил учесть экспериментально подтвержденный корпускулярно-волновой дуализм, но он не смог на этой стадии включить в рассмотрение специальную теорию относительности4) .
 Однако вскоре физики осознали, что специальная теория относительности крайне важна для корректной формулировки законов квантовой механики. Хаос микромира требует признания, что энергия может проявлять себя самыми различными способами. Впервые это было осознано в формуле специальной теории относительности Е = тс2. Игнорируя специальную теорию относительности, подход Шредингера не учитывал взаимопревращаемость материи, энергии и движения.
 Прежде всего физики сконцентрировали свои усилия на попытках объединить специальную теорию относительности с принципами квантовой механики при описании электромагнитного поля и его взаимодействия с веществом. В результате серии вдохновляющих достижений они создали квантовую электродинамику. Это был пример теории, впоследствии получившей название релятивистской квантовой теории поля или, кратко, квантовой теории поля. Такая теория является квантовой, поскольку она с самого начала строилась с использованием понятий вероятности и неопределенности; она является теорией поля, поскольку объединяет понятия квантовой механики и ранее
 
 88 Часть II. Дилемма пространства, времени и квантов
 существовавшее классическое представление о силовом поле, и данном случае, максвелловском электромагнитном поле. Наконец, эта теория является релятивистской, поскольку с самого начала учитывает специальную теорию относительности. (Если вам нужен визуальный образ квантового поля, вы можете использовать образ классического поля, скажем, океан невидимых силовых линий, пронизывающих пространство, дополнив его в двух отношениях. Во-первых, вы должны представить квантовое поле образованным из частиц-составляющих, таких как фотоны в случае электромагнитного поля. Во-вторых, вы должны представить, что энергия, сосредоточенная в массах частиц и их движении, бесконечно много раз переходит от одного квантового поля к другому в процессе их непрерывных осцилляции в пространстве и времени.)
 Квантовая электродинамика, бесспорно, является наиболее точной из когда-либо созданных теорий, описывающих природные явления. Иллюстрацию ее точности можно найти в работах Тойхиро Киношиты, специалиста по физике элементарных частиц из Корнелльского университета, который в течение последних 30 лет неутомимо использовал квантовую электродинамику для расчета некоторых тонких свойств электронов. Расчеты Киношиты заполняют тысячи страниц, и в конце концов потребовали для завершения самых мощных из когда-либо созданных компьютеров. Но затраченные им усилия принесли свои плоды, позволив рассчитать характеристики электронов, которые подтвердились экспериментально с точностью, превышающей одну миллиардную. Это согласие между результатами абстрактных теоретических вычислений и данными реального мира совершенно поразительно. С помощью квантовой электродинамики физики смогли подтвердить роль фотонов как "наименьших возможных сгустков света" и описать их взаимодействие с электрически заряженными частицами в рамках математически законченной модели, позволяющей получать убедительные предсказания.
 Успех квантовой электродинамики побудил других физиков в 1960-х и 1970-х гг. попытаться использовать аналогичный подход для квантово-механического описания слабого, сильного и гравитационного взаимодействий. Для слабого и сильного взаимодействий этот подход оказался чрезвычайно плодотворным. Физики сумели, по аналогии с квантовой электродинамикой, разработать квантово-полевые теории сильного и слабого взаимодействий, получившие название квантовой хромодинамики и квантовой теории электрослабых взаимодействий. Название "квантовая хромодинамика" выбрано из-за колорита, более логичным было бы "квантовая динамика сильных взаимодействий", но это всего лишь название без глубокого смысла. С другой стороны, название "электрослабое" указывает на важную веху в нашем понимании взаимодействий в природе. В работе, за которую Шелдон Глэшоу, Абдус Салам и Стивен Вайнберг получили Нобелевскую премию, они показали, что слабое и электромагнитное взаимодействия естественным образом объединяются в квантово-полевом описании, несмотря на то, что их проявления в окружающем нас мире столь разительно различаются. Слабое взаимодействие имеет исчезающе малую величину во всех масштабах, кроме субатомного, тогда как электромагнитные поля - видимый свет, радио- и телевизионные сигналы, рентгеновское излучение - неоспоримо присутствуют в нашем макроскопическом мире. Тем не менее, Глэшоу, Салам и Вайнберг показали, что при достаточно высоких энергиях и температурах, которые существовали спустя долю секунды после Большого взрыва, электромагнитное и слабое взаимодействия были слиты одно с другим, их характеристики были неразличимы. Поэтому им дали более точное название электрослабых взаимодействий. Вследствие не прекращающегося со времен Большого взрыва снижения температуры из единого высокотемпературного состояния разными путями выкристаллизовались электромагнитное и слабое взаимодействия в ходе процесса, известного под названием нарушение симметрии, который мы опишем ниже. В результате эти взаимодействия приобрели различный облик в той холодной Вселенной, в которой мы обитаем в настоящее время.
 
 Глава 5. Необходимость новой теории: ОТО versus квантовая механика 89
 Итак, если вы следите за хронологией, к 1970-м гг. физики разработали успешное квантово-механическое описание трех из четырех взаимодействий (сильного, слабого и электромагнитного), а также показали, что два из трех последних (слабое и электромагнитное взаимодействия) фактически имеют общее происхождение (электрослабое взаимодействие). В течение последних десятилетий физики подвергли это квантово-механическое описание трех негравитационных сил (как они взаимодействуют между собой и с введенными в главе 1 частицами материи) самой разнообразной экспериментальной проверке. Теория с успехом выдержала нее проверки. Когда экспериментаторы измерили значения 19 параметров (масс частиц, приведенных в табл. 1.1, констант взаимодействия для этих частиц, показанных в таблице и примечании 1 к главе 1, интенсивностей трех негравитационных взаимодействий в табл. 1.2, а также ряда других величин, обсуждать которые нет необходимости), а теоретики подставили полученные значения в формулы квантово-полевых теорий для сильного, слабого и электромагнитного взаимодействий частиц материи, предсказания этих теорий с поразительной точностью совпали с экспериментальными данными. Совпадение наблюдается вплоть до энергий, способных расщепить материю на частицы, размер которых составляет одну миллиардную от одной миллиардной метра, что является пределом для современного уровня развития техники. По этой причине физики называют теорию трех негравитационных взаимодействий и три семейства частиц материи стандартной теорией, или (чаще) стандартной моделью физики элементарных частиц.
 Частицы-посланники
 Так же, как для электромагнитного поля, наименьшим элементом которого является фотон, для полей сильного и слабого взаимодействий согласно стандартной модели имеются свои наименьшие элементы. Как упоминалось в главе I, мельчайшие сгустки сильного взаимодействия известны под названием глюонов, а соответствующие сгустки слабого взаимодействия - под названием калибровочных бозонов слабого взаимодействия (точнее, W-бозонов и Z-бозонов). Стандартная модель предписывает нам рассматривать эти сгустки как не имеющие внутренней структуры - в рамках данной модели они столь же элементарны, как частицы, входящие в состав трех семейств частиц материи.
 Фотоны, глюоны и калибровочные бозоны слабого взаимодействия обеспечивают микроскопический механизм передачи взаимодействий, которые они представляют. Например, чтобы представить себе, как одна электрически заряженная частица отталкивает другую частицу с одноименным зарядом, можно вообразить, что каждая частица окружена электрическим полем - "облаком" или "туманом", являющимся носителем "электрических свойств", - а воздействие, воспринимаемое каждой частицей, обусловлено взаимодействием их силовых полей. Более точное описание отталкивания частиц на микроскопическом уровне выглядит несколько иначе. Электромагнитное поле состоит из полчищ фотонов; взаимодействие между двумя заряженными частицами на самом деле является результатом взаимного "обстрела" фотонами. Если использовать грубую аналогию, это похоже на изменение траекторий двух конькобежцев, обстреливающих друг друга градом шаров для боулинга. Подобным же образом и две электрически заряженные частицы влияют друг на друга, обмениваясь мельчайшими частицами света.
 Существенным недостатком аналогии с конькобежцами является то, что обмен шарами для боулинга всегда приводит к "отталкиванию": он увеличивает расстояние между конькобежцами. С другой стороны, две частицы, несущие противоположный заряд, также взаимодействуют между собой, обмениваясь фотонами, но результирующая электромагнитная сила является притягивающей. Это выглядит так, как если бы фотон был переносчиком не взаимодействия как такового, а скорее послания о том, как получатель должен реагировать на соответствующее взаимодействие. Частицам, несущим
 
 90 Часть II. Дилемма пространства, времени и квантов
 одноименный заряд, фотон передает сообщение "отдаляйтесь", а частицам с разноименным зарядом - "сближайтесь". По этой причине фотон иногда называют частицей-посланником электромагнитного взаимодействия. Аналогичным образом глюоны и слабые калибровочные бозоны являются частицами-посланниками сильного и слабого атомного взаимодействия. Сильное взаимодействие, которое удерживает кварки внутри протонов и нейтронов, возникает за счет обмена глюонами между кварками. Можно сказать, что глюоны создают "клей", удерживающий эти субатомные частицы вместе. Слабое взаимодействие, отвечающее за некоторые виды превращений частиц при радиоактивном распаде, передается посредством калибровочных бозонов слабого взаимодействия.
 Калибровочная симметрия
 Вы, наверное, уже заметили, что в нашем обсуждении квантовой теории взаимодействий в природе не упоминается гравитация. Зная, что у физиков имеется подход, который они успешно использовали для трех других взаимодействий, вы можете ожидать, что они пытались разработать квантово-полевую теорию гравитационного взаимодействия, в которой частицей, передающей гравитационное взаимодействие, будет наименьший сгусток гравитационного поля, гравитон. На первый взгляд это предположение кажется особенно уместным в силу того, что квантовая теория трех негравитационных взаимодействий выявила волнующее сходство между ними и свойством гравитационного поля, с которыми мы столкнулись в главе 3.
 Вспомним, что гравитационное взаимодействие позволяет объявить, что все наблюдатели - независимо от состояния движения - являются абсолютно равноправными. Даже те, движение которых кажется нам ускоренным, могут заявить, что находятся в состоянии покоя, поскольку могут приписать испытываемую ими силу действию гравитационного поля. В этом смысле гравитация налагает симметрию: она гарантирует равноправие всех возможных точек зрения и всех возможных систем отсчета. Сходство с сильным, слабым и электромагнитным взаимодействиями состоит в том, что они тоже связаны с симметриями, хотя эти виды симметрии значительно более абстрактны по сравнению с той, которая связана с гравитацией.
 Для того чтобы получить общее представление об этих достаточно тонких принципах симметрии, рассмотрим один важный пример. Как указано в таблице, содержащейся в примечании 1 к главе 1, каждый кварк может быть окрашен в один из трех "цветов" (вычурно названных красным, зеленым и синим, хотя это не более чем условность и не имеет никакого отношения к цвету в обычном понимании этого слова). Эти цвета определяют его реакцию на сильное взаимодействие точно так же, как электрический заряд определяет реакцию на электромагнитное взаимодействие. Все полученные к настоящему времени данные свидетельствуют о том, что между кварками наблюдается симметрия: все взаимодействия между одноцветными кварками (красного с красным, зеленого с зеленым или синего с синим) являются идентичными, как и идентичными являются взаимодействия между разноцветными кварками (красного с зеленым, зеленого с синим или синего с красным). На самом деле факты еще более поразительны. Если три цвета, т. е. три различных сильных заряда, сдвинуть определенным образом (грубо говоря, если на нашем вычурном цветовом языке красный, зеленый и синий изменятся и станут, например, желтым, индиго и фиолетовым), то даже если параметры сдвига будут меняться от одного момента времени к другому и от точки к точке, взаимодействие между кварками останется совершенно неизменным. Рассмотрим сферу: она является примером тела, обладающего вращательной симметрией, поскольку выглядит одинаково независимо от того, как мы вращаем ее в руках и под каким углом на нее смотрим. Аналогично можно сказать, что наша Вселенная обладает симметрией сильного взаимодействия: физические явления не изменятся при сдвигах зарядов этого взаимодействия - Вселенная совершенно не чувствительна к ним. По историческим причинам
 
 Глава 5. Необходимость новой теории: ОТО versus квантовая механика 91
 физики говорят, что симметрия сильного взаимодействия является примером калибровочной симметрии5).
 Здесь следует подчеркнуть один существенный момент. Как показали работы Германа Вейля 1920-х гг., а также работы Чень-Нин Янга и Роберта Миллса 1950-х гг., аналогично тому, что симметрия между всеми возможными точками наблюдения в общей теории относительности требует существования гравитационной силы, калибровочная симметрия требует существования других видов сил. Подобно тому, как чувствительная система контроля параметров окружающей среды поддерживает на постоянном уровне температуру, давление и влажность воздуха путем компенсации внешних воздействий, некоторые типы силовых полей, согласно Янгу и Миллсу, обеспечивают компенсацию сдвигов зарядов сил, сохраняя неизменность физических взаимодействий между частицами. В случае калибровочной симметрии, связанной со сдвигом цветовых зарядов кварков, требуемая сила представляет собой не что иное, как само сильное взаимодействие. Иными словами, если бы не было сильного взаимодействия, физика могла бы измениться при упомянутом выше сдвиге цветовых зарядов. Это показывает, что хотя гравитационное и сильное взаимодействия имеют совершенно различные свойства (вспомним, например, что гравитация гораздо слабее сильного взаимодействия и действует на гораздо больших расстояниях), они, в определенном смысле, имеют общее происхождение: каждое из них необходимо для того, чтобы Вселенная обладала какой-то конкретной симметрией. Более того, аналогичные рассуждения, примененные к слабому и электромагнитному взаимодействиям, показывают, что их существование также связано с некоторыми видами калибровочной симметрии - так называемой слабой и электромагнитной калибровочной симметриями. Таким образом, все четыре взаимодействия непосредственно связаны с принципами симметрии.
 Эта общая характеристика всех четырех взаимодействий, казалось бы, говорит в пользу предположения, сделанного в начале настоящего раздела. А именно, в наших попытках объединить квантовую механику и общую теорию относительности мы должны вести поиск в направлении квантово-полевой теории гравитационного взаимодействия, следуя примеру успешной разработки квантово-полевых теорий трех других видов взаимодействия. На протяжении многих лет эта логика вдохновляла группу выдающихся физиков на разработку такой теории, однако путь к ней оказался усеян препятствиями, и никому не удалось пройти его полностью. Попытаемся понять почему.
 Общая теория относительности и квантовая механика
 Обычной областью применения общей теории относительности являются огромные, астрономические масштабы расстояний. Согласно теории Эйнштейна, на этих масштабах отсутствие масс означает, что пространство является плоским, как показано на рис. 3.3. Пытаясь объединить общую теорию относительности и квантовую механику, мы должны резко изменить фокусировку и исследовать свойства пространства в микроскопическом масштабе. Мы продемонстрировали это на рис. 5.1 путем последовательного увеличения масштаба и перехода к уменьшающимся областям пространства. По мере того, как мы увеличиваем масштаб, на первых порах не происходит ничего особенного; можно видеть, что на первых трех уровнях увеличения на рис. 5.1 структура пространства сохраняет свои основные свойства. Если подходить с сугубо классической точки зрения, мы могли бы рассчитывать на то, что такая спокойная и плоская структура пространства будет сохраняться все время, вплоть до любого, произвольно малого масштаба расстояний. Однако квантовая механика радикально меняет эту картину. Объектом квантовых флуктуации, управляемых соотношением неопределенностей, является все - даже гравитационное поле. Хотя классическая теория говорит, что гравитационное поле в пустом пространстве равно нулю, квантовая механика показывает, что
 
 92 Часть II. Дилемма пространства, времени и квантов
  Рис. 5.1. Рассматривая область пространства при все большем увеличении, можно исследовать свойства пространства на ультрамикроскопическом уровне. Попытки объединить общую теорию относительности и квантовую механику наталкиваются на кипящую квантовую пену, проявляющуюся при самом большом увеличении оно будет нулевым в среднем, а его текущее значение будет изменяться за счет квантовых флуктуаций. Более того, соотношение неопределенностей говорит нам, что размер флуктуации гравитационного поля будет возрастать при переходе ко все меньшим областям пространства. Квантовая механика показывает, что никому не нравится, когда его загоняют в угол; уменьшение пространственной фокусировки ведет к росту флуктуаций. Поскольку гравитационное поле проявляется в кривизне пространства, эти квантовые флуктуации выражаются в его чудовищных деформациях. Мы можем наблюдать проявление таких деформаций на четвертом уровне увеличения на рис. 5.1. При переходе к еще меньшему масштабу расстояний, такому, как на пятом уровне рис. 5.1, мы видим, что случайные квантово-механические флуктуации гравитационного поля соответствуют такому сильному искривлению пространства, что оно совсем перестает напоминать мягко искривленные геометрические объекты типа резиновой пленки, ко-
 
 Глава 5. Необходимость новой теории: ОТО versus квантовая механика 93
 торую мы использовали в качестве аналогии в главе 3. Скорее оно принимает вспененную, турбулентную и скрученную форму, показанную в верхней части рисунка. Джон Уилер предложил для описания такого хаоса, обнаруживаемого при изучении ультрамикроскопической структуры пространства (и времени), термин квантовая пена' - описывающий незнакомую нам область Вселенной, в которой обычные понятия "налево и направо", "вперед и назад", "вверх и вниз" (и даже "до и после") теряют свой смысл. Именно на таких малых расстояниях мы сталкиваемся с фундаментальной несовместимостью общей теории относительности и квантовой механики. Понятие гладкости геометрии пространства, являющееся основным принципом общей теории относительности, рушится под напором неистовых флуктуации квантового мира, существующих в масштабе ультрамикроскопических расстояний. В ультрамикроскопическом масштабе основное свойство квантовой механики - соотношение неопределенностей - вступает в прямое противоречие с центральным принципом обшей теории относительности - гладкой геометрической моделью пространства (и пространства-времени).
 На практике этот конфликт проявляется в весьма конкретном виде. Расчеты, основанные на совместном использовании уравнений общей теории относительности и квантовой механики, обычно дают один и тот же нелепый ответ: бесконечность. Подобно подзатыльнику, полученному от школьного учителя старых времен, бесконечность в ответе - это способ, с помощью которого природа сообщает, что мы делаем что-то не так, как надо6). Уравнения общей теории относительности не могут справиться с безумным хаосом квантовой пены.
 Заметим, однако, что по мере того, как мы возвращаемся к обычным масштабам расстояний (проходя последовательность на рис. 5.1 в обратном порядке), неистовые случайные колебания, свойственные микроскопическим расстояниям, начинают гасить друг друга. В результате (точно так же, как среднее по банковскому счету нашего маниакального заемщика не обнаруживает никаких признаков его мании) понятие гладкости геометрии нашего пространства вновь становится точным. Это похоже на растровый рисунок в книге или газете: при взгляде издалека точки, образующие рисунок, сливаются и создают впечатление гладкого изображения, в котором вариации яркости плавно и незаметно изменяются от участка к участку. Однако если вы посмотрите на этот рисунок с более близкого расстояния, вы увидите, что он совсем не так гладок, как выглядит издалека. На самом деле он представляет собой набор дискретных точек, каждая из которых четко отделяется от других. Однако обратите внимание, что вы смогли узнать о дискретности рисунка, только рассмотрев его вблизи: издалека он выглядит гладким. Точно так же и структура пространства-времени кажется нам гладкой, за исключением тех случаев, когда мы исследуем ее с ультрамикроскопическим разрешением. Это объясняет, почему общая теория относительности работает на достаточно крупных масштабах расстояний (и времен), которые свойственны многим типичным астрономическим явлениям, но оказывается непригодной на микроскопических масштабах пространства (и времени). Центральный принцип гладкой и слабо искривленной геометрии соблюдается в большом масштабе, но нарушается под действием квантовых флуктуации при переходе к микроскопическим масштабам.
 Основные принципы общей теории относительности и квантовой механики позволяют рассчитать примерный масштаб расстояний, при переходе к которому становятся очевидными разрушительные явления, показанные на рис. 5.1. Малость постоянной Планка, которая управляет интенсивностью квантовых эффектов, и слабость константы гравитационного взаимодействия приводят к тому, что планковская длина, куда входят обе этих величины, имеет малость, которая превосходит всякое воображение: одна миллионная от одной миллиардной от миллиардной от миллиардной доли сантиметра (10~33)7). Таким образом, пятый уровень на рис. 5.1 схематически изображает структуру Вселенной в ультрамикроскопическом, субпланковском масштабе расстояний. Чтобы дать представление о масштабах, приве-
 
 94 Часть II. Дилемма пространства, времени и квантов
 дем такую иллюстрацию: если мы увеличим атом до размеров Вселенной, то планковская длина станет равной высоте среднего дерева. Итак, мы видим, что несовместимость общей теории относительности и квантовой механики проявляется только в очень глубоко запрятанном королевстве Вселенной. У читателя может возникнуть вопрос, стоит ли вообще беспокоиться по этому поводу. Мнение физического сообщества по этому вопросу отнюдь не является единым. Есть физики, которые признают существование проблемы, но предпочитают применять квантовую механику и общую теорию относительности для решения таких задач, в которых типичные расстояния намного превосходят планковскую длину. Есть, однако, и другие ученые, которые глубоко обеспокоены тем фактом, что два фундаментальных столпа, на которых держится здание современной физики, в своей основе принципиально несовместимы, и неважно, что эта несовместимость проявляется только на ультрамикроскопическом масштабе расстояний. Несовместимость, говорят они, указывает на существенный изъян в нашем понимании физического мира. Это мнение основывается на недоказуемой, но глубоко прочувствованной точке зрения, согласно которой понимание Вселенной на ее самом глубоком и наиболее элементарном уровне может дать нам ее логически непротиворечивое описание, все детали которого будут находиться в гармоничном единстве. И уж точно большинство физиков, независимо от того, какое значение это противоречие имеет для их собственных исследований, согласятся с тем, что основа наших самых глубоких теоретических представлений о Вселенной не должна представлять собой математически противоречивое лоскутное одеяло, скроенное из двух мощных, но конфликтующих теорий.
 Физики неоднократно предпринимали попытки модифицировать общую теорию относительности и квантовую механику, чтобы разрешить это противоречие, однако эти попытки, среди которых были очень дерзкие и остроумные, терпели провал за провалом.
 Так продолжалось до создания теории суперструн8).
 
 Часть III. КОСМИЧЕСКАЯ СИМФОНИЯ
 Глава 6 Только музыка, или Суть теории суперструн
 С давних времен музыка является источником метафорических образов для тех, кто пытается разгадать тайны Вселенной. Начиная с "музыки сфер" древних пифагорейцев и до "гармонии мира", на протяжении столетий направляющих наши научные поиски, мы пытаемся понять песнь природы в величественных хороводах небесных тел и неистовой пляске субатомных частиц. С открытием теории суперструн музыкальные метафоры приобрели удивительную реальность, поскольку согласно этой теории микромир заполнен крошечными струнами, звучание которых оркеструет эволюцию мироздания. Согласно теории суперструн ветры перемен дуют через эолову арфу Вселенной.
 В противоположность этому стандартная модель представляет элементарные компоненты мироздания в виде точечных образований, лишенных какой-либо внутренней структуры. Несмотря на необыкновенную мощь (как мы уже упоминали, практически все предсказания стандартной модели о свойствах микромира подтвердились с точностью до одной миллиардной от одной миллиардной доли метра, что представляет собой предел разрешающей способности современной техники), стандартная модель не смогла стать полной или "окончательной теорией", поскольку она не включает гравитационного взаимодействия. Более того, все попытки включить гравитацию в квантово-механическую формулировку этой модели закончились неудачей из-за неистовых флуктуации структуры пространства, проявляющихся на ультрамикроскопических расстояниях, т. е. на расстояниях, меньших планковской длины. Это неразрешенное противоречие явилось побудительным мотивом для поиска более глубокого понимания природы. В 1984 г. физик Майкл Грин, работавший в то время в колледже Королевы Марии, и Джон Шварц из Калифорнийского технологического института впервые представили убедительные доказательства того, что теория суперструн (или, кратко, теория струн) может дать такое понимание.
 Теория струн предлагает оригинальное и глубокое изменение теоретического описания свойств Вселенной на ультрамикроскопическом уровне - изменение, которое, как постепенно осознают физики, модифицирует эйнштейновскую общую теорию относительности, делая ее полностью совместимой с законами квантовой механики. Согласно теории струн элементарные компоненты Вселенной не являются точечными частицами, а представляют собой крошечные одномерные волокна, подобные бесконечно тонким, непрерывно вибрирующим резино-
 
 96 Часть III. Космическая симфония
 вым лентам. Здесь важно не дать названию ввести нас в заблуждение. В отличие от обычных струн, состоящих из молекул и атомов, струны, о которых говорит теория струн, лежат глубоко в самом сердце материи. Теория струн утверждает, что именно они представляют собой ультрамикроскопические компоненты, из которых состоят частицы, образующие атомы. Струны, являющиеся объектом теории струн, столь малы - в среднем их размер сопоставим с планковской длиной, - что даже при изучении с помощью самого мощного оборудования они выглядят точечными.
 Однако уже простая замена точечных частиц струнами в качестве фундаментальных компонентов мироздания ведет к далеко идущим последствиям. Первое и самое главное состоит в том, что теория струн, по-видимому, разрешает противоречие между общей теорией относительности и квантовой механикой. Как мы увидим ниже, пространственная протяженность струн является новым ключевым звеном, позволяющим создать единую гармоничную систему, объединяющую обе теории. Во-вторых, теория струн действительно представляет объединенную теорию, поскольку в ней все вещество и все взаимодействия обязаны своим происхождением одной фундаментальной величине - колеблющейся струне. Наконец, как будет показано более подробно в последующих главах, помимо этих блестящих достижений, теория струн еще раз радикально изменяет наши представления о пространстве-времени1).
 Краткая история теории струн
 В 1968 г. молодой физик-теоретик Габриэле Венециано корпел над осмыслением многочисленных экспериментально наблюдаемых характеристик сильного ядерного взаимодействия. Венециано, который в то время работал в ЦЕРНе, Европейской ускорительной лаборатории, находящейся в Женеве (Швейцария), трудился над этой проблемой в течение нескольких лет, пока однажды его не осенила блестящая догадка. К большому своему удивлению он понял, что экзотическая математическая формула, придуманная примерно за двести лет до этого знаменитым швейцарским математиком Леонардом Эйлером в чисто математических целях - так называемая бета-функция Эйлера, - похоже, способна описать одним махом все многочисленные свойства частиц, участвующих в сильном ядерном взаимодействии. Подмеченное Венециано свойство давало мощное математическое описание многим особенностям сильного взаимодействия; оно вызвало шквал работ, в которых бета-функция и ее различные обобщения использовались для описания огромных массивов данных, накопленных при изучении столкновений частиц по всему миру. Однако в определенном смысле наблюдение Венециано было неполным. Подобно зазубренной наизусть формуле, используемой студентом, который не понимает ее смысла или значения, бета-функция Эйлера работала, но никто не понимал почему. Это была формула, которая требовала объяснения. Положение дел изменилось в 1970 г., когда Йохиро Намбу из Чикагского университета, Хольгер Нильсен из института Нильса Бора и Леонард Сасскинд из Станфордского университета смогли выявить физический смысл, скрывавшийся за формулой Эйлера. Эти физики показали, что при представлении элементарных частиц маленькими колеблющимися одномерными струнами сильное взаимодействие этих частиц в точности описывается с помощью функции Эйлера. Если отрезки струн являются достаточно малыми, рассуждали эти исследователи, они по-прежнему будут выглядеть как точечные частицы, и, следовательно, не будут противоречить результатам экспериментальных наблюдений. Хотя эта теория была простой и интуитивно привлекательной, вскоре было показано, что описание сильного взаимодействия с помощью струн содержит изъяны. В начале 1970-х гг. специалисты по физике высоких энергий смогли глубже заглянуть в субатомный мир и показали, что ряд предсказаний модели, основанной на использовании струн, находится в прямом противоречии с результатами наблюдений. В то же время параллельно шло развитие квантово-
 
 Глава б. Только музыка, или Суть теории суперструн 97
 полевой теории - квантовой хромодинамики, - в которой использовалась точечная модель частиц. Успехи этой теории в описании сильного взаимодействия привели к отказу от теории струн.
 Большинство специалистов по физике элементарных частиц полагали, что теория струн навсегда отправлена в мусорный ящик, однако ряд исследователей сохранили ей верность. Шварц, например, ощущал, что "математическая структура теории струн столь прекрасна и имеет столько поразительных свойств, что, несомненно, должна указывать на что-то более глубокое"2). Одна из проблем, с которыми физики сталкивались в теории струн, состояла в том, что она, как казалось, предоставляла слишком богатый выбор, что сбивало с толку. Некоторые конфигурации колеблющихся струн в этой теории имели свойства, которые напоминали свойства глюонов, что давало основание действительно считать ее теорией сильного взаимодействия. Однако помимо этого в ней содержались дополнительные частицы-переносчики взаимодействия, не имевшие никакого отношения к экспериментальным проявлениям сильного взаимодействия. В 1974 г. Шварц и Джоэль Шерк из французской Высшей технической школы сделали смелое предположение, которое превратило этот кажущийся недостаток в достоинство. Изучив странные моды колебаний струн, напоминающие частицы-переносчики, они поняли, что эти свойства удивительно точно совпадают с предполагаемыми свойствами гипотетической частицы-переносчика гравитационного взаимодействия - гравитона. Хотя эти "мельчайшие частицы" гравитационного взаимодействия до сих пор так и не удалось обнаружить, теоретики могут уверенно предсказать некоторые фундаментальные свойства, которыми должны обладать эти частицы. Шерк и Шварц обнаружили, что эти характеристики в точности реализуются для некоторых мод колебаний. Основываясь на этом, они предположили, что первое пришествие теории струн закончилось неудачей из-за того, что физики чрезмерно сузили область ее применения. Шерк и Шварц объявили, что теория струн - это не просто теория сильного взаимодействия, это квантовая теория, которая, помимо всего прочего, включает гравитацию3).
 Физическое сообщество отреагировало на это предположение весьма сдержанно. В действительности, по воспоминаниям Шварца, "наша работа была проигнорирована всеми"4). Пути прогресса уже были основательно захламлены многочисленными провалившимися попытками объединить гравитацию и квантовую механику. Теория струн потерпела неудачу в своей первоначальной попытке описать сильное взаимодействие, и многим казалось бессмысленным пытаться использовать ее для достижения еще более великих целей. Последующие, более детальные исследования конца 1970-х и начала 1980-х гг. показали, что между теорией струн и квантовой механикой возникают свои, хотя и меньшие по масштабам, противоречия. Создавалось впечатление, что гравитационная сила вновь смогла устоять перед попыткой встроить ее в описание мироздания на микроскопическом уровне.
 Так было до 1984 г. В своей статье, сыгравшей поворотную роль и подытожившей более чем десятилетние интенсивные исследования, которые по большей части были проигнорированы или отвергнуты большинством физиков, Грин и Шварц установили, что незначительное противоречие с квантовой теорией, которым страдала теория струн, может быть разрешено. Более того, они показали, что полученная в результате теория обладает достаточной широтой, чтобы охватить все четыре вида взаимодействий и все виды материи. Весть об этом результате распространилась по всему физическому сообществу: сотни специалистов по физике элементарных частиц прекращали работу над своими проектами, чтобы принять участие в штурме, который казался последней теоретической битвой в многовековом наступлении на глубочайшие основы мироздания.
 Я начал работу в аспирантуре Оксфордского университета в октябре 1984 г. Хотя я был восхищен раскрывавшимися передо мной достижениями квантовой теории поля, калибровочной теории и общей теории относительности, среди моих старших коллег-аспирантов было распространено скептическое убеждение, что большая часть от-
 
 98 Часть III. Космическая симфония
 крытий физики элементарных частиц уже сделана. Была разработана стандартная модель, и замечательный успех, с которым она предсказывала результаты экспериментов, оставлял мало сомнений в том, что ее полное подтверждение является делом не слишком отдаленного будущего. Выход за ее пределы для включения гравитации и возможного объяснения экспериментальных данных, на которых базируется эта модель (т.е. 19 чисел, характеризующих массы элементарных частиц, их константы взаимодействия и относительную интенсивность взаимодействий, известных из результатов экспериментов, но не объясненных теоретически), казался такой непосильной задачей, что лишь самые бесстрашные исследователи отваживались принять этот вызов. Однако спустя всего шесть месяцев настроения радикально изменились. Весть об успехе Грина и Шварца, в конце концов, дошла даже до аспирантов первого года обучения, и на смену прежнему унынию пришло возбуждающее ощущение причастности к поворотному моменту в истории физики. Многие из нас засиживались глубоко за полночь, штудируя увесистые фолианты по теоретической физике и абстрактной математике, знание которых необходимо для понимания теории струн.
 Период с 1984 по 1986 гг. теперь известен как "первая революция в теории суперструн". В течение этого периода физиками всего мира было написано более тысячи статей по теории струн. Эти работы окончательно продемонстрировали, что многочисленные свойства стандартной модели, открытые в течение десятилетий кропотливых исследований, естественным образом вытекают из величественной системы теории струн. Как заметил Майкл Грин, "момент, когда вы знакомитесь с теорией струн и осознаете, что почти все основные достижения физики последнего столетия следуют - и следуют с такой элегантностью - из столь простой отправной точки, ясно демонстрирует вам всю невероятную мощь этой теории"5'. Более того, для многих из этих свойств, как мы увидим ниже, теория струн дает гораздо более полное и удовлетворительное описание, чем стандартная модель. Эти достижения убедили многих физиков, что теория струн способна выполнить свои обещания и стать окончательной объединяющей теорией.
 Однако на этом пути занимавшиеся теорией струн физики снова и снова натыкались на серьезные препятствия. В теоретической физике часто приходится иметь дело с уравнениями, которые либо слишком сложны для понимания, либо с трудом поддаются решению. Обычно в такой ситуации физики не пасуют и пытаются получить приближенное решение этих уравнений. Положение дел в теории струн намного сложнее. Даже сам вывод уравнений оказался столь сложным, что до сих пор удалось получить лишь их приближенный вид. Таким образом, физики, работающие в теории струн, оказались в ситуации, когда им приходится искать приближенные решения приближенных уравнений. После нескольких лет поражающего воображение прогресса, достигнутого в течение первой революции теории суперструн, физики столкнулись с тем, что используемые приближенные уравнения оказались неспособными дать правильный ответ на ряд важных вопросов, тормозя тем самым дальнейшее развитие исследований. Не имея конкретных идей по выходу за рамки этих приближенных методов, многие физики, работавшие в области теории струн, испытали растущее чувство разочарования и вернулись к своим прежним исследованиям. Для тех, кто остался, конец 1980-х и начало 1990-х гг. были периодом испытаний. Красота и потенциальная мощь теории струн манили исследователей подобно золотому сокровищу, надежно запертому в сейфе, видеть которое можно лишь через крошечный глазок, но ни у кого не было ключа, который выпустил бы эти дремлющие силы на свободу. Долгий период "засухи" время от времени прерывался важными открытиями, но всем было ясно, что требуются новые методы, которые позволили бы выйти за рамки уже известных приближенных решений.
 Конец застою положил захватывающий дух доклад, сделанным Эдвардом Виттеном в 1995 г. на конференции по теории струн в университете Южной Калифорнии - доклад, который ошеломил аудиторию, до от-
 
 Глава б. Только музыка, или Суть теории суперструн 99
 каза заполненную ведущими физиками мира. В нем он обнародовал план следующего этапа исследований, положив тем самым начало "второй революции в теории суперструн". Сейчас специалисты по теории струн энергично работают над новыми методами, которые обещают преодолеть встреченные препятствия. Трудности, которые лежат впереди, будут серьезным испытанием для ученых, работающих в этой области, но в результате свет в конце тоннеля, хотя еще и отдаленный, может стать видимым.
 В этой и в нескольких последующих главах мы опишем открытия теории струн, явившиеся результатом первой революции и поздних исследований, выполненных до начала второй революции. Время от времени мы будем упоминать достижения, сделанные в ходе второй революции; подробное описание этих новейших достижений будет приведено в главах 12 и 13.
 Снова атомы в духе древних греков?
 Как мы говорили в начале данной главы, и как показано на рис. 1.1, теория струн утверждает, что если бы мы могли исследовать точечные частицы, существование которых предполагает стандартная модель, с точностью, выходящей далеко за пределы наших современных возможностей, мы бы увидели, что каждая из этих частиц представляет собой крошечную колеблющуюся струну, имеющую форму петли.
 По причинам, которые станут ясны в дальнейшем, длина типичной петли, образованной струной, близка к планковской длине, которая примерно в сто миллиардов миллиардов раз (1020) меньше размера атомного ядра. Неудивительно, что современные эксперименты не могут подтвердить струнную природу материи: размеры струн бесконечно малы даже в масштабе субатомных частиц. Для получения прямого подтверждения того, что струна не является точечной частицей, нам потребовался бы ускоритель, способный сталкивать частицы с энергией, в несколько миллионов миллиардов раз превышающей максимальный уровень, достигнутый на сегодняшний день.
 Вскоре мы опишем ошеломляющие выводы, следующие из замены точечных частиц струнами, но сначала давайте рассмотрим более фундаментальный вопрос: из чего состоят струны?
 Есть два возможных ответа на этот вопрос. Во-первых, струны действительно являются фундаментальными объектами - они представляют собой "атомы", неделимые компоненты в самом истинном смысле этого понятия, предложенного древними греками. Как наименьшие составные части материи, они представляют собой конец пути - последнюю матрешку - в многочисленных слоях, образующих структуру микромира. С этой точки зрения, даже если струны имеют определенные пространственные размеры, вопрос об их составе лишен какого-либо смысла. Если струны состоят из каких-то более мелких компонентов, они не могут быть фундаментальными. Напротив, из чего бы ни состояли струны, эти элементы немедленно займут место струн в притязании на роль наиболее фундаментальных компонентов мироздания. Используя нашу лингвистическую аналогию, можно сказать, что параграфы состоят из предложений, предложения - из слов, слова - из букв. А из чего состоит буква? С лингвистической точки зрения это конец пути. Буквы есть буквы - они представляют собой фундаментальные строительные блоки письменного языка; они не имеют внутренней структуры. Вопрос об их составе не имеет смысла. Аналогично струна представляет собой просто струну - поскольку нет ничего более фундаментального, нельзя описать струну как нечто, состоящее из каких-то других компонентов.
 Это первый ответ. Второй ответ основывается на том простом факте, что сегодня мы не знаем, верна ли теория струн и является ли она окончательной теорией мироздания. Если теория струн неверна - ну что же, мы можем забыть струны и неуместный вопрос об их структуре. Хотя такая возможность существует, исследования, проводившиеся с середины 1980-х гг., показывают, что ее вероятность крайне мала. Од-
 
 100 Часть III. Космическая симфония
 нако история определенно научила нас, что каждый раз, когда мы углубляем наше понимание Вселенной, мы находим все меньшие компоненты микромира, составляющие более тонкий уровень организации материи. Итак, еще одна возможность, в случае если теория струн не окажется окончательной теорией, состоит в том, что струны образуют еще один слой в луковице мироздания, слой, который становится видимым в масштабах планковской длины, но который не является последним слоем. В этом случае струны могут состоять из еще более мелких структур. Специалисты по теории струн осознают такую возможность и ведут теоретические исследования в этом направлении. На сегодняшний день эти исследования привели к некоторым интригующим догадкам о более глубоких уровнях структуры, но они еще не получили окончательного подтверждения. Только время и дальнейшие исследования дадут окончательный ответ на этот вопрос.
 За исключением некоторых гипотез, рассматриваемых в главах 12 и 15, мы будем рассматривать струны в том смысле, который следует из первого ответа, т. е. будем считать их наиболее фундаментальными компонентами мироздания.
 Объединение через теорию струн
 Помимо неспособности включить в себя гравитационное взаимодействие, стандартная модель обладает еще одним недостатком - она не дает описания устройства объектов, с которыми работает. Почему природа выбрала именно те частицы и взаимодействия, которые были описаны в предыдущих главах и перечислены в табл. 1.1 и 1.2? Почему 19 параметров, которые описывают количественные характеристики этих компонентов, имеют именно те значения, которые имеют? Ученым не удавалось отделаться от чувства, что количество и свойства этих объектов являются совершенно случайными. Скрывается ли за этими, на первый взгляд абсолютно произвольными компонентами, какой-то более глубокий смысл, или физические свойства мироздания являются просто "игрой случая"?
 Стандартная модель сама по себе не способна дать объяснения всем этим фактам, поскольку она принимает список частиц и их свойств как полученные экспериментально входные данные. Как показатели фондового рынка не могут быть использованы для определения ценности портфеля акций, которым вы владеете, без входных данных о ваших начальных капиталовложениях, так и стандартная модель не может быть использована для получения предсказаний без входных данных, содержащих фундаментальные свойства частиц6). После того как экспериментаторы проведут тщательное измерение этих данных, теоретики смогут использовать стандартную модель для поддающихся проверке предсказаний, например, что произойдет, если столкнуть какие-то определенные частицы в ускорителе. Но стандартная модель в той же мере не способна объяснить фундаментальные свойства частиц, перечисленные в табл. 1.1 и 1.2, в какой среднее значение индекса Доу-Джонса не способно ответить на вопрос о начальных капиталовложениях, сделанных десять лет тому назад.
 На самом деле, если эксперименты покажут, что в микромире существуют какие-то иные частицы или какие-то дополнительные взаимодействия, то в стандартной модели изменения могут быть легко учтены путем замены списка входных параметров. В этом смысле структура стандартной модели обладает слишком большой гибкостью, чтобы дать объяснение свойствам элементарных частиц: она охватывает целый диапазон различных возможностей.
 Теория струн имеет совершенно иной характер. Это теоретическое здание единой и жесткой конструкции. Все входные данные, которые ей необходимы, ограничиваются описываемым ниже единственным параметром, который устанавливает шкалу для проведения измерений. Теория струн способна объяснить все свойства микромира. Чтобы понять это, обратимся сперва к более привычным струнам скрипки. Каждая струна может совершать огромное (на самом деле бесконечное) число различных колебаний, известных под названием резонансных
 
 Глава 6. Только музыка, или Суть теории суперструн 101
  Рис. 6.1. У скрипичных струн существуют резонансные моды колебаний, на которых между концами струны укладывается целое число максимумов и минимумов колебаний. Пример таких колебаний показан на рис. 6.1. Это колебания, у которых расстояние между максимумами и минимумами одинаково, и между закрепленными концами струны укладывается в точности целое число максимумов и минимумов. Человеческое ухо воспринимает резонансные колебания как различные музыкальные ноты. Схожие свойства имеют струны в теории струн. Они могут осуществлять резонансные колебания, в которых вдоль длины струн укладывается в точности целое число равномерно распределенных максимумов и минимумов. Некоторые примеры таких колебаний показаны на рис. 6.2. Основное утверждение теории струн таково. Точно так же, как различные моды резонансных колебаний скрипичных струн рождают различные музыкальные ноты, различные моды колебаний фундаментальных струн порождают различные массы и константы взаимодействия. Поскольку это очень важное утверждение, давайте повторим его еще раз. Согласно теории струн свойства элементарных "частиц" - их массы и константы различных взаимодействий - в точности определяются резонансными модами колебаний, реализуемыми внутренними струнами этих частиц.
 Легче всего понять эту ассоциацию для массы частицы. Энергия конкретной моды колебания струны зависит от ее амплитуды - максимального расстояния между максимумами и минимумами, и от длины волны - расстояния между двумя соседними пиками. Чем больше амплитуда и чем короче длина волны, тем больше энергия. Это совпадает с нашими интуитивными представлениями - более интенсивные колебания несут больше энергии, менее интенсивные - меньше. Пара примеров показана на рис. 6.3. Такая картина, опять же, привычна для нас: если коснуться струны скрипки сильнее, звук будет более сильным, слабое прикосновение даст более нежный звук. Согласно специальной теории относительности энергия и масса представляют собой две стороны одной медали: чем больше энергия, тем больше масса и наоборот. Таким образом, в соответствии с теорией струн, масса элементарной частицы определяется энергией колебания внутренней струны этой частицы. Внутренние струны более тяжелых частиц совершают более интенсивные колебания, струны легких частиц колеблются менее интенсивно.
  Рис. 6.2. Петли теории струн имеют резонансные моды колебаний, похожие на моды резонансных колебаний скрипичных струн. При этом вдоль длины струны укладывается в точности целое число максимумов и минимумов
 102 Часть III. Космическая симфония
  Рис. 6.3. Более интенсивные колебания несут большее количество энергии, менее интенсивные - меньшее Поскольку масса частицы определяет ее гравитационные характеристики, существует прямая связь между модой колебания струны и откликом частицы на действие гравитационной силы. Используя несколько более абстрактные рассуждения, физики установили, что существует аналогичное соответствие между иными характеристиками колебания струны и реакцией на другие взаимодействия. Например, электрический заряд, константы слабого и сильного взаимодействия, которые несет частица, в точности определяются типом ее колебания. Более того, тот же самый принцип справедлив и для самих частиц, переносящих взаимодействия. Фотоны, калибровочные бозоны слабого взаимодействия и глюоны представляют собой всего лишь иные моды колебаний струн. Что особенно важно, характеристики одной из мод колебаний струн в точности совпадают с характеристиками гравитона, гарантируя, что гравитация является неотъемлемой частью теории струн7).
 Таким образом, согласно теории струн наблюдаемые характеристики всех элементарных частиц определяются конкретной модой резонансного колебания внутренних струн. Этот взгляд радикально отличается от точки зрения, которой придерживались физики до открытия теории струн, когда считалось, что различия между фундаментальными частицами обусловлены тем, что они "отрезаны от разных кусков ткани". Хотя частицы считались элементарными, предполагалось, что они состоят из различного "материала". Так, например, "материал" электрона имел отрицательный электрический заряд, а "материал" нейтрино был электрически нейтральными. Теория струн радикально изменила эту картину, объявив, что "материал" всего вещества и всех взаимодействий является одним и тем же. Каждая элементарная частица состоит из отдельной струны, - точнее, каждая частица представляет собой отдельную струну - и все струны являются абсолютно идентичными. Различия между частицами обусловлены различными модами резонансных колебаний этих струн. То, что представлялось различными частицами, на самом деле является различными "нотами", исполняемыми на фундаментальной струне. Вселенная, состоящая из бесчисленного количества этих колеблющихся струн, подобна космической симфонии.
 Этот краткий обзор показал, каким образом теория струн дает поистине поразительную объединяющую систему. Каждая частица вещества и каждая частица, переносящая взаимодействие, состоит из струны, мода колебания которой дает "дактилоскопический отпечаток" этой частицы. Поскольку каждое физическое событие, процесс или явление на своем наиболее элементарном уровне может быть описано на языке взаимодействия между этими элементарными компонентами материи, теория струн обещает предоставить в наше распоряжение единое, всеобъемлющее, унифицированное описание физического мира - универсальную теорию мироздания.
 Музыка теории струн
 Хотя теория струн покончила с предшествующей концепцией элементарных частиц, лишенных внутренней структуры, расставание со старым языком происходит тяжело, особенно когда он дает точное описание действительности вплоть до наименьших доступных масштабов расстояний. Поэтому, следуя сложившимся традициям, мы будем продолжать говорить об "элементарных частицах", но при этом всегда будем помнить, что в действительности это "то, что выглядит элементарной частицей, но на самом деле представляет собой крошечную колеблющуюся струну". В предшествующем разделе мы предположили, что массы и константы взаимодействия таких элементарных частиц связаны с модами колебаний соответствующих
 
 Глава 6. Только музыка, или Суть теории суперструн 103
 струн. Это приводит нас к следующему выводу: если бы мы смогли точно определить все допустимые резонансные моды колебаний фундаментальных струн, - так сказать, "ноты", которые они могут исполнять, мы смогли бы объяснить наблюдаемые свойства элементарных частиц. Таким образом, теория струн впервые предлагает систему, позволяющую объяснить свойства существующих в природе элементарных частиц.
 На данной стадии нужно "взять" струну и "притронуться" к ней всеми возможными способами, чтобы определить возможные моды резонансных колебаний. Если теория струн права, возможные резонансные моды точно воспроизведут наблюдаемые свойства перечисленных в табл. 1.1 и 1.2 частиц вещества и частиц, передающих взаимодействия. Конечно, струны слишком малы, чтобы можно было осуществить такой эксперимент в буквальном смысле слова. Вместо этого мы будем "притрагиваться" к струнам теоретически, используя математические модели. В середине 1980-х гг. многие приверженцы теории струн верили, что соответствующие математические методы способны объяснить все тончайшие детали строения мироздания на самом микроскопическом уровне. Некоторые энтузиасты провозгласили, что, наконец-то, найдена теория всего. Оглядываясь на прошедшее десятилетие, мы видим, что эйфория, порожденная этой верой, была преждевременна. Теория струн имеет задатки стать "теорией всего", но на ее пути остается еще ряд препятствий, не позволяющих определить спектр колебаний струн с точностью, достаточной для сравнения с экспериментальными данными. Поэтому в настоящее время мы не знаем, может ли теория струн объяснить фундаментальные характеристики мироздания, приведенные в табл. 1.1 и 1.2. Как будет показано в главе 9, при определенных обстоятельствах, которые будут четко сформулированы, теория струн приводит к Вселенной, свойства которой находятся в качественном согласии с данными для известных частиц и взаимодействий. Но предоставить детальные количественные характеристики эта теория сегодня еше не в состоянии. Таким образом, хотя в отличие от стандартной модели с ее точечными частицами теория струн способна дать объяснение, почему частицы и взаимодействия имеют те свойства, которые они имеют, мы пока не способны их "выудить". Однако удивительно то, насколько богата теория струн и сколь далеко она простирается. Хотя мы пока не можем детально определить ее свойства, она позволяет проникнуть в суть целого ряда новых вытекающих из нее физических явлений. Мы увидим это ниже.
 В следующих главах мы более подробно обсудим имеющиеся проблемы, однако полезно сначала ознакомиться с ними в самых общих чертах. Окружающие нас струны могут иметь самое разное натяжение. Например, шнурки на ботинках обычно натянуты намного слабее, чем струны на скрипке. И те и другие, в свою очередь, имеют гораздо меньшее натяжение, чем струны рояля. Единственным параметром, который требуется для калибровки теории струн, является их натяжение. Как определить это натяжение? Если бы мы могли коснуться фундаментальной струны, мы узнали бы ее жесткость и могли бы определить ее натяжение тем же способом, который используется для других, более привычных струн. Но поскольку фундаментальные струны так малы, мы не можем использовать этот подход, и возникает необходимость в разработке косвенного метода. В 1974 г., когда Шерк и Шварц предположили, что одна из мод колебания струн представляет собой гравитон, они смогли использовать такой косвенный метод и определить натяжение, с которыми оперирует теория струн. Их расчеты показали, что интенсивность взаимодействия, передаваемого колебанием струны, соответствующем гравитону, обратно пропорциональна натяжению струны. А поскольку гравитон передает гравитационное взаимодействие, которое является очень слабым, полученное ими значение натяжения оказалось колоссальным: тысяча миллиардов миллиардов миллиардов миллиардов (1039) тонн, так называемое планковское натяжение. Таким образом, фундаментальные струны являются чрезвычайно жесткими по сравнению с обычными. Этот результат имеет три важных следствия.
 
 104 Часть III. Космическая симфония
 Три следствия жестких струн
 Во-первых, в то время, как струны рояля закреплены, что гарантирует постоянство их длины, для фундаментальных струн подобного закрепления, ограничивающего их размер, нет. Вместо этого чудовищное натяжение струн заставляет петли, которые рассматриваются в теории струн, сжиматься до микроскопических размеров. Детальные расчеты показывают, что под действием планковского натяжения типичная струна сжимается до планковской длины, т.е. до 10-33 см, как отмечалось выше8).
 Во-вторых, вследствие такого огромного натяжения типичная энергия колеблющейся петли в теории струн становится чрезвычайно большой. Чтобы понять это, вспомним, что чем больше натяжение струны, тем труднее заставить ее колебаться. Например, заставить колебаться струну скрипки гораздо легче, чем струну рояля. Поэтому две струны, колеблющиеся совершенно одинаковым образом, но натянутые по-разному, будут иметь различную энергию. Струна с большим натяжением будет иметь большую энергию, чем струна с низким натяжением, поскольку для того, чтобы привести ее в движение, потребуется большее количество энергии.
 Это говорит о том, что энергия колеблющейся струны зависит от двух вещей: от точного вида колебаний (более интенсивные колебания соответствуют более высокой энергии) и от натяжения струны (более сильное натяжение, опять же, соответствует более высокой энергии). На первый взгляд это описание может привести вас к мысли, что при переходе к более слабым колебаниям, с меньшей амплитудой и с меньшим числом максимумов и минимумов, струна будет обладать все меньшей энергией. Однако, как будет показано в главе 4 (в другом контексте), квантовая механика утверждает, что это рассуждение неверно. Согласно квантовой механике колебания струн, подобно всем другим колебаниям и волноподобным возмущениям, могут иметь только дискретные значения энергии. Грубо говоря, подобно компаньонам из ангара, у которых доверенные им деньги равны произведению целого числа на номинал денежных купюр, энергия, которую несет та или иная мода колебания струны, представляет собой произведение целого числа на минимальный энергетический номинал. Конкретней, этот минимальный энергетический номинал пропорционален натяжению струны (а также числу максимумов и минимумов конкретной моды колебаний), а целочисленный множитель определяется амплитудой моды колебаний.
 Ключевым моментом здесь является следующее. Поскольку минимальный энергетический номинал пропорционален огромному натяжению струны, минимальная фундаментальная энергия также будет огромна по сравнению с обычными масштабами физики элементарных частиц. Она будет кратна величине, известной под названием планковская энергия. Чтобы дать представление об этой величине, скажем, что если мы пересчитаем планковскую энергию в массу, используя знаменитую формулу Эйнштейна Е = тс2, полученное значение будет примерно в десять миллиардов миллиардов (1019) раз превышать массу протона. Эта чудовищная по стандартам физики элементарных частиц масса известна под названием планковской массы; она примерно равна массе пылинки или массе колонии из миллиона средних по размерам бактерий. Итак, типичная эквивалентная масса колеблющейся петли в теории струн обычно равна произведению целого числа (1, 2, 3, и т.д.) на планковскую массу. Физики говорят, что в теории струн "естественной" или "характерной" шкалой энергий (или масс) является планковская шкала.
 Здесь возникает важный вопрос, имеющий прямое отношение к задаче воспроизведения характеристик частиц в табл. 1.1 и 1.2. Если "естественная" энергетическая шкала теории струн примерно в десять миллиардов миллиардов раз превышает значения энергии и массы протона, как она может использоваться для намного более легких частиц - электронов, кварков, протонов и т. п., - образующих окружающий нас мир?
 Ответ снова приходит из квантовой механики. Соотношение неопределенностей га-
 
 Глава 6. Только музыка, или Суть теории суперструн 105
 рантирует, что не существует состояния абсолютного покоя. Все объекты испытывают квантовые флуктуации, поскольку в противном случае мы могли бы, в нарушение соотношения Гейзенберга, с абсолютной точностью узнать их местоположение и скорость. Это справедливо и для петель теории струн: независимо от того, насколько спокойной выглядит струна, она всегда в той или иной мере испытывает действие квантовых осцилляции. Замечательный факт, впервые установленный в 1970-х гг., состоит в том, что квантовые осцилляции и обычные колебания струны, которые обсуждались выше и были показаны на рис. 6.2 и 6.3, с энергетической точки зрения взаимно сокращают друг друга. Действительно, согласно квантовой механике энергия квантовых флуктуации струны является отрицательной и уменьшает общую энергию колеблющейся струны на величину, примерно равную планковской энергии. Это означает, что струнные колебания с наинизшей энергией (которая, как мы наивно полагали, должна была равняться планковской энергии) в большинстве своем сокращаются, и в результате остаются колебания с относительной низкой суммарной энергией, массовый эквивалент которой близок к массам перечисленных в табл. 1.1 и 1.2 частиц вещества и частиц, переносящих взаимодействия. Следовательно, именно моды колебаний с наименьшей энергией обеспечивают контакт между теоретическим описанием струн и экспериментом в мире физики элементарных частиц. Например, Шерк и Шварц обнаружили, что мода колебаний, являющаяся кандидатом на роль гравитона, характеризуется полным сокращением энергии частицы, являющейся переносчиком гравитационного взаимодействия, приводя к нулевой массе. Это именно то, что ожидалось для гравитона: сила тяготения распространяется со скоростью света, и только частицы, не имеющие массы, могут двигаться с этой максимальной скоростью. Однако низкоэнергетические моды колебаний в гораздо большей степени являются исключением, чем правилом. Более типичное колебание фундаментальной струны соответствует частице, масса которой в миллиарды миллиардов раз превосходит массу протона.
 Из этого следует, что сравнительно легкие фундаментальные частицы табл. 1.1 и 1.2 образуются, в некотором смысле, из тумана, расстилающегося над ревущим океаном высокоэнергетических струн. Даже такая тяжелая частица, как t-кварк, масса которой примерно в 189 раз превосходит массу протона, может возникнуть в результате колебания струны только в том случае, если гигантская собственная энергия струны, равная по порядку планковской энергии, будет сокращена квантовыми флуктуациями с точностью, превышающей один на сто миллионов миллиардов. Выходит так, как если бы вы были участником телеигры Верная цена*) и Боб Баркер дал бы вам десять миллиардов миллиардов долларов и потребовал, чтобы вы купили продукты ("сократили" деньги) на всю сумму, оставив только 189 долларов, ни долларом больше или меньше. Потратить такую огромную сумму, да еще с такой точностью, не зная при этом точных цен покупаемых товаров, - эта задача была бы очень тяжела даже для самых ловких из самых квалифицированных покупателей в мире. В теории струн, где средством обращения является энергия, а не деньги, приближенные вычисления с определенностью показали, что подобное сокращение энергии может происходить; однако по причинам, которые будут становиться все более ясными в последующих главах, подтверждение сокращения со столь высоким уровнем точности обычно лежит за пределами возможности современной теоретической физики. Несмотря на это, как было отмечено выше, мы увидим, что многие другие явления теории струн, которые менее чувствительны к таким тонким деталям, могут быть установлены и объяснены с достаточной достоверностью.
 Это ведет нас к третьему следствию, имеющему огромное значение в теории струн. Существует бесконечное число мод колебаний струны. Для примера на рис. 6.2 мы по-
 *) Старейшая игра на американском телевидении, напоминающая "Поле Чудес" с Леонидом Якубовичем. Боб Баркер более 30 лет является бессменным ведущим этой игры. - Прим. перев.
 
 106 Часть III. Космическая симфония
 казали начало бесконечной последовательности вариантов, характеризующих вероятности колебаний с увеличивающимся числом максимумов и минимумов. Не означает ли это существование бесконечной последовательности элементарных частиц, что находилось бы в явном противоречии с современной ситуацией в экспериментальных исследованиях, показанной на табл. 1.1 и 1.2?
 Ответом является "да". Если теория струн верна, каждой из бесконечного множества резонансных мод колебаний струн должна соответствовать элементарная частица. Здесь, однако, есть один важный момент. Высокое натяжение струн гарантирует, что за редким исключением эти моды колебаний соответствуют чрезвычайно тяжелым частицам (исключение составляют колебания с минимальной энергией, которые отличаются почти полным сокращением массы ввиду квантовых флуктуации). Слово "тяжелый" здесь опять же означает "во много раз тяжелее планковской массы". Поскольку самые мощные из существующих ускорителей способны достичь энергий порядка тысячи масс протона, что составляет менее одной миллионной от одной миллиардной планковской энергии, возможность лабораторного изучения этих новых частиц, предсказываемых теорией струн, появится еще нескоро.
 Существуют, однако, другие, менее прямые способы поиска таких частиц. Например, энергии при возникновении Вселенной были достаточно высокими, чтобы такие частицы появлялись в изобилии. Вообще говоря, вряд ли можно ожидать, что эти частицы дожили до наших дней, поскольку сверхтяжелые частицы обычно нестабильны и высвобождают свои огромные массы путем последовательного распада на все более легкие частицы, превращаясь, в конце концов, в обычные, относительно легкие частицы окружающего нас мира. Однако существует вероятность того, что такое сверхтяжелое состояние колебаний струны, являющееся реликтом эпохи Большого взрыва, могло дожить до наших дней. Открытие таких частиц, которое будет обсуждаться подробнее в главе 9, стало бы эпохальным событием.
 Гравитация и квантовая механика в теории струн
 Единая схема, которую дает теория струн, очень привлекательна. Но истинную неотразимость придает ей возможность избавиться от вражды между гравитационным взаимодействием и квантовой механикой. Вспомним, что проблема при объединении общей теории относительности и квантовой механики возникает, когда основное понятие первой из них - плавно искривленная геометрическая структура пространства и времени - сталкивается с главной особенностью второй, что все во Вселенной, включая структуру пространства и времени, испытывает квантовые флуктуации, интенсивность которых растет при уменьшении масштаба исследований. На субпланковском масштабе расстояний квантовые флуктуации становятся столь сильными, что приводят к разрушению понятия гладкого искривленного геометрического пространства, и это означает нарушение принципов общей теории относительности.
 Теория струн смягчает неистовые квантовые флуктуации путем "размазывания" микроскопических характеристик пространства. На вопрос о том, что это значит в действительности и как это разрешает противоречие, есть два ответа: грубый и более точный. Мы поочередно рассмотрим каждый из них.
 Грубый ответ
 Хотя это звучит довольно наивно, один из способов, которым мы можем изучить структуру какого-либо объекта, состоит в том, чтобы бросать в него другие предметы и наблюдать за тем, как они отражаются от него. В качестве примера укажем, что мы способны видеть предметы потому, что наши глаза собирают, а наш мозг расшифровывает информацию, которую несут фотоны, отражающиеся от объектов, на которые мы смотрим. На этом же принципе основаны ускорители частиц: в них частицы материи, например, электроны и протоны, сталкиваются между собой и с другими объектами; затем
 
 Глава 6. Только музыка, или Суть теории суперструн 107
 специальные детекторы анализируют разлетающиеся осколки для получения информации, позволяющей определить структуру объектов, участвующих в столкновениях.
 Общее правило при таких исследованиях состоит в том, что размер частиц, используемых для исследования, определяет нижний предел разрешающей способности измерительной установки. Чтобы лучше понять смысл этого важного утверждения, представим, что Слим и Джим решили приобщиться к культуре и записались в кружок по рисованию. По ходу занятий Джима начинают все более раздражать растущие художественные способности Слима, и он вызывает его на необычное состязание. Он предлагает, чтобы каждый взял косточку от персика, закрепил ее в тисках и изобразил наиболее точным образом. Необычность предложения Джима состоит в том, что ни ему, ни Слиму не разрешается смотреть на косточку. Вместо этого каждый из них может бросать в нее разные предметы (но не фотоны!), наблюдать за тем, как они отскакивают от косточки, и на этой основе определять размеры, форму и детали строения косточки (см. рис. 6.4). Тайком от Слима Джим заряжает его "стрелялку" крупными шариками (как на рис. 6.4а), а свою - пятимиллиметровыми пластиковыми пульками гораздо меньшего размера (как на рис. 6.4 б). Оба заводят свои орудия, и состязание начинается.
 Лучшее, что удалось изобразить Слиму, показано на рис. 6.4 а. Наблюдая за траекторией отскакивающих шариков, он смог установить, что размер косточки мал, и что она имеет твердую поверхность. Но это все, что ему удалось узнать. Шарики были слишком велики, чтобы на них оказывали влияние более мелкие детали строения персиковой косточки. Когда Слим бросил взгляд на рисунок Джима (рис. 6.45), он был поражен тем, что увидел. Однако быстрый взгляд на стрелялку Джима позволил ему понять, в чем дело: небольшие пульки, используемые Джимом, были достаточно малы, чтобы на угол, под которым они отражались, оказывали влияние некоторые крупные детали строения косточки. Таким образом, выстрелив в косточку большим количеством пятимиллиметровых пулек и наблюдая за их
  Рис. 6.4. Персиковая косточка закреплена в тисках. Для создания ее изображения используются только наблюдения за тем, как отскакивают предметы - "зонды", - брошенные в нее. Используя зонды все меньшего размера - шарики (а), пятимиллиметровые пульки (б), полумиллиметровые пульки (в), можно получать все более детальное изображение траекториями после отскока, Джим смог нарисовать более подробный рисунок. Чтобы не проиграть, Слим взял свою стрелялку, заполнил ее снарядами еще меньшего размера - полумиллиметровыми пульками, - которые так малы, что на характер их отражения будут оказывать влияние мельчайшие морщинки на поверхности косточки. Наблюдая за отскоком этих пулек, он смог нарисовать рисунок, который принес ему победу (рис. 6.4 в).
 Урок, который можно извлечь из этого маленького состязания, ясен: размер частиц-зондов не может существенно превышать размер изучаемых физических особенностей; в противном случае разрешающая способность исследования окажется недостаточной для изучения интересующих нас структур.
 Те же самые выводы относятся, конечно, и к случаю, когда мы захотим провести более глубокое исследование персиковой косточки, чтобы определить ее структуру на атомном и субатомном уровне. Полумиллиметровые пульки не дадут никакой полезной информации по этому вопросу; они явно слишком велики, чтобы исследовать структуру на атомном уровне. Именно по этой причине в ускорителях в качестве зондов
 
 108 Часть III. Космическая симфония
 используются протоны или электроны: маленький размер этих частиц делает их гораздо более подходящими для этой цели. На субатомном уровне, где на смену классической логике приходят квантовые понятия, наиболее подходящей мерой разрешающей способности частиц является квантовая длина волны, которая определяет диапазон неопределенности местонахождения частиц. Этот факт является следствием приведенного в главе 4 обсуждения соотношения неопределенностей Гейзенберга. Там мы установили, что минимальная погрешность при использовании в качестве зонда точечных частиц (мы говорили о фотонных зондах, но сказанное применимо и ко всем другим частицам) примерно равна квантовой длине волны частицы, используемой в качестве зонда. Грубо говоря, разрешающая способность точечной частицы размазывается в результате действия квантовых флуктуации подобно тому, как точность скальпеля хирурга уменьшается, когда его руки дрожат. Вспомним, однако, что в главе 4 мы также отметили один важный факт, состоящий в том, что квантовая длина волны частицы обратно пропорциональна моменту количества движения, который, грубо говоря, определяется ее энергией. Таким образом, увеличивая энергию точечной частицы, можно делать ее квантовую длину волны все меньше и меньше, квантовое размазывание будет все более уменьшаться и, следовательно, мы сможем использовать эту частицу для изучения все более тонких структур. Интуитивно понятно, что частицы высокой энергии имеют большую проникающую способность и могут использоваться для изучения более мелких деталей строения.
 В этом смысле становится очевидным различие между точечными частицами и нитями струн. Как в примере с пластиковыми пульками для изучения структуры поверхности персиковой косточки, присущая струне пространственная протяженность не позволяет использовать ее для исследования объектов, размер которых существенно меньше размера струны, в нашем случае - объектов, характерные размеры которых меньше планковской длины. Если перейти к более точным формулировкам, в 1988 г. Дэвид Гросс, работавший в то время в Принстонском университете, и его студент Пол Менде показали, что если учитывать квантовую механику, то непрерывное увеличение энергии струны не приводит к непрерывному увеличению ее способности исследовать все более тонкие структуры, в отличие от того, что имело бы место для точечной частицы. Они установили, что при увеличении энергии струны сначала ее разрешающая способность растет так же, как у точечной частицы высокой энергии. Однако, когда энергия струны превышает значение, необходимое для изучения структур в масштабе планковской длины, дополнительная энергия перестает вызывать увеличение разрешающей способности. Вместо этого дополнительная энергия приводит к увеличению размера струны, тем самым уменьшая ее разрешающую способность. Типичный размер струны близок к планковской длине, но если накачать струну достаточной энергией, которую мы не можем даже представить, но которая могла существовать во время Большого взрыва, то можно было бы заставить струну вырасти до макроскопических размеров. Это был бы довольно топорный инструмент для изучения микромира! Все выглядит так, как будто струна, в отличие от точечной частицы, имеет два источника размазывания: квантовые флуктуации, как для точечной частицы, а также собственные пространственные размеры. Увеличение энергии струны уменьшает размазывание, связанное с первым источником, но, в конечном счете, увеличивает размазывание, обусловленное вторым. В результате, как бы вы ни старались, физические размеры струны не позволят вам использовать ее на субпланковском масштабе расстояний.
 Но ведь конфликт между обшей теорией относительности и квантовой механикой возникает благодаря свойствам структуры пространства, проявляющимся в субпланковском масштабе расстояний. Если элементарные компоненты Вселенной непригодны для исследований на субпланковских масштабах расстояний, это значит, что ни они, ни какие-либо объекты, состоящие из таких компонентов, не могут испытывать влияния этих кажущихся гибельных квантовых флуктуации на малых масштабах. Это похоже на то, что
 
 Глава 6. Только музыка, или Суть теории суперструн 109
 произойдет, если мы проведем рукой по полированной гранитной поверхности. Хотя на микроскопическом уровне гранит является дискретным, зернистым и неровным, наши пальцы не смогут обнаружить эти микроскопические неровности, и поверхность покажется нам абсолютно гладкой. Наши толстые, длинные пальцы "смажут" микроскопическую дискретность. Подобно этому, поскольку струна имеет конечные пространственные размеры, существует нижний предел ее разрешающей способности. Струна не способна обнаружить изменения на суб-планковском масштабе расстояний. Подобно нашим пальцам на граните, струна смажет ультрамикроскопические флуктуации гравитационного поля. И хотя результирующие флуктуации по-прежнему остаются значительными, это смазывание сгладит их в степени, достаточной для преодоления несовместимости общей теории относительности и квантовой механики. В частности, теория струн ликвидирует обсуждавшиеся в предыдущей главе фатальные бесконечности, возникающие при попытке построить квантовую теорию гравитации на основе модели точечных частиц.
 Существенное различие между аналогией с гранитом и нашей реальной проблемой структуры пространства состоит в том, что существуют способы обнаружить микроскопическую дискретность поверхности гранита. Для этого могут использоваться более точные зонды, чем наши пальцы. Электронный микроскоп способен обнаружить поверхностные структуры, размер которых составляет менее одной миллионной доли сантиметра; этого достаточно, чтобы увидеть многочисленные неровности на поверхности. В противоположность этому, в теории струн нет способа обнаружить "неровности" в структуре пространства на субпланковском уровне. Во Вселенной, управляемой законами теории струн, уже не является истинной обычная точка зрения, согласно которой мы можем без ограничения делить объекты на все более и более мелкие части. Предел существует, он вступает в игру, когда мы сталкиваемся с разрушительной квантовой пеной, показанной на рис. 5.1. Следовательно, в определенном смысле, который станет яснее в последующих главах, можно утверждать, что бурные квантовые флуктуации на субпланковских расстояниях не существуют. Как выразился бы позитивист, объект или явление существует, только если мы можем - хотя бы в принципе - исследовать и измерить его. Поскольку предполагается, что струны являются наиболее фундаментальным объектом мироздания и имеют слишком большой размер, чтобы на них оказывали влияние флуктуации структуры пространства, происходящие на субпланковских расстояниях, эти флуктуации не могут быть измерены, и, следовательно, согласно теории струн они не существуют.
 Ловкость рук?
 Обсуждение, приведенное выше, может оставить у вас чувство неудовлетворенности. Вместо того чтобы показать, что теория струн укрощает субпланковские флуктуации структуры пространства, мы, похоже, использовали ненулевой размер струн для того, чтобы обойти всю проблему стороной. Решили ли мы вообще хоть что-нибудь? Решили. Следующие два соображения позволят нам лучше понять это.
 Прежде всего вывод, который можно сделать из предыдущего обсуждения, состоит в том, что предполагаемые флуктуации структуры пространства в масштабе субпланковских расстояний связаны исключительно с формулировкой общей теории относительности и квантовой механики в рамках модели, основанной на точечных частицах. Это означает, что центральное противоречие современной теоретической физики в определенном смысле является проблемой, которую породили мы сами. Поскольку мы ранее предположили, что все частицы вещества и все частицы, передающие взаимодействие, должны быть точечными объектами, практически не имеющими пространственной протяженности, мы были обязаны рассматривать свойства Вселенной на произвольно малых масштабах. И на самых малых расстояниях мы столкнулись с проблемой, выглядящей неразрешимой. Теория струн утверждает, что мы столкнулись с этой
 
 110 Часть III. Космическая симфония
 проблемой только потому, что не поняли истинных правил игры: новые правила гласят, что существует предел тому, насколько глубоко можно исследовать Вселенную, - предел, определяющий, до какого уровня наше обычное понятие расстояния может применяться к ультрамикроскопической структуре мироздания. Становится понятно, что фатальные флуктуации структуры пространства возникают в наших теориях из-за неосведомленности об этих пределах: модель с точечными частицами далеко выходит за рамки физической реальности.
 Видя кажущуюся простоту этого решения, позволяющего разрешить конфликт, возникающий между общей теорией относительности и квантовой механикой, вы можете удивиться, почему прошло столько времени, пока ученые не осознали, что точечная модель частиц всего лишь идеализация, и что в реальном мире элементарные частицы имеют некоторые конечные размеры. Это второй момент, на который мы хотели бы обратить внимание. Уже давно некоторые из величайших умов теоретической физики, такие как Паули, Гейзенберг, Дирак и Фейнман, предполагали, что компоненты природы в действительности могут быть не точками, а маленькими, колеблющимися "капельками" или "ядрышками". Однако они, как и другие ученые, столкнулись с тем, что очень трудно построить теорию, фундаментальные компоненты которой не являются точечными частицами, и которая, в то же время, совместима с основополагающими физическими принципами, такими, как сохранение квантово-механической вероятности (согласно которому физические объекты не могут внезапно исчезать из Вселенной без всякого следа) и невозможность передачи информации со скоростью, превышающей скорость света. Снова и снова их исследования с разных точек зрения показывали, что отказ от парадигмы точечных частиц приводит к несоблюдению одного из этих принципов или их обоих. Поэтому в течение долгого времени казалось невозможным построить разумную квантовую теорию, основанную на чем либо ином, кроме точечных частиц. За двадцать с лишним лет глубоких исследований выяснилась поистине впечатляющая особенность теории струн: при всей непривычности некоторых понятий теория струн обладает всеми свойствами, которые должна иметь каждая разумная физическая теория. И, более того, благодаря наличию мод колебаний, реализующих гравитон, теория струн представляет собой квантовую теорию, включающую гравитацию.
 Более точный ответ
 Грубый ответ ухватывает сущность того, почему теория струн смогла добиться успеха там, где предшествующие теории, основанные на точечной модели частиц, потерпели неудачу. Поэтому без ущерба для понимания дальнейшего можно сразу перейти к следующему разделу. Однако, рассмотрев в главе 2 основные идеи специальной теории относительности, мы получили в свое распоряжение средства, позволяющие более точно описать, как теория струн борется с разрушительными квантовыми флуктуаииями.
 В более точном ответе мы будем использовать те же основные идеи, которые содержались в приближенном ответе, но выразим их непосредственно на языке струн. Мы увидим, как конечность размера струн "размазывает" информацию, которую можно было бы получить при зондировании с использованием точечных частиц, и тем самым, к нашему счастью, снимает проблему поведения пространства на ультрамикроскопических расстояниях, ответственную за центральную дилемму современной физики.
 Сначала рассмотрим, как происходило бы взаимодействие между точечными частицами, если бы они действительно существовали, и, соответственно, как можно было бы использовать их в качестве физических зондов. Наиболее важным является показанный на рис. 6.5 случай взаимодействия между частицами, движущимися по пересекающимся путям, приводящим к столкновению. Если бы эти частицы были бильярдными шарами, они могли бы столкнуться, после чего каждая из них начала бы двигаться по новой траектории. Квантовая теория
 
 Глава 6. Только музыка, или Суть теории суперструн 111
  Рис. 6.5. Две частицы взаимодействуют: они "сталкиваются между собой", и это приводит к изменению траектории каждой из них Рис. 6.6. В квантовой теории поля частица и ее античастица могут мгновенно аннигилировать с образованием фотона. Затем этот фотон порождает другую частицу и античастицу, которые движутся по расходящимся траекториям поля с точечными частицами показывает, что то же самое происходит при столкновении элементарных частиц - они отскакивают друг от друга и продолжают свой путь по новым траекториям. - однако детали этого процесса отличаются.
 Для большей определенности и простоты представим себе, что одна из двух частиц является электроном, а другая - ее античастицей, позитроном. При столкновении частицы и античастицы они аннигилируют с выделением энергии в чистом виде, приводящим к образованию, например, фотона9). Чтобы отличать выходящую траекторию фотона от входящих траекторий электрона и позитрона, мы будем, следуя принятому в физике соглашению, изображать ее волнистой линией. Обычно фотон проходит небольшое расстояние, после чего высвобождает энергию, полученную от первоначальной электрон-позитронной пары, путем образования другой электрон-позитронной пары, показанной в правой части рис. 6.6. Эти две частицы испытывают электромагнитное взаимодействие и, в конце концов, разлетаются по расходящимся траекториям. Такая последовательность событий имеет определенное сходство с описанием бильярдных шаров.
 Нас интересуют детали взаимодействия, в частности, точка, где начальные электрон и протон аннигилируют с образованием фотона. Как станет ясно далее, главным является тот факт, что время и место этого события могут быть установлены однозначно и точно, как показано на рис. 6.6.
 Как изменится описание, приведенное выше, если после тщательного исследования объектов, которые мы считали нульмерными точками, они окажутся одномерными струнами? Основной процесс взаимодействия будет тем же самым, но теперь движущиеся по пути к столкновению объекты представляют собой осциллирующие петли, показанные на рис. 6.7. Для определенных колебаний струны ее моды будут как раз соответствовать протону и электрону, движущихся курсом на столкновение, как показано на рис. 6.6. Истинный струнный характер становится очевидным только при исследовании в ультрамикроскопическом масштабе, выходящем далеко за пределы современных экспериментальных возможностей. Как и в случае с точечными частицами, две струны сталкиваются и аннигилируют, превращаясь во вспышку, которая представляет собой фотон и сама по себе является струной, колеблющейся в определенной моде. Таким образом, две исходные струны взаимодействуют между собой, сливаясь и образуя третью струну, как показано на рис. 6.7. Как и в случае точечных частиц, эта струна проходит некоторое расстояние, после чего выделяет энергию, полученную от двух исходных струн, разделяясь на две новые струны, которые продолжают движение. Опять же, со всех точек зрения, кроме той, которая относится к микроскопическим масштабам, это будет выглядеть идентично взаимодействию между точечными частицами на рис. 6.6.
 Существует, однако, радикальное различие между этими двумя описаниями. Мы подчеркнули, что взаимодействие между точечными частицами происходит в однозначно идентифицируемой точке пространства и времени, в точке, с положением которой согласятся все наблюдатели. Как мы сейчас увидим, для взаимодействия между струнами это неверно. Мы продемонстрируем это, сравнив, как Джордж и Грейс, два наблюдателя, находящихся в относительном движении, могли бы описать это взаимодействие. Мы увидим, что они не придут к единому
 
 112 Часть III. Космическая симфония
 мнению по вопросу о том, где и когда две струны впервые пришли в соприкосновение.
 Представим, что мы наблюдаем за взаимодействием двух струн с помощью фотокамеры, затвор которой остается открытым, и вся хронология процесса регистрируется на одном фрагменте пленки 10). На рис. 6.7 в показан результат: его называют мировой поверхностью. Путем "разрезания" мировой поверхности на параллельные части (примерно так же, как мы разрезаем на куски батон хлеба) можно восстановить, момент за моментом, историю взаимодействия струн. Пример такого разрезания показан на рис. 6.8. В частности, на рис. 6.8 а мы показали Джорджа, пристально наблюдающего за двумя сближающимися частицами, а также плоскость, которая вычленяет все события в пространстве, происходящие одновременно с его точки зрения. Как часто делалось в предыдущих главах, для наглядности мы отбросили на диаграмме одно пространственное измерение. На самом деле, конечно, существует трехмерный массив событий, которые происходили одновременно для любого наблюдателя.
  Рис. 6.7. а) Две струны, движущиеся курсом на столкновение, могут слиться и образовать третью струну, которая вслед за этим может разделиться на две струны, движущиеся по расходящимся траекториям. 6) Тот же процесс, что и на рис. а), но более явно прослеживающий движение струн, в) "Замедленная киносъемка" двух взаимодействующих струн дает мировую поверхность Рис. 6.8. Две исходные струны (с точки зрения Джорджа) в три последовательных момента времени. В моменты а) и б) струны сближаются, в момент в), с его точки зрения, они впервые соприкоснулись На рис. 6.8 б и 6.8 в приведены два последовательных моментальных снимка - два последовательных "среза" мировой поверхности, - показывающих, как Джордж видит две струны, приближающиеся друг к другу. Особую важность имеет отмеченный на рис. 6.8 в момент, когда, с точки зрения Джорджа, две струны войдут в соприкосновение и сольются, образовав третью струну.
 А теперь повторим все то же самое для Грейс. Как мы указывали в главе 2, относительное движение Джорджа и Грейс приведет к тому, что они не согласятся по вопросу о том, какие события являются одновременными. С точки зрения Грейс события в пространстве, являющиеся одновременными, лежат в другой плоскости, показанной на рис. 6.9. Иными словами, по мнению Грейс, для того чтобы момент за моментом восстановить процесс взаимодействия, мировая поверхность на рис. 6.7 в должна быть "нарезана" на куски под другим углом.
 На рис. 6.9 б и 6.9 в мы снова показали последовательные моменты времени, но теперь уже с точки зрения Грейс, включая
 
 Глава 6. Только музыка, или Суть теории суперструн 113
  Рис. 6.9. Две исходные струны (с точки зрения Грейс) в три последовательных момента времени. В моменты о) и б) струны сближаются, в момент в), с ее точки зрения, они впервые соприкоснулись Рис. 6.11. Наблюдатели, находящиеся в относительном движении, придут к согласию о месте и времени взаимодействия между двумя частицами Рис. 6.10. Мнения Джорджа и Грейс по вопросу о месте, в котором произошло взаимодействие, разойдутся момент, когда две начальные струны по ее наблюдениям войдут в соприкосновение и образуют третью струну.
 Сравнивая рис. 6.8 в и 6.9 в (результат показан на рис. 6.10), мы видим, что мнения Джорджа и Грейс разделятся относительно того, где и когда две исходные струны впервые соприкоснулись, т. е. где они взаимодействовали. Поскольку струна является протяженным объектом, это означает, что не существует однозначного места в пространстве или момента во времени, когда струны начали взаимодействовать - эти характеристики зависят от того, как движется наблюдатель.
 Если применить те же самые рассуждения к взаимодействию точечных частиц, как показано на рис. 6.11, мы вновь придем к выводам, которые уже получили ранее: существуют определенная точка в пространстве и момент во времени, когда произошло взаимодействие частиц. Все взаимодействие точечных частиц происходит в одной определенной точке. Когда сила, связанная со взаимодействием, представляет собой гравитационную силу, т. е. когда частица, передающая взаимодействие, является гравитоном, а не фотоном, такая упаковка всей энергии взаимодействия в одну точку ведет к катастрофическим результатам, вроде упоминавшихся ранее бесконечных ответов. В противоположность этому струны "размазывают" место, в котором происходит взаимодействие. Поскольку разные наблюдатели регистрируют взаимодействие происходящим в разных точках левой части поверхности на рис. 6.10, это означает, что точка взаимодействия в действительности размазана по всей этой области. Это увеличивает область, в которой происходит взаимодействие, и в случае гравитационной силы такое размазывание существенно смягчает ультрамикроскопические свойства, настолько, что вычисления дают нормальные конечные результаты вместо получавшихся ранее бесконечностей. Это более точная версия того размазывания, о котором шла речь в грубом ответе в предыдущем разделе. Подчеркнем еще раз, что это размазывание приводит к сглаживанию ультрамикроскопических флуктуации
 
 114 Часть III. Космическая симфония
 структуры пространства, когда субпланковские расстояния сливаются друг с другом.
 Субпланковские детали, которые были бы доступны для изучения с помощью точечных частиц, в теории струн смазываются и предстают в безобидном виде. Это подобно тому, что происходит, если смотреть на мир через слишком слабые или слишком сильные очки. Однако, если теория струн представляет собой окончательное описание мироздания, то в отличие от случая плохого зрения здесь уже не существует никаких "корректирующих линз", через которые смогли бы отчетливо проявиться предполагаемые субпланковские флуктуации. Несовместимости общей теории относительности и квантовой механики, проявляющейся только в масштабе субпланковских расстояний, можно избежать во Вселенной, где есть нижний предел для расстояний, которые доступны для исследований или которые существуют в обычном смысле этого слова. Такова Вселенная, описываемая теорией струн: в ней законы макромира и микромира могут быть без ущерба объединены, после того как мы покончили с воображаемой катастрофой, возникающей на ультрамикроскопических расстояниях.
 Не только струны?
 Струны имеют две важных особенности. Во-первых, несмотря на конечность пространственных размеров, они могут быть непротиворечиво описаны в рамках квантовой механики. Во-вторых, среди резонансных мод колебаний имеется мода, свойства которой в точности совпадают со свойствами гравитона: тем самым гарантируется, что гравитационное взаимодействие представляет собой неотъемлемую часть этой теории. Однако, как мы помним, теория струн показала, что принятое понятие нульмерной точечной частицы оказалось не более чем математической идеализацией, не имеющей отношения к действительности. Не может ли быть так, что бесконечно тонкая одномерная струна представляет собой такую же математическую идеализацию? Может быть, одномерная струна на самом деле имеет какую-то толщину, подобно внутренней поверхности двумерной велосипедной шины или, если быть более реалистичными, подобно тонкой трехмерной баранке? Но трудности, с которыми столкнулись Гейзенберг, Дирак и другие в попытках построить квантовую теорию трехмерных фундаментальных комочков, выглядели непреодолимыми и вновь и вновь ставили в тупик исследователей, старавшихся пойти столь естественным путем.
 Однако в середине 1990-х гг. специалисты по теории струн, используя косвенные и довольно сложные рассуждения, несколько неожиданно установили, что подобные фундаментальные объекты действительно играют важную и нетривиальную роль в самой теории струн. Исследователи постепенно осознали, что теория струн содержит не только струны. Важнейшее наблюдение, играющее центральную роль во второй революции в теории суперструн, начатой Виттеном и его коллегами в 1995 г., состоит в том, что теория суперструн в действительности включает в себя компоненты различной размерности: элементы, похожие на двумерные фрисби-диски, на трехмерные капли, и даже еще более экзотические конструкции. Эти новейшие достижения будут рассмотрены в главах 12 и 13. А пока будем следовать хронологии открытий и обсудим новые поразительные свойства Вселенной, состоящей не из нульмерных точечных частиц, а из одномерных струн.
 
 Глава 7. "Супер" в суперструнах
 Когда в ходе экспедиции Эддингтона 1919 г., организованной для проверки предсказаний Эйнштейна об отклонении света звезд Солнцем, был получен положительный результат, голландский физик Хендрик Лоренц известил об этом Эйнштейна телеграммой. Когда содержание телеграммы, подтверждающей общую теорию относительности, распространилось по всему миру, один студент задал Эйнштейну вопрос, о чем бы он подумал, если бы эксперимент Эддингтона не обнаружил предсказанного отклонения лучей света звезд. Эйнштейн ответил: "Мне было бы жаль Всевышнего, поскольку теория верна"1). Конечно же, если бы эксперименты действительно не подтвердили предсказаний Эйнштейна, его теория была бы признана неверной, и общая теория относительности не стала бы одним из столпов, на которых покоится современная физика. На самом деле Эйнштейн имел в виду, что общая теория относительности описывает гравитацию с таким изяществом, используя такие простые и в то же время мощные идеи, что он не мог себе представить, как природа могла пройти мимо этой возможности. С точки зрения Эйнштейна общая теория относительности была слишком красивой, чтобы оказаться неверной.
 Однако эстетические аргументы не решают научных споров. В конечном счете, истинность физических теорий проверяется тем, насколько успешно они объясняют бесстрастные и упрямые экспериментальные данные. Однако к этому последнему утверждению есть одна очень важная оговорка. Когда теория находится в стадии разработки, ее неполнота часто не позволяет детально установить все ее экспериментальные следствия. Тем не менее, физики должны определить свой выбор и указать направления, в которых будут развиваться исследования такой незавершенной теории. Некоторые из этих решений диктуются внутренней логической непротиворечивостью; мы определенно требуем, чтобы любая разумная теория не содержала логически абсурдных положений. Другие решения обусловлены преимуществами одних теоретических конструкций над другими с точки зрения их следствий для экспериментальных исследований; обычно нас мало интересуют теории, содержимое которых не имеет отношения ни к чему, с чем мы сталкиваемся в окружающем нас мире. Однако, несомненно, бывают случаи, когда решения, принимаемые физиками-теоретиками, основываются на эстетических соображениях, на ощущении того, что красота и элегантность той или иной теории соответствует красоте и элегантности окружающего нас мира. Конечно, нет никаких гарантий, что такие соображения приведут нас к истине. Может быть, глубоко в своей основе структура мироздания менее элегантна, чем та, которую подсказывает наш опыт. Или, возможно, мы обнаружим, что современные эстетические критерии потребуют существенного пересмотра для применения в менее привычных условиях. Тем не менее, всегда и особенно сегодня, когда мы вступаем в эру, где наши теории описывают такие сферы мироздания, которые все труднее поддаются экспериментальному изучению, физики будут рассчитывать на то, что подобные эстетические соображения помогут избежать тупиковых направлений. До настоящего времени такой подход не раз демонстрировал свою мощь и предсказательную силу.
 В физике, как и в искусстве, одну из ключевых ролей в эстетических принципах играет симметрия. Однако в отличие от искусства, в физике понятие симметрии имеет очень конкретный и точный смысл. На самом деле, аккуратно облекая это точное по-
 
 116 Часть III. Космическая симфония
 нятие симметрии в математическую форму, в течение последних нескольких десятилетий физики смогли разработать теории, в которых частицы вещества и частицы, передающие взаимодействие, переплетены более тесно, чем это считалось возможным когда-либо ранее. Подобные теории, объединяющие не только существующие в природе взаимодействия, но и материальные компоненты, имеют максимально возможную степень симметрии. По этой причине такие теории получили название суперсимметричных. Как мы увидим ниже, теория суперструн является одновременно предтечей и кульминацией суперсимметричных моделей.
 Характер физических законов
 Вообразим себе Вселенную, в которой законы физики являются такими же недолговечными, как и течения в моде, меняясь от года к году, день ото дня или даже от мгновения к мгновению. Можно утверждать наверняка, что если эти изменения не нарушат основных жизненных процессов, в таком мире вам некогда будет скучать. Простейшие действия превратятся в захватывающие приключения, поскольку случайные изменения законов природы не позволят вам или кому-либо еще использовать прошлый опыт для предсказания будущего.
 Такая Вселенная была бы кошмаром для физика. Физики, как и большинство остальных людей, полагаются на стабильность мироздания: законы, которые истинны сегодня, были истинны вчера и останутся истинными завтра (даже если мы не настолько умны, чтобы понимать все эти законы). В конце концов, какой смысл следует вкладывать в слово "закон", если он может меняться столь незакономерно? Сказанное не означает, что Вселенная статична; Вселенная, несомненно, изменяется самым разнообразным образом от одного момента времени к другому. Скорее, это означает, что законы, управляющие подобной эволюцией, постоянны и неизменны. Возникает вопрос: действительно ли мы знаем, что это верно? На самом деле, не знаем. Однако наши успехи в описании многочисленных особенностей устройства мироздания, начиная от первого момента после Большого взрыва и по сегодняшний день, дают уверенность в том, что если законы природы и изменяются, то они должны делать это очень медленно. Простейшее предположение, согласующееся с тем, что нам известно на сегодняшний день, состоит в том, что законы природы неизменны. Теперь представим себе Вселенную, в разных частях которой свои законы физики, и эти законы, как местные обычаи, изменяются непредсказуемым образом от места к месту и отчаянно сопротивляются любому внешнему влиянию. Путешествие в таком мире, подобно приключениям Гулливера, заставит вас столкнуться с огромным разнообразием непредвиденных ситуаций. Однако с точки зрения физика это опять будет кошмаром. Очень трудно, например, примириться с фактом, что законы, которые действуют в одной стране - или даже в одном штате, - могут не действовать в другом. Но попробуйте представить, что произойдет, если таким же образом будут меняться законы природы. В таком мире эксперименты, проведенные в одном месте, не дадут никакой информации о физических законах, действующих в других местах. Физики должны будут снова и снова повторять свои эксперименты в разных местах, чтобы установить характер действующих там физических законов. К счастью, все, что мы знаем на сегодняшний день, говорит о том, что повсеместно действуют одни и те же законы физики. Эксперименты, проводимые по всему миру, могут быть объяснены на основе одних и тех же физических принципов. Более того, наша способность объяснить многочисленные астрофизические наблюдения, относящиеся к самым удаленным уголкам Вселенной, используя один и тот же неизменный набор физических принципов, заставляет нас верить в то, что действительно повсюду правят одни и те же физические законы. Поскольку мы никогда не бывали на противоположном краю Вселенной, мы не можем исключить возможность того, что где-то физика имеет совершенно иной характер, но все известные нам данные заставляют отвергнуть такой вариант.
 
 Глава 7. "Супер" в суперструнах 117
 Опять же, сказанное не означает, что Вселенная выглядит одинаково или что детали ее устройства одинаковы в разных местах. Космонавт, скачущий по Луне на "кузнечике" (палке с пружиной), способен проделать массу вещей, которые невозможно себе представить на Земле. Но мы понимаем, что это различие связано с тем, что Луна имеет гораздо меньшую массу, чем Земля; это вовсе не означает, что закон гравитации изменяется от одного места к другому. Ньютоновский или, точнее, эйнштейновский закон гравитации является одинаковым и для Земли, и для Луны. Различия в опыте космонавтов связаны с изменением обстановки, а не с изменением физических законов.
 Физики называют эти два свойства физических законов, а именно то, что они не зависят от того, когда или где мы их применяем, симметриями природы. Используя этот термин, физики имеют в виду, что природа трактует каждый момент во времени и каждую точку в пространстве идентично, симметрично, гарантируя, что будут действовать одни и те же фундаментальные законы. Подобно их действию в живописи и в музыке, такие виды симметрии вызывают глубокое удовлетворение: они подчеркивают порядок и согласие в функционировании мироздания. Элегантность, с которой богатые, сложные и разнообразные явления вытекают из простого набора универсальных законов, составляет немалую часть того, что имеют в виду физики, используя слово "прекрасный".
 В нашем обсуждении, посвященном специальной и общей теории относительности, мы столкнулись и с другими видами симметрии в природе. Вспомним, что принцип относительности, который лежит в основе специальной теории относительности, гласит, что законы физики будут одинаковы для наблюдателей, движущихся равномерно относительно друг друга. Этот принцип представляет собой разновидность симметрии, поскольку он означает, что природа относится к наблюдателям совершенно одинаково, симметрично. Каждый такой наблюдатель имеет право считать, что он находится в состоянии покоя. Подчеркнем еще раз, что это не означает идентичности картины, которую будут видеть разные наблюдатели; как мы показали ранее, их наблюдения могут существенно расходиться. Дело не в этом. Подобно различиям в ощущениях энтузиастов прыжков на палках с пружиной на Земле и на Луне, различия в наблюдениях отражают особенности обстановки, в которой проводились наблюдения, ведь наблюдатели находились в относительном движении. Но то, что они наблюдали, управлялось одними и теми же законами.
 Открыв принцип эквивалентности, основу общей теории относительности, Эйнштейн значительно расширил этот тип симметрии. Он показал, что законы физики в действительности идентичны для всех наблюдателей, даже для тех, которые находятся в состоянии сложного ускоренного движения. Вспомним, что Эйнштейн придал этой идее законченный вид, осознав, что ускоряющийся наблюдатель имеет полное право считать, что он находится в состоянии покоя, утверждая, что сила, действующая на него, обусловлена гравитационным полем. После включения в данную систему гравитации все возможные точки зрения становятся абсолютно равноправными. Помимо несомненной эстетической привлекательности такой равноправной трактовки всех видов движения, эти принципы симметрии, как мы видели выше, играют ключевую роль в поразительных выводах о характере гравитации, к которым пришел Эйнштейн.
 Есть ли еще принципы симметрии, имеющие дело с пространством, временем и движением, которым должны удовлетворять законы физики? Если вы основательно поразмыслите об этом, то сможете указать еще один принцип. Законы физики не должны зависеть от того, под каким углом вы проводите свои наблюдения. Например, если вы проводите какой-то эксперимент и после этого решаете повернуть вашу установку и повторить опыт, должны действовать те же самые законы. Этот принцип известен под названием вращательной симметрии, он означает, что законы физики трактуют все возможные направления как равноправные. Данный принцип симметрии имеет такое же значение, как и рассмотренные выше.
 
 118 Часть III. Космическая симфония
 Существуют ли какие-либо еще принципы симметрии? Не пропустили ли мы какой-нибудь из них? Вы можете предложить калибровочные симметрии, связанные с негравитационными силами, обсуждавшиеся в главе 5. Да, это несомненные симметрии в природе, но они являются более абстрактными по своему характеру; в данный момент мы хотим сконцентрировать наше внимание на тех видах симметрии, которые имеют непосредственное отношение к пространству, времени или движению. Если добавить это условие, по всей вероятности, вам не удастся предложить чего-либо нового. На самом деле в 1967 г. физики Сидни Коулмен и Джеффри Мандула сумели доказать, что никакие другие виды симметрии, связанные с пространством, временем или движением, не могут сочетаться с принципами симметрии, рассмотренными выше, и приводить к теории, имеющей какое-либо отношение к нашему миру.
 Однако впоследствии более тщательное изучение этой теоремы, основанное на догадках ряда физиков, позволило обнаружить одну небольшую лазейку: результат Коулмена-Мандулы не охватывает симметрии, связанные с понятием, известным как спин.
 Спин
 Элементарные частицы, например электрон, могут вращаться вокруг атомных ядер подобно тому, как Земля вращается вокруг Солнца. Однако может показаться, что в традиционной точечной модели электрона нет аналога вращению Земли вокруг своей оси. Когда объект вращается, точки, расположенные на оси вращения, подобно центральной точке фрисби-диска, остаются неподвижными. Но если какой-нибудь объект является действительно точечным, у него нет "других точек", которые не находились бы на оси вращения. В результате может показаться, что такого понятия, как вращение точечного объекта, попросту не существует. Много лет назад исследование этого вопроса привело к открытию еще одного поразительного квантового эффекта.
 В 1925 г. голландские физики Джордж Уленбек и Сэмюэль Гоудсмит осознали, что многие удивительные результаты, относящиеся к свойствам излучаемого и поглощаемого атомами света могут быть объяснены, если предположить, что электроны обладают некоторыми весьма специфичными магнитными свойствами. Примерно за сто лет до этого французский физик Андре-Мари Ампер показал, что магнетизм обязан своим происхождением движению электрических зарядов. Уленбек и Гоудсмит исследовали этот факт и установили, что только один конкретный вид движения электрона может привести к появлению магнитных свойств, на которые указывали экспериментальные данные: это было вращательное движение - спин электрона. Вопреки канонам классической физики, Уленбек и Гоудсмит провозгласили, что электрон, подобно Земле, может кружить по орбите и одновременно вращаться вокруг собственной оси.
 Считали ли Уленбек и Гоудсмит, что электрон действительна вращается вокруг своей оси? И да, и нет. На самом деле их работа показала, что существует квантово-механическое понятие спина, которое в определенной степени напоминает вращение объекта вокруг собственной оси, но которое, по сути, представляет квантово-механическое явление. Это одно из тех свойств микромира, которое не имеет аналога в классической физике, а является экспериментально подтверждаемой квантовой особенностью. Представьте себе, например, вращающегося фигуриста. Когда он прижимает руки к телу, его вращение ускоряется, когда разводит руки в стороны - вращение замедляется. Однако рано или поздно, в зависимости от того, с какой энергией он начал свое вращение, его движение замедлится, и он остановится. Не так обстоят дела со спином, открытым Уленбеком и Гоудсмитом. Согласно их работе и данным последующих исследований, каждый электрон во Вселенной всегда вращается с постоянной и никогда не меняющейся скоростью. Спин электрона не является промежуточным состоянием движения, которое мы наблюдаем в случае более привычных объектов, по тем или иным причинам пришедших во вращение. Напро-
 
 Глава 7. "Супер" в суперструнах 119
 тив, спин электрона является внутренним, присущим электрону свойством, похожим в этом отношении на массу или электрический заряд. Если бы электрон не вращался, он не был бы электроном.
 Хотя первые работы были посвящены электронам, впоследствии физики показали, что понятие спина применимо ко всем частицам вещества, образующим три семейства из табл. 1.1. Это утверждение истинно вплоть до мельчайших деталей: все частицы вещества (а также их античастицы) имеют спин, равный спину электрона. На своем специальном языке физики говорят, что все частицы вещества имеют "спин 1/2", где значение 1/2 представляет собой, грубо говоря, квантово-механическую меру скорости вращения частиц 2). Более того, физики показали, что частицы, передающие негравитационные взаимодействия, - фотоны, слабые калибровочные бозоны и глюоны - также обладают спином, который оказался в два раза больше, чем спин частиц вещества. Все эти частицы имеют "спин 1".
 А как насчет гравитации? Еще до появления теории струн физики смогли установить, какой спин должен иметь гипотетический гравитон, чтобы он мог переносить гравитационное взаимодействие. Полученный ими ответ гласил: удвоенный спин фотонов, слабых калибровочных бозонов и глюонов - т. е. "спин 2".
 В теории струн спин, так же как масса и константы других взаимодействий, связан с модой колебания струны. Как и в случае с точечными частицами, было бы не совсем правильно думать, что спин, который несет струна, возникает из-за того, что она действительно вращается в пространстве, однако эта картина дает хороший образ для представления. Кстати, теперь можно уточнить одно важное обстоятельство, с которым мы столкнулись ранее. В 1974 г. Шерк и Шварц провозгласили, что теория струн должна рассматриваться как квантовая теория, включающая гравитационное взаимодействие. Такой вывод стал возможен потому, что они обнаружили: в спектре колебаний струн обязательно должна присутствовать мода, которая соответствует безмассовой частице со спином 2. Но именно эти характеристики являются отличительными признаками гравитона. А где гравитон, там и гравитация.
 Получив основные представления о спине, вернемся к той роли, которую он играет в качестве упомянутой в предыдущем разделе лазейки в обход теоремы Коулмена- Мандулы, касающейся возможных видов симметрии в природе.
 Суперсимметрия и суперпартнеры
 Как мы уже подчеркивали, хотя понятие спина имеет поверхностное сходство с образом вращающегося волчка, оно имеет и значительные отличия, связанные с его квантовой природой. Открытие спина в 1925 г. показало, что имеется еще один вид вращательного движения, который попросту не существует в чисто классической Вселенной.
 Это позволяет задать следующий вопрос: если обычное вращательное движение приводит к принципу симметрии, носящему название инвариантности относительно вращений ("физика рассматривает все возможные направления в пространстве как равноправные"), не ведет ли это более специфическое вращательное движение еще к одному принципу симметрии законов природы? Примерно к 1971 г. физики показали, что ответ на этот вопрос положителен. Хотя полное доказательство достаточно сложно, основная идея состоит в том, что если рассматривать спин с математической точки зрения, возможна ровно одна дополнительная симметрия законов природы. Она получила название суперсимметрии3).
 Суперсимметрии не может быть поставлено в соответствие простое и интуитивно понятное изменение точки зрения наблюдателя: сдвиги во времени, пространственном положении, угловой ориентации и скорости движения уже исчерпали эти возможности. Однако поскольку спин представляет собой "подобие вращательного движения, имеющее квантово-механическую природу", суперсимметрия связана с изменением точки зрения наблюдателя в "квантово-механическом расширении пространства и времени".
 
 120 Часть III. Космическая симфония
 Кавычки здесь очень важны, поскольку последняя фраза дает только общее представление о месте суперсимметрии в общей системе принципов симметрии природы4'. Однако понимание принципа суперсимметрии является довольно сложной задачей, и мы сконцентрируем внимание на его основных следствиях, на том, согласуются ли законы природы с этим принципом. Этот вопрос гораздо легче поддается объяснению.
 В начале 1970-х гг. физики пришли к выводу, что если Вселенная является суперсимметричной, частицы природы должны входить в набор наблюдаемых частиц парами, при этом спин частиц, образующих пару, должен отличаться на 1/2. Такие пары частиц - независимо от того, считаются ли они точечными (как в стандартной модели) или крошечными колеблющимися петлями - называются суперпартнерами. Поскольку частицы вещества имеют спин 1/2, а некоторые из частиц, передающих взаимодействие - спин 1, суперсимметрия приводит к выводу о наличии пар, о партнерстве частиц вещества и частиц, передающих взаимодействие. Сам по себе этот вывод выглядит весьма привлекательно с точки зрения объединения частиц в одну теорию. Проблема кроется в деталях.
 К середине 1970-х гг., когда физики искали способ, который позволил бы включить суперсимметрию в стандартную модель, они обнаружили, что ни одна из известных частиц, перечисленных в табл. 1.1 и 1.2, не может быть суперпартнером для другой. Как показал тщательный теоретический анализ, если Вселенная включает принцип суперсимметрии, то каждой известной частице должна соответствовать еще не открытая частица-суперпартнер, спин которой на половину меньше, чем спин ее известного партнера. Так, партнер электрона должен иметь спин 0; эта гипотетическая частица получила название сэлектрона (сокращение от термина суперсимметричный электрон). То же самое справедливо и для других частиц вещества. Например, имеющие спин 0 гипотетические суперпартнеры нейтрино и кварков получили название снейтрино и скварков. Аналогично частицы, передающие взаимодействия, должны иметь суперпартнеров со спином 1/2. Для фотонов это будут фотино, для глюонов - глюино, для W-бозонов и Z -бозонов - вино и зино.
 Таким образом, при более внимательном изучении суперсимметрия оказалась чрезвычайно неэкономичным понятием: она требовала большого количества дополнительных частиц, дублировавших список фундаментальных компонентов. Поскольку ни одна из частиц-суперпартнеров не была обнаружена, вы можете довольствоваться приведенным в главе 1 замечанием Раби по поводу открытия мюона, немного усилив его звучание: "Никто не заказывал суперсимметрию", и, без долгих рассуждений, отказаться от этого принципа симметрии. Существуют, однако, три причины, по которым многие физики твердо убеждены, что такой скоропалительный отказ от суперсимметрии был бы преждевременным. Обсудим эти причины.
 Доводы в пользу суперсимметрии - до появления теории струн

<< Пред.           стр. 3 (из 13)           След. >>

Список литературы по разделу