<< Пред. стр. 2 (из 4) След. >>
Сила, действующая на диполь во внешнем полеПусть q=0, но . Тогда сила равняется . Где это в физике может проявиться? Очень многие тела электрически нейтральны, то есть заряда не имеют, но имеют отличный от нуля дипольный момент. Простейший объект такого рода - молекула. Молекула - это такое образование, у которого положительные и отрицательные заряды в сумме дают ноль, но не совпадают в пространстве. Такая система обладает дипольным моментом , на который действует сила .
Кстати, легко понять, почему возникает сила, действующая на диполь. Скажем, поле создаётся положительным зарядом, имеем диполь, систему, состоящую из отрицательного заряда -q и положительного +q. Результирующая сила такая: . Если вы для такой ситуации примените формулу, то увидите, что она даст правильный результат.
Момент силы, действующей на диполь во внешнем поле
Пусть мы имеем однородное электрическое поле и диполь, который изобразим как два точечных заряда. На заряд +q действует сила , на заряд -q - сила . Если поле однородно, то эти силы в сумме дадут ноль, но момент не равен нулю. Две такие силы создают вращающий момент, вектор этого момента направлен перпендикулярно плоскости рисунка. На электрически диполь в однородном поле действует вот такой момент , этот момент сил стремится развернуть диполь так, чтобы его дипольный момент стал параллелен вектору .
Это вот что означает: если поле диполь помещён в электрическое поле , как показано на рисунке 5.5, то момент будет поворачивать его так, чтобы диполь стал параллельным , а сила будет втягивать его дальше в электрическое поле.
Теперь мы можем понять, как будет вести себя вещество в электростатическом поле.
ВЕЩЕСТВО В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ
С точки зрения электричества, вещество делится на проводники и диэлектрики1). Проводники - это тела, в которых имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этого тела (например, электроны в металле, ионы в жидкости или газе). Диэлектрики - это тела, в которых нет свободных носителей заряда, то есть нет заряженных частиц, которые могли бы перемещаться в пределах этого диэлектрика. Поведение этих тел в электрическом поле различно, и сейчас мы эти различия рассмотрим.
Диэлектрики в электрическом поле
Диэлектрики - это тела, состоящие из нейтральных молекул. Молекулы бывают полярные (обладающие дипольным моментом) и неполярные (не обладающие дипольным моментом). Диэлектрик, состоящий из полярных молекул, во внешнем поле поляризуется, то есть приобретет дипольный момент за счёт преимущественной ориентации молекулярных диполей в направлении внешнего поля.
Вот имеем кусок диэлектрика, внешнее поле отсутствует. Дипольные моменты молекул ориентированы хаотически, и в среднем дипольный момент любого элемента объёма равен нулю (рис.5.6).
Однако, если мы поместим внешнее электрическое поле, появится преимущественная ориентация, все эти дипольные моменты сориентируются примерно так, как показано на рисунке 5.7. Они не смогут все построиться вдоль поля, потому что хаотическое тепловое движение разрушает структуру, но, по крайней мере, на фоне этого хаоса они будут все стремиться сориентироваться вдоль поля.
Диэлектрик, состоящий из неполярных молекул, также поляризуется, потому что эти молекулы приобретают дипольный момент во внешнем поле.
, однако, если мы внесём эту молекулу во внешнее электрическое поле, то внешнее поле растаскивает положительный и отрицательный заряды, и молекула приобретает дипольный момент.
Поляризация диэлектрика характеризуется вектором . Смысл этого вектора следующий: если мы возьмём элемент объёма dV, то дипольный момент этого объёма будет равен . Значение дипольного момента малого объёма диэлектрика пропорционально объёму элемента, и коэффициентом стоит вектор , короче , - это плотность дипольного момента.
Теперь немного математики. У нас имеется фундаментальное уравнение (первое уравнение Максвелла, которое связывает электрическое поле с зарядом) . Из этого интегрального закона следует дифференциальный такой: , это по теореме Остроградского-Гаусса.
Имеет место такая замечательная математическая теорема для произвольного векторного поля .
Смысл этой теоремы: имеем векторное поле, имеем замкнутую поверхность, вычисляем вектор в каждой точке поверхности, умножаем на нормаль, на площадь маленькой поверхности и суммируем, этот интеграл зависит, конечно, от поведения на поверхности, мы получили число, теперь, векторное поле ведёт себя как-то внутри этой поверхности, в каждой точке внутри вычисляем эту самую дивергенцию, получим число, интегрируем по объёму, получим равенство. Поведение вектора на поверхности, оказывается, связано с начинкой этого объёма. Оставлю вектор на поверхности прежним, а внутри я могу продеформировать это поле, но, как бы там ни деформировалось поле внутри, интеграл не изменится (хотя, в каждой точке дивергенция изменится).
Вот здесь действует такая хитрая связь поведения векторного поля на поверхности и поведения его внутри объёма..
Равенство получается как следствие теоремы Остроградского-Гаусса. Здесь справа стоит плотность заряда, значит, дивергенция напряжённости равна плотности заряда. Поляризация диэлектрика эквивалентна появлению заряда с плотностью . Это не очень очевидно. Если вектор поляризации постоянен, то никакой заряд в объёме не появляется. Вот, если вектор от точки к точке меняется, то это проявляется в том, что в данном элементе объёма появляется некий фиктивный заряд.
С учётом этого дела уравнение перепишется в таком виде , где - это плотность настоящих зарядов, а - плотность связанных зарядов, вот фиктивных зарядов, появляющихся в результате поляризации диэлектрика. Теперь мы это уравнение можем преобразовать. Умножим всё на и величину перенесём влево, мы получим такое уравнение: , где - это плотность настоящих зарядов, или . Вектор называется индукцией электрического поля, и для этой индукции мы получили вот такое замечательное уравнение: .
А от него мы теперь с помощью теоремы Гаусса вернёмся к интегральному уравнению: . Для однородных диэлектриков - линейная функция напряжённости поля (), вообще, для произвольного диэлектрика - это некоторая функция от напряжённости поля (). Пишем тогда , где коэффициент называется диэлектрическая восприимчивость. Значит, этот коэффициент характеризует склонность диэлектрика к поляризации. Возвращаясь к выражению для , мы получим для однородного диэлектрика: . Величина называется диэлектрическая проницаемость среды. Это безразмерная величина, большая единицы. Тогда связь между и :
Пример. Пусть мы имеем заряженный шар с зарядом +Q, помещённый в однородную бесконечную среду с диэлектрической проницаемостью . Какое поле будет существовать внутри этого диэлектрика?
Исходим из уравнения . Окружаем этот заряд сферой радиуса r. Вектор должен быть направлен по радиусу, это следствие сферической симметрии. , отсюда мы получаем: ; .
Мораль: когда мы решали такую проблему для пустоты, напряжённость поля равнялась, когда шар поместили в диэлектрик, напряжённость поля в раз меньше, чем в пустоте. Легко понять, почему это получается. Когда заряд помещают в диэлектрик, то за счёт поляризации диэлектрика заряд +Q обволакивается отрицательным зарядом -q', который выступает на поверхности шара.
Результирующий заряд оказывается меньше, чем Q, однако, что существенно, индукция определяется только настоящим зарядом. Заряд, проступающий на диэлектрике, не влияет на индукцию (этот вектор специально так введён). На напряжённость поля влияют все заряды, в том числе и -q'.
6
Проводники в электростатическом поле
Проводники - это тела, в которых имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этого тела. Ну, обычно, употребляется слово проводник, то в качестве синонима идёт слово металл, металлы замечательны тем, что в них имеются свободные электроны. Но, на самом деле, понятие проводника шире. Вода, например, является проводником, не сама по себе чистая вода Н2О, она состоит из нейтральных молекул, и никаких там свободных частиц нет, но в воде обычно присутствует в растворённом виде соль, то есть йод, и за счёт этого практически вся вода является проводником.
Кстати, уже в связи с тем, что мы в прошлый раз рассматривали, диэлектрики. Диэлектрическая проницаемость воды очень велика по сравнению с вот такой чистой водой, поэтому, вода является очень эффективным растворителем для многих веществ, ну, скажем, для твёрдых тел, которые устроены по ионной схеме. Так, если молекулы скреплены в твёрдом теле за счёт кулоновского взаимодействия (скажем, один атом электрон приобретает, другой теряет, вот эти атомы связаны кулоновскими силами), то такие связи вода разрушает очень эффективно за счёт своей большой диэлектрической проницаемости. Положительный и отрицательный заряды обволакиваются связанными зарядами, и эти связи разрушаются. Вода в этом плане является очень хорошим растворителем.
Вода, вообще, замечательное вещество. Все тела при охлаждении сжимаются, то есть плотность растёт (при охлаждении плотность увеличивается, при нагревании падает). Вот имеется аномальное явление в этом: максимальная плотность воды при +4ОС, при температуре ниже +4ОС плотность опять падает, то есть дальнейшее падение температуры приводит к падению плотности, то есть к расширению воды. Вот это удивительное поведение связано с тем, что вода играет в нашей жизни вот такую выдающуюся роль: во-первых, хороший растворитель для различных минеральных солей, а во-вторых, вот такое аномальное поведение плотности. Если бы этого не было, то, к примеру, в водоёмах, озёрах, реках, жизни не было бы, водоёмы промерзали бы до дна, а так водоёмы не промерзают. Ну, почему промерзают? Верхний слой воды охлаждается и идёт книзу, поскольку у него больше плотность, тёплые слои снизу выталкиваются наверх и охлаждаются снова. И это охлаждение шло бы очень эффективно. На самом деле этого не происходит. Когда температура нижних слоёв +4ОС, они приобретают максимальную плотность и не всплывают. Охлаждение может идти только за счёт теплопроводности, не за счёт перемещения масс, а за счёт теплопроводности. Теплопроводность - медленный процесс, и, скажем, за зиму водоём не успевает промёрзнуть, а, вот, если бы плотность воды не вела себя так, то он бы промерзал до дна и, в конце концов, всё, что там живёт, отдавало бы концы, а так в этой воде +4ОС живёт.
Некоторые утверждения:
1. Напряжённость внутри проводника равна нулю (это в электростатическом поле). По понятной причине. Если бы существовало поле, то на заряд е действовала бы сила равная , и под действием этой силы заряды внутри проводника двигались бы (электроны в металле двигались бы). До каких пор они могут двигаться? Ясно, что вечно двигаться они не могут, ну, скажем, у нас кусок железа лежит, и в нём они двигаются, двигаются и двигаются, железо греется при этом, а вокруг ничего не происходит. Это, конечно, было бы нелепо. А происходит следующее: имеем проводник и включается внешнее электростатическое поле, заряды начинают двигаться, при этом происходит такое перемещение зарядов внутри, что их собственное поле полностью гасит внешнее приложенное поле, на этом процесс останавливается. Это перемещение при обычных мерках практически мгновенно. Значение напряжённости электрического поля внутри проводника равно нулю. Отсюда следствие
2. Потенциал внутри проводника - константа. Ну, очевидно, напряжённость - это градиент потенциала, производная от потенциала, если напряжённость - ноль (это означает, что производная - ноль), сама функция - постоянная. Потенциал во всех точках проводника одинаков. Это утверждение верно для всех точек проводника вплоть до поверхности. Отсюда мораль:
3. Поверхность проводника является эквипотенциальной поверхностью. Ну, и отсюда:
4. Силовые линии поля ортогональны поверхности проводника.
Всё это можно резюмировать такой картинкой:
Скажем, имеем точечный заряд и проводник, внесённый в поле этого заряда. Произойдёт следующее: там, где силовые линии входят, сконцентрируется на поверхности проводника отрицательный заряд, скажем, электроны сюда подойдут, а на противоположной стороне появятся положительные заряды, это не скомпенсированные заряды ионов, из которых построена кристаллическая решётка.
Силовые линии поля будут ортогонально втыкаться в проводник, с другой стороны они будут исходить, опять же ортогонально к поверхности проводника. Ну, и, в общем-то, электрическое поле будет существенно изменено. Мы видим, что, если поверхность проводника будет внесена в поле заряда, вся конфигурация поля будет искажена. Если на проводник посадить заряд (либо снять с него часть электронов, либо насадить), этот заряд будет распределяться так, чтобы напряжённость внутри была равна нулю и чтобы поверхность проводника приняла во всех точках одинаковый потенциал.
Эту вещь полезно иметь в виду, тогда можно качественно представлять себе, как выглядит поле в окрестности заряженного проводника.
Я нарисую произвольный проводник и на него посажу заряд +q, ну, уединённый проводник (больше ничего нет). Какова будет структура поля? Соображения такие: поверхность эквипотенциальная, потенциал меняется непрерывно, значит, соседняя эквипотенциаль будет мало отличаться от этой. Вот, я могу более менее качественно нарисовать систему эквипотенциальных поверхностей. Дальше они будут так выпрямляться, и, в конце концов, на больших расстояниях орбитами будут сферы, как от точечного заряда. А теперь, силовые линии поля ортогональны этим поверхностям...
Вот такой ёж получился. Вот такая картина силовых линий.
Теперь немножко математики.
Мы имеем уравнение . В пустоте , учитывая, что , мы получаем такое уравнение: 1). Потенциал электрического поля в пустоте удовлетворяет уравнению , которое называется уравнением Лапласа.
Математически эта проблема сводится к решению такого уравнения при заданных граничных условиях, что на заданной поверхности2).
КОНДЕНСАТОРЫ
Пусть мы имеем отдельный проводник, на который посажен заряд q, этот проводник создаёт поле такой конфигурации, как на рисунке 6.2. Потенциал этого проводника одинаков во всех токах, поэтому можно говорить просто потенциал проводника, а, вообще-то, слово потенциал требует указания точки, в которой этот потенциал определяется. Можно показать, что потенциал уединённого проводника - линейная функция заряда, который на него посажен, , увеличите заряд вдвое, потенциал увеличится вдвое. Это не очевидная вещь, и я не могу привести каких-нибудь аргументов на пальцах, чтобы пояснить вот эту зависимость. Получается так, что структура поля не меняется, ну, картина силовых линий не меняется, просто растут напряжённости поля во всех точках пропорционально этому заряду, но общая картина не меняется. Ещё раз повторяю - не очевидная вещь. Ну, ладно, потенциал уединённого проводника - линейная функция заряда, . Пишем тогда , вводя коэффициент пропорциональности вот таким способом, где этот коэффициент пропорциональности С определяется геометрией проводника и называется ёмкостью уединённого проводника1). Ёмкость проводника не является его свойством, то есть на каком-то куске железа нельзя написать "ёмкость такая-то", потому что наличие или отсутствие посторонних тел вблизи меняет эту ёмкость. Его ёмкость, коэффициент пропорциональности, ёмкость отдельного проводника не является свойством этого проводника, она ещё зависит, помимо его, от наличия или отсутствия других тел. Однако, имеются устройства, которые называются конденсаторы, специальные устройства, для которых понятие ёмкости имеет однозначный смысл.
Конденсатором, вообще говоря, называется система из двух проводников, из которых один полностью охватывает другой, то есть, в идеале, конденсатор - вот такая штука:
Если на внутреннем проводнике заряд +q, а на внешнем -q. Внутри возникает электрическое поле вот такой конфигурации (силовые линии ортогональны поверхностям). И никакие внешние заряды не оказывают влияния на это поле, внешние поля не проникают внутрь проводящей полости, то есть от электростатического поля можно заэкранироваться. Хотите жить без электрического поля, вот, залезьте в железную бочку, закройтесь крышкой и всё, оно к вам туда не проникнет, скажем, транзистор у вас там в руках в этой бочке работать не будет, электромагнитные волны туда не будут проникать. Почему, кстати? А потому что внутри проводника поле равно нулю, поскольку напряжённость связана с распределением заряда на поверхности, а начинка проводника уже там не участвует, вы можете выкинуть эту начинку, получить полость, ничего от этого не изменится. Внутри проводника поле определяется только конфигурацией этих проводников и не зависит от внешних зарядов, тогда, если на внутреннем проводнике потенциал , а на внешнем , то мы снова будем иметь такую вещь, что внутренняя энергия пропорциональна заряду: , заряду q, который сидит на картинке внутри проводника. Тогда пишем: . Такое устройство называется конденсатором, и величина С называется ёмкостью конденсатора. Вот это уже свойство устройства, на нём можно написать: "ёмкость С". Конденсатор - это распространённые элементы в электричестве, в электротехнике и в радиотехнике, и на них прямо написано "ёмкость такая-то", и эта величина уже не зависит от того, что имеется вокруг. По размерности ёмкость что такое? , ёмкость в одну фараду - это ёмкость такого устройства, что, если на него посадить заряд в 1Кл (это колоссальный заряд), то разность потенциалов будет 1В. Нет таких конденсаторов на свете, на Земле просто невозможно построить такой конденсатор, чтобы он имел ёмкость в фараду, поэтому, подходя к этой ёмкости, мы будем использовать микрофарады.
Энергия конденсатора
Условно, два проводника представляют конденсатор. Каким образом можно посадить заряд на эти проводники, ну, зарядить конденсатор? Так, например: берём заряд и переносим с одного проводника на другой, допустим, с одного снимаем несколько электронов и тащим на другой, вот это процесс заряда конденсатора. Как фактически это делается, как можно перетащить электроны с одного проводника на другой? Имеем два проводника, подключается источник, батарейка, ключ замыкается, батарея начинает перегонять заряды с одного проводника на другой. До каких пор нам удастся перегонять их это отдельный вопрос, мы его в своё время рассмотрим, а сейчас просто: внутри этой батареи действуют силы, сторонние силы по отношению к электростатике, и эти силы перегоняют заряды с одного проводника на другой. Ясно, чтобы это разделение произвести, нужно затратить определённую работу. Вот почему: мы сняли электрон, появился положительный заряд, и этот электрон начинает притягиваться к положительному заряду, нам надо совершать работу, чтобы оттащить его от этого заряда. Эту работу можно сосчитать. Пусть мы имеем два проводника, с потенциалами и , мы переносим заряд , при этом совершается работа, равная . Учтём теперь, что разность потенциалов является функцией заряда: , тогда работа , и полная работа будет . Если мы добиваемся того, что на каждом проводнике становится заряд, равный по модулю q, то совершается такая работа. Спрашивается, куда эта работа девается? Запасается в виде энергии конденсатора, и её можно получить обратно. Энергия конденсатора равняется: . Кстати, это поясняет слово конденсатор (накопитель): с одной стороны это накопитель заряда, с другой стороны это накопитель энергии, и в качестве накопителей энергии конденсаторы, действительно, используются. Если конденсатор разряжается, эта энергия освобождается. Кстати конденсаторы большой ёмкости (сооружения порядка этой аудитории) при замыкании разряжаются со страшным громом, это драматический процесс.
Энергия электростатического поля
Проблема такая: заряженный конденсатор обладает энергией, где локализована эта энергия, с чем она связана? Энергия - это интегральная характеристика, просто устройство обладает такой энергией, вопрос, повторяю, стоит в локализации энергии, то есть это энергия чего? Ответ такой: энергия конденсатора - это, на самом деле, энергия электростатического поля, энергия принадлежит полю, ни обкладкам конденсатора, ни заряду. Мы дальше получим чёткую теорему для энергии электромагнитного поля, а сейчас некоторые простые соображения.
Плоский конденсатор. Вот устройство, называемое плоским конденсатором, всем хорошо известное:
Имеется в виду, что расстояние между пластинами много меньше характерного линейного размера, , S - площадь пластин. Пластины имеют большую площадь, зазор маленький, в этом случае силовые линии поля однородны и внешние заряды на него не влияют. Напряжённость поля равняется , где . Мы знаем формулу для пластины с поверхностной плотностью : , между пластинами поля складываются, снаружи уничтожаются. Так как поле однородное, разность потенциалов равняется: , где d - расстояние между пластинами. Тогда мы получим, что . Действительно, обнаружили, что разность потенциалов между пластинами - линейная функция заряда, это частное подтверждение общего правила. А коэффициент пропорциональности связан с ёмкостью: . Если объём конденсатора заполнен начинкой из диэлектрика, то будет более общая формула: 1).
А теперь займёмся формулой для энергии конденсатора: . Эта формула справедлива всегда. Для плоского конденсатора мы получим: , где V - это объём области между пластинами. При наличии диэлектрика энергия плоского конденсатора равна: . Напряжённость поля внутри плоского конденсатора во всех точках одинакова, энергия пропорциональна объёму, а эта вещь тогда выступает как плотность энергии, , энергия, приходящаяся на единицу объёма внутри конденсатора. Повторяю, дальше хорошее доказательство увидим, это пока как наводящее соображение, но положение таково. Электростатическое поле обладает энергией, и, если мы возьмём элемент объёма dV, а внутри этого элемента напряжённость поля равняется Е, то внутри этого объёма будет содержаться энергия , определяемая напряжённостью поля в точке внутри этого элемента. В любом конечном объёме V будет содержаться энергия, равная .
Что это значит? Буквально вот что. Сейчас в этой аудитории имеется электростатическое поле, связанное с тем, что Земля обладает некоторым зарядом, и заряд противоположного знака в атмосфере, это поле однородное, я уже упоминал, наверняка, напряжённость такая: в точках, в которые я сейчас ткнул, разность потенциалов порядка 100В, то есть напряжённость этого поля порядка 100В/м. Значит, в этой аудитории присутствует энергия, вычисленная по этой формуле: , она размазана по всему пространству, энергия принадлежит электрическому полю. Можно ли её использовать? Тут тонкость такая, скажем, я пришёл с чемоданом, поставил тут чемодан, открыл его, потом закрыл, в объёме чемодана есть электрическое поле и, соответственно, энергия. Я взял чемодан и ушёл, унёс ли я эту энергию? Нет, потому что чемодан-то я унёс, а поле как было здесь, так и осталось. Тем не менее, можно ли эту энергию как-нибудь добыть? Да. Надо сделать так, чтобы энергия исчезла в этом объёме, скажем, электрическое поле исчезло в объёме этой аудитории, и тогда эта энергия выделится, если мы уничтожим поле, то энергия выделится.
Процедура, например, такая: вот имеется однородное поле, я беру металлическую пластину и вдвигаю её в это поле перпендикулярно силовым линиям, работа при этом не совершается и ничего не происходит; вдвигаю ещё одну пластину таким же образом, тоже ничего не происходит, ну, правда, внутри проводящей пластины поле исчезает, на поверхности выступают заряды, но это ерунда. А теперь я беру проводничок к одной пластине, ключ и проводничок к другой, тоже невинное дело, ничего при этом не происходит. А когда я замыкаю ключ, что произойдёт? Эти две пластины соединяются, это один проводник, это означает, что их потенциалы должны уравняться. Вначале на одном проводнике был потенциал , на другом , и разность потенциалов равнялась , где d - это расстояние между пластинами, а когда я их соединяю проводником =, как это может быть? Исчезает поле между пластинами, потому что разность потенциалов - это интеграл . Когда я их закорачиваю проводником, получается такая конфигурация:
Энергия этого исчезнувшего поля выделяется при замыкании. Я мог бы её даже утилизировать: не просто замкнуть, а мотор вставил бы, и при замыкании заряд перетекал бы по обмоткам электромотора, он прокрутится и совершит работу (если вы ключ разомкнёте, поле не восстановится).
На сколько этот процесс реализуется? Что такое молния и гром? Имеем землю, имеем облако (это обкладки конденсатора), между ними такое электрическое поле:
Что такое молния? Пробой, это порводничок, он сам собой замыкается. Происходит разряд, исчезает поле между облаком и землёй. Гром, это что такое? Выделение энергии этого поля. Весь этот гром, треск и молния - это выделение энергии между облаком и землёй.
Энергия конденсатора - это . Конечно, чтобы взять этот интеграл, нужно знать всё поле во всём пространстве, и каким же образом получается такая простая формула ? Ёмкость, на самом деле, это интегральная характеристика, для того, чтобы найти ёмкость какой-то системы зарядов, нужно знать поле во всём пространстве. Вся трудность вычисления интеграла эквивалентна трудности вычисления ёмкости.
СТАЦИОНАРНЫЕ МАГНИТНЫЕ ПОЛЯ
Напомню, как мы добыли электростатику. У нас есть четыре уравнения Максвелла, в которых сидит всё электричество. Мы там положили , , получили электростатику. Мы теперь ослабим эти наложенные условия, мы теперь положим , но , получим стационарное магнитное поле. То есть со временем ничего не меняется, но плотность тока , а связано с движением заряда. Заряды двигаются, но стационарно, двигаются так, что в любой точке пространства со временем ничего не меняется. Наглядный пример: течёт река, массы воды движутся, но течение стационарно, скорость воды в каждой точке одна и та же. Когда ветер дует то туда, то сюда порывами, это не стационарное течение, а, если ветер дует без порывов: в ушах свистит и всё, а ничего не меняется со временем, то это пример стационарного течения.
Уравнения электростатики (первое и второе уравнения Максвелла) остаются без изменения, а третье и четвёртое будут иметь вид:
Стационарное означает неменяющееся со временем. Ладно, свойства этого поля мы обсудим в следующий раз.
7
Мы изучаем стационарное магнитное поле. Напомню исходные положения: , то есть заряды движутся, но стационарно. Это поле будет описываться двумя уравнениями (третьим и четвёртым уравнениями Максвелла):
.
Что означает третье уравнение? Что поток вектора через любую замкнутую поверхность равен нулю, где бы эта поверхность ни была взята и какую бы форму она не имела. Это означает, что вклады в поток знакопеременны, то есть где-то вектор направлен внутрь поверхности, а где-то наружу. Формально из равенства 3. можно показать, что, сколько линий выходит из поверхности, столько в неё и входит. Иначе, никакая силовая линия не заканчивается внутри замкнутой поверхности и никакая не начинается. Как это может быть? Это может быть только так: все силовые линии замкнуты. Короче говоря, из третьего уравнения следует, что силовые линии индукции магнитного поля замкнуты. То есть силовая линия может как-то идти, идти, но она обязательно вернётся и укусит себя за хвост.
Для электрического поля мы имели такую вещь: . Слева конструкция такая же, но справа стоял заряд внутри поверхности. Отсюда следствия: 1) силовые линии замкнуты и 2) отсутствуют магнитные заряды, то есть нет таких частиц, из которых выходили бы таким образом (см. рис.7.1) линии индукции, такие частицы называются магнитными монополями.
Магнитные монополи отсутствуют. Это специальная проблема физики. Физика вслед за природой, которую она отражает, любит симметрию, и уравнения максвелла обладают симметрией, но ограниченно, в частности, для напряжённости справа стоит сумма зарядов, для магнитной индукции здесь стояла бы сумма магнитных монополей. Вот такое нарушение симметрии раздражает, повторяю, природа любит симметрию. Были попытки лет двадцать назад обнаружить монополи, так кажется, из соображений симметрии должны они быть, но не обнаружили. Теории приходилось искать причины, почему их нет. Соображения симметрии настолько довлеют, что её нарушения требуют какого-то объяснения. Ну, разные есть гипотезы, в которых фигурируют эти монополи, но почему мы не обнаруживаем их здесь, тоже там разные объяснения, вплоть до того, что на ранних стадиях возникновения Вселенной они были и попросту оказались вытолкнутыми за пределы окружающего нас пространства. В общем, есть теории, в которых они фигурируют, и в рамках тех теорий ищутся объяснения, почему мы их не находим на Земле. Пока мы, ссылаясь на то, что они не обнаружены, пишем здесь ноль и имеем дело только с замкнутыми силовыми линиями.
Теперь обратимся к четвёртому уравнению. Читаем его: возьмём замкнутый контур, зададимся направлением обхода (обход и нормаль должны образовывать правый винт), в каждой точке определяем , берём скалярное произведение , получаем число, для всех элементов находим эти скалярные произведения, получаем циркуляцию по контуру, это некоторое число. Уравнение утверждает, что, если эта циркуляция отлична от нуля, то отлична от нуля правая часть. А здесь что? Плотность тока связана с движущимися зарядами, скалярное произведение - это заряд, который проскакивает через эту площадку за единицу времени. Если циркуляция по контуру отлична от нуля, то это означает, что какие-то заряды пересекают поверхность, натянутую на этот контур. Это смысл четвёртого уравнения.
Тогда мы можем сделать такой вывод: силовые линия магнитного поля замкнута, возьмём в качестве контура какую-то линию магнитного поля, по этой линии , потому что произведение не меняет знак. Это означает, что, если я возьму поверхность S, натянутую на силовую линию магнитного поля, то, заведомо, эту поверхность пересекают заряды таким образом:
Можно сказать, что силовая линия магнитного поля всегда охватывает ток, иначе говоря, это выглядит так: если мы имеем проводник, по которому течёт ток A, для любого контура, который охватывает проводник с током, ; если имеется несколько проводников, опять я возьму контур, поверхность, на него натянутую, её протыкают два проводника, тогда , при чём с учётом знаков: ток A1 - положительный, A2 -отрицательный. Мы имеем тогда . Вот это сразу общие такие свойства магнитного поля и тока. Значит, силовая линия всегда охватывает ток.
Магнитное поле бесконечного прямого проводника с током
Пусть вдоль оси OZ расположен бесконечно длинный проводник, по которому течёт ток с силой A. А сила тока это что такое? , - заряд, который пересекает поверхность S за время . Система обладает осевой симметрией. Если мы введём цилиндрические координаты r,???, z, то цилиндрическая симметрия означает, что и, кроме того, , при смещении вдоль оси OZ, мы видим то же самое. Таков источник. Магнитное поле должно быть таким, чтобы удовлетворялись эти условия и . Это означает вот что: силовые линии магнитного поля - окружности, лежащие в плоскости ортогональной проводнику. Это немедленно позволяет найти магнитное поле.
Пусть у нас это проводник.
Вот ортогональная плоскость,
вот окружность радиуса r,
я возьму тут касательный вектор, вектор, направленный вдоль ?, касательный вектор к окружности.
Тогда, , где .
В качестве замкнутого контура выбираем окружность радиуса r=const. Пишем тогда , сумма длин по всей окружности (а интеграл это ни что иное, как сумма) - это длина окружности. , где A - сила тока в проводнике. Справа стоит заряд, который пересекает поверхность за единицу времени. Отсюда мораль: . Значит, прямой проводник создаёт магнитное поле с силовыми линиями в виде окружностей, охватывающих проводник, и эта величина В убывает как при удалении от проводника, ну, и стремится к бесконечности, если мы приближаемся к проводнику, когда контур уходит внутрь проводника.
Этот результат только для случая, когда контур охватывает ток. Понятно, что бесконечный проводник нереализуем. Длина проводника, - наблюдаемая величина, и никакие наблюдаемые величины не могут принимать бесконечных значений, не такой линейки, которая позволила бы измерить бесконечную длину. Это нереализуемая вещь, тогда какой толк в этой формуле? Толк простой. Для любого проводника, будет справедливо следующее: достаточно близко к проводнику силовые линии магнитного поля - вот такие замкнутые окружности, охватывающие проводник, и на расстоянии (R - радиус кривизны проводника), будет справедлива эта формула.
Магнитное поле, создаваемое произвольным проводником с током.
Закон Био-Савара.
Пусть мы имеем произвольный проводник с током, и нас интересует магнитное поле, создаваемое куском этого проводника в данной точке. Как, кстати, в электростатике находили мы электрическое поле, создаваемое каким-то распределением заряда? Распределение разбивали на малые элементы и вычисляли в каждой точке поле от каждого элемента (по закону Кулона) и суммировали. Такая же программа и здесь. Структура магнитного поля сложнее, чем электростатическое, кстати, оно не потенциально, замкнутое магнитное поле нельзя представить как градиент скалярной функции, у него другая структура, но идея та же самая. Разбиваем проводник на малые элементы. Вот я взял маленький элемент , положение этого элемента определяется радиус-вектором , а точка наблюдения задаётся радиус-вектором . Утверждается, что этот элемент проводника создаст в этой точке индукцию по такому рецепту: . Откуда берётся этот рецепт? Его нашли в своё время экспериментально, трудно мне, кстати, представить, как это можно было экспериментально найти такую достаточно сложную формулу с векторным произведением. На самом деле это следствие четвёртого уравнения Максвелла . Тогда поле, создаваемое всем проводником: , или, мы можем написать теперь интеграл: . Понятно, что вычислять такой интеграл для произвольного проводника занятие не очень приятное, но в виде суммы это нормальная задача для компьютера.
Пример. Магнитное поле кругового витка с током.
Пусть в плоскости YZ располагается проволочный виток радиуса R, по которому течёт ток силы A. Нас интересует магнитное поле, которое создаёт ток. Силовые линии вблизи витка такие:
Общая картина силовых линий тоже просматривается (рис.7.10).
По идее, нас интересовало бы поле , но в элементарных функциях указать поле этого витка нельзя. Найти можно только на оси симметрии. Мы ищем поле в точках (х,0,0).
Направление вектора определяется векторным произведением . Вектор имеет две составляющие: и . Когда мы начнём суммировать эти вектора, то все перпендикулярные составляющие в сумме дадут ноль. . А теперь пишем: , =, а . , и, наконец1), .
Мы добыли такой результат:
А теперь, в качестве проверки, поле в центре витка равна: .
Поле длинного соленоида.
Соленоидом называется катушка, на которую намотан проводник.
Магнитное поле от витков складывается, и не трудно догадаться, что структура силовых линий поля такая: они внутри идут густо, а дальше разреженно. То есть для длинного соленоида снаружи будем считать =0, а внутри соленоида =const. Внутри длинного соленоида, ну, в окрестности. Скажем, его середины, магнитное поле практически однородно, а вне соленоида это поле мало. Тогда мы можем найти это магнитное поле внутри следующим образом: вот я беру такой контур (рис.7.13), а теперь пишем: 1).
- это полный заряд. Эту поверхность протыкают витки
(полный заряд)=(число витков, протыкающих эту поверхность).
Мы получим такое равенство из нашего закона: , или
.
8
Поле на большом расстоянии от ограниченного распределения тока.
Магнитный момент
Имеется в виду, что в ограниченной области пространства текут токи, тогда есть простой рецепт для нахождения магнитного поля, которое создаёт это ограниченное распределение. Ну, кстати, под это понятие ограниченное пространство подпадает любой источник, поэтому тут никакого сужения нет.
Если характерный размер системы , то . Напомню, что мы решали аналогичную проблему для электрического поля, создаваемого ограниченным распределением заряда, и там появилось понятие дипольного момента, и моментов более высокого порядка. Решать эту задачу я здесь не буду.
По аналогии (как делалось в электростатике) можно показать, что магнитное поле от ограниченного распределения на больших расстояниях подобно электрическому полю диполя. То есть структура этого поля такая:
Распределение характеризуется магнитным моментом . Магнитный момент , где - плотность тока или, если учесть, что мы имеем дело с движущимися заряженными частицами, то вот эту формулу для сплошно среды мы можем выразить через заряды частиц таким образом: . Что эта сумма выражает? Повторяю, распределение тока создаётся тем, что движутся эти заряженные частицы. Радиус-вектор i-ой частицы векторно умножается на скорость i-ой частицы и всё это умножается на заряд этой i-ой частицы.
Такая конструкция, кстати, у нас в механике была. Если вместо заряда без множителя написать массу частицы, то, что это будет изображать? Момент импульса системы.
Если мы имеем частицы одного сорта (, например, электроны), то тогда мы можем написать . Значит, если ток создаётся частицами одного сорта, то магнитный момент связан просто с моментом импульса этой системы частиц.
Магнитное поле, создаваемое этим магнитным моментом равно:
(8.1)
Магнитный момент витка с током
Пусть у нас имеется виток и по нему течёт ток силы A. Вектор отличен от нуля в пределах витка. Возьмём элемент этого витка , , где S - поперечное сечение витка, а - единичный касательный вектор. Тогда магнитный момент определён так: . А что такое ? Это вектор, направленный вдоль вектора нормали к плоскости витка . А векторное произведение двух векторов - это удвоенная площадь треугольника, построенного на этих векторах. Если dS - площадь треугольника, построенного на векторах и , то . Тогда мы пишем магнитный момент равняется . Значит,
(магнитный момент витка с током)=(сила тока)(площадь витка)(нормаль к витку)1).
А теперь мы формулу (8.1) применим для витка с током и сопоставим с тем, что мы добыли в прошлый раз, просто для проверки формулы, поскольку формулу эту я слепил по аналогии.
Пусть мы имеем в начале координат виток произвольной формы, по которому течёт ток силы A, тогда поле в точке на расстоянии х равно: (). Для круглого витка , . На прошлой лекции мы находили магнитное поле круглого витка с током, при эти формулы совпадают.
На больших расстояниях от любого распределения тока магнитное поле находится по формуле (8.1), а всё это распределение характеризуется одним вектором, который называется магнитный момент. Кстати, простейший источник магнитного поля это магнитный момент. Для электрического поля простейший источник это монополь, для электрического поля следующий по сложности это электрический диполь, а для магнитного поля всё начинается с этого диполя или магнитного момента. Это, ещё раз обращаю внимание, постольку, поскольку нет этих самых монополей. Был бы монополь, тогда было бы всё также как в электрическом поле. А так у нас простейший источник магнитного поля это магнитный момент, аналог электрического диполя. Наглядный пример магнитного момента - постоянный магнит. Постоянный магнит обладает магнитным моментом, и на большом расстоянии его поле имеет такую структуру:
Сила, действующая на проводник с током в магнитном поле
Мы видели, что на заряженную частицу действует сила, равная . Ток в проводнике есть результат движения заряженных частиц тела, то есть равномерно размазанного заряда в пространстве нет, заряд локализован в каждой частице. Плотность тока . На i-ую частицу действует сила .
Выберем элемент объёма и просуммируем силы, действующие на все частицы этого элемента объёма . Сила, действующая на все частицы в данном элементе объёма, определяется как плотность тока на магнитное поле и на величину элемента объёма. А теперь перепишем её в дифференциальном виде: , отсюда - это плотность силы, сила, действующая на единицу объёма. Тогда мы получим общую формулу для силы: .
Обычно ток течёт по линейным проводникам, редко мы сталкиваемся с случаями, когда ток размазан как-то по объёму. Хотя, между прочим, Земля имеет магнитное поле, а от чего это поле? Источник поля это магнитный момент, это означает, что Земля обладает магнитным моментом. А это означает, что тот рецепт для магнитного момента показывает, что должны быть какие-то токи внутри Земли, они по необходимости должны быть замкнутыми, потому что не может быть стационарного разомкнутого поля. Откуда эти токи, что их поддерживает? Я не специалист в земном магнетизме. Какое-то время назад определённой модели этих токов ещё не было. Они могли быть там когда-то индуцированы и ещё не успели там затухнуть. На самом деле, ток можно возбудить в проводнике, и потом он быстро сам кончается за счёт поглощения энергии, выделения тепла и прочего. Но, когда мы имеем дело с такими объёмами как Земля, то там время затухания этих токов, однажды каким-то механизмом возбуждённых, это время затухания может быть очень длительным и длиться геологические эпохи. Может быть, так оно и есть. Ну, скажем, мелкий объект типа Луны имеет очень слабое магнитное поле, это означает, что оно затухло там уже, скажем, магнитное поле Марса тоже значительно слабее поля Земли, потому что и марс меньше Земли. Это я к чему? Конечно, есть случаи, когда токи текут в объёмах, но то, что мы здесь на Земле имеем это обычно линейные проводники, поэтому эту формулу сейчас трансформируем применительно к линейному проводнику.
Пусть имеется линейный проводник, ток течёт с силой A. Выберем элемент проводника , объём этого элемента dV, , . Сила, действующая на элемент проводника перпендикулярна плоскости треугольника, построенного на векторах и , то есть направлена перпендикулярно к проводнику, а полная сила находится суммированием. Вот, две формулы решают эту задачу.
Магнитный момент во внешнем поле
Магнитный момент сам создаёт поле, сейчас мы собственное его поле не рассматриваем, а нас интересует, как ведёт себя магнитный момент, помещённый во внешнее магнитное поле. На магнитный момент действует момент силы, равный . Момент силы будет направлен перпендикулярно к доске, и этот момент будет стремиться развернуть магнитный момент вдоль силовой линии. Почему стрелка компаса показывает на северный полюс? Ей, конечно, нет дела до географического полюса Земли, стрелка компаса ориентируется вдоль силовой линии магнитного поля, которая, в силу случайных причин, кстати, направлена примерно по меридиану. За счёт чего? А на неё действует момент. Когда стрелка, магнитный момент, совпадающий по направлению с самой стрелкой, не совпадает с силовой линией, появляется момент, разворачивающий её вдоль этой линии. Откуда у стрелки компаса берётся магнитный момент, это мы ещё обсудим.
Кроме того, на магнитный момент действует сила , равная . Если магнитный момент направлен вдоль , то сила втягивает магнитный момент в область с большей индукцией. Эти формулы похожи на то, как действует электрическое поле на дипольный момент, там тоже дипольный момент ориентируется вдоль поля и втягивается в область с большей напряжённостью. Теперь мы можем рассмотреть вопрос о магнитном поле в веществе.
Магнитное поле в веществе
Атомы могут обладать магнитными моментами. Магнитные моменты атомов связаны с моментом импульса электронов. Уже была получена формула , где - момент импульса частицы создающей ток. В атоме мы имеем положительное ядро и электрон е, вращающийся по орбите, на самом деле, в своё время мы увидим, что эта картина не имеет отношения к реальности, так нельзя представлять электрон, который вращается, но остаётся то, что электрон в атоме обладает моментом импульса, и этому моменту импульса будет отвечать такой магнитный момент: . Наглядно, заряд, вращающийся по окружности, эквивалентен круговому току, то есть это элементарный виток с током. Момент импульса электрона в атоме квантуется, то есть может принимать только определённые значения, вот по такому рецепту: , , где вот эта величина - это постоянная Планка. Момент импульса электрона в атоме может принимать лишь определённые значения, мы сейчас не будем обсуждать, как это получается. Ну, и вследствие этого магнитный момент атома может принимать определённые значения. Эти детали нас сейчас не волнуют, но, по крайней мере, будем представлять, что атом может обладать определённым магнитным моментом, есть атомы, у которых нет магнитного момента. Тогда вещество, помещённое во внешнее поле намагничивается, а это означает, что оно приобретает определённый магнитный момент вследствие того, что магнитные моменты атомов ориентируются преимущественно вдоль поля.
Элемент объёма dV приобретает магнитный момент , при чём вектор имеет смысл плотности магнитного момента и называется вектором намагничивания. Имеется класс веществ, называемых парамагнетики, для которых , намагничивается так, что магнитный момент совпадает с направлением магнитного поля. Имеются диамагнетики, которые намагничиваются, так сказать, "против шерсти", то есть магнитный момент антипараллелен вектору , значит, . Это более тонкий термин. То, что вектор параллелен вектору понятно, магнитный момент атома ориентируется вдоль магнитного поля. Диамагнетизм связан с другим: если атом не обладает магнитным моментом, то во внешнем магнитном поле он приобретает магнитный момент, при чём магнитный момент антипараллелен . Этот очень тонкий эффект связан с тем, что магнитное поле влияет на плоскости орбит электронов, то есть оно влияет на поведение момента импульса. Парамагнетик втягивается в магнитное поле, диамагнетик выталкивается. Вот, чтобы это не было беспредметно, медь - это диамагнетик, и алюминий - парамагнетик, если взять магнит то алюминиевая лепёшка будет притягиваться магнитом, а тогда медная будет отталкиваться.
Понятно, что результирующее поле, когда вещество внесено в магнитное поле, это есть сумма внешнего поля и поля, создаваемого за счёт магнитного момента вещества. Теперь обратимся к уравнению , или в дифференциальной форме . Теперь такое утверждение: намагничивание вещества эквивалентно наведению в нём тока с плотностью . Тогда это уравнение мы напишем в виде .
Проверим размерность: М - это магнитный момент в единице объёма , размерность . Когда вы пишете какую-нибудь формулу, то размерность всегда полезно проверять, особенно если формула эта собственной выводки, то есть вы её не срисовали, не запомнили, а получили.