<< Пред.           стр. 5 (из 7)           След. >>

Список литературы по разделу

  3. Нерастворимые примеси O, S, Se, Tl присутствуют в меди и ее сплавах в виде промежуточных фаз, которые образуют с медью эвтектики с высокой температурой плавления и не вызывают красноломкости. Кислород при отжиге меди в водороде вызывает "водородную болезнь", которая может привести к разрушению металла при обработке давлением или эксплуатации готовых деталей.
  Механические свойства меди в большой степени зависят от ее состояния и в меньшей от содержания примесей. Высокая пластичность чистой отожженной меди объясняется большим количеством плоскостей скольжения. Холодная пластическая деформация (достигающая 90% и более) увеличивает прочность, твердость, предел упругости меди, но снижает пластичность и электрическую проводимость. При пластической деформации возникает текстура, вызывающая анизотропию механических свойств меди. По электропроводимости и теплопроводности медь занимает второе место после серебра. Она применяется для проводников электрического тока и различных теплообменников, водоохлаждаемых изложниц, поддонов, кристаллизаторов.
  Недостатки меди: высокая плотность, плохая обрабатываемость резанием и низкая жидкотекучесть.
  Общая характеристика и классификация медных сплавов. Сохраняя положительные качества меди (высокие теплопроводность и электропроводимость, коррозионную стойкость и др.), медные сплавы обладают хорошими механическими, технологическими и антифрикционными свойствами.
  Для легирования медных сплавов в основном используют элементы, растворимые в Cu, Zn, Sn, Al, Be, Si, Mn, Ni. Повышая прочность медных сплавов, легирующие элементы практически не снижают, а некоторые из них (Zn, Sn, Al) увеличивают пластичность. Высокая пластичность - отличительная особенность медных сплавов. По прочности медные сплавы уступают сталям.
  По технологическим свойствам медные сплавы подразделяют на деформируемые (обрабатываемые давлением) и литейные; по способности упрочняться с помощью термической обработки - на упрочняемые и неупрочняемые. По химическому составу медные сплавы подразделяют на две основные группы: латуни и бронзы.
  Латунями называются сплавы меди с цинком. Они бывают двойными (простые) и многокомпонентными (легированные). Двойные деформируемые латуни маркируются буквой Л (латунь) и цифрой, показывающей среднее содержание меди в процентах. Латуни с содержанием 90% Cu и более называются томпаком (Л96), при 80 - 85%Cu - полутомпаком (Л80). В марках легированных латуней кроме цифры, показывающей содержание меди, даются буквы и цифры, обозначающие название и количество в процентах легирующих элементов. Алюминий в медных сплавах обозначают буквой А, никель-Н, олово-О, свинец-С, фосфор-Ф, железо-Ж, кремний-К, марганец-Мц, бериллий-Б, цинк-Ц. Например, ЛАН59-3-2 содержит 59%Cu, 3% Аl, 2% Ni. В марках литейных латуней указывается содержание цинка, а количество каждого легирующего элемента ставится непосредственно за буквой, обозначающей его название. Например, ЛЦ40МцЗА содержит 40% Zn, 3% Mn, 1% Al.
  Бронзами называются сплавы меди со всеми элементами кроме цинка. Название бронзам дают по основным элементам. Так, их подразделяют на оловянные, алюминиевые, бериллиевые, кремнистые и др. В бронзах в качестве легирующей добавки может присутствовать цинк. Деформируемые бронзы маркируют буквами Бр (бронза), за которыми следуют буквы, а затем цифры, обозначающие название и содержание в процентах легирующих элементов. Например, БрОЦС4-4-2,5 содержит 4% Sn, 4 % Zn, 2,5 % Pb. Сплавы меди с никелем имеют названия: мельхиоры, куниали, нейзильберы. В марках литейных бронз содержание каждого легирующего элемента ставится сразу после буквы, обозначающей его название. Например, БрО6Ц6СЗ содержит 6% Sn, 6% Zn, 3% Pb.
 
 Свойства промышленных латуней, обрабатываемых давлением
 
  Латунь Массовая доля, % ?в ?0,2 ?,% HB Cu Прочих элементов MПа Л90
 Л68
 Л63
 Л 60
 ЛА77-2
 ЛАН59-3-2
 
 ЛН65-5 ЛЖМц59- 1-1
 
 
 
 ЛМц58-2
 ЛО70-1
 ЛС59-1
 ЛК80-3 88-91
 67-70
 62-65
 59-62
 76-79
 57-60
 
 64-67
 57-60
 
 
 
 57-60
 69-71
 57-60
 79-81 -
 -
 -
 -
 1,75-2,5 А1
 2,5-3,5 А1
 2-3 Ni
 5-6,5 Ni
 0,1-0,4 Al
 0,6-1,2 Fe
 0,5-0,8 Mn
 0,3-0,7 Sn
 1-2 Mn
 1-1,5 Sn
 0,8-1,9 Pb
 2,5-4 Si 260
 320
 330
 380
 400
 380
 
 400
 450
 
 
 
 400
 350
 400
 300 120
 91
 110
 160
 140
 300
 
 170
 170
 
 
 
 160
 100
 140
 200 45
 55
 50
 25
 55
 50
 
 65
 50
 
 
 
 40
 60
 45
 58 530
 550
 560
 770
 600
 750
 
 600
 880
 
 
 
 850
 600
 900
 1000
 
 
 
 
  Сплавы на основе алюминия
  Свойства алюминия. Алюминий - металл серебристо-белого цвета. Он не имеет полиморфных превращений и кристаллизируется в решетке гранецентрированного куба.
  Алюминий обладает малой плотностью, хорошими теплопроводностью и электропроводимостью, высокой пластичностью и коррозионной стойкостью. Примеси ухудшают все эти свойства.
  Постоянные примеси алюминия Fe, Si, Cu, Zn, Ti. В зависимости от содержания примесей первичный алюминий подразделяют на три класса: особой чистоты А999 (?0,001% примесей), высокой чистоты А995, А99, А97, А95 (0,005-0,05% примесей) и технической чистоты А85, А8 и др. (0,15-1% примесей). Технический алюминий, выпускаемый в виде деформируемого полуфабриката (листы, профили, прутки и др.), маркируют АД0 и АД1. Механические свойства алюминия зависят от его чистоты и состояния. Увеличение содержания примесей и пластическая деформация повышают прочность и твердость алюминия. Ввиду низкой прочности алюминий применяют для ненагруженных деталей и элементов конструкций, когда от материала требуется легкость, свариваемость, пластичность. Так, из него изготовляют рамы, двери, трубопроводы, фольгу, цистерны для перевозки нефти и нефтепродуктов, посуду и др. Благодаря высокой теплопроводности он используется для различных теплообменников, в промышленных и бытовых холодильниках. Высокая электропроводимость алюминия способствует его широкому применению для конденсаторов, проводов, кабелей, шин и др.
 
 Механические свойства алюминия
 
 Марка Сумма примесей, %
 Состояние ?в ?0,2 ?,%
 
 HB MПа
 А995
 А5
 АО
 0,005
 0.5
 1 Литой
 Литой
 Литой
 Деформированный и отожженный
 Деформированный 50 75 90 90
 
 140 -
 -
 -
 30
 
 100 45
 29
 25
 30
 
 12 150 200
 250
 250
 
 320
  Из других свойств алюминия следует отметить его высокую отражательную способность, в связи с чем он используется для прожекторов, рефлекторов, экранов телевизоров. Алюминий имеет малое эффективное поперечное сечение захвата нейтронов. Он хорошо обрабатывается давлением, сваривается газовой и контактной сваркой, но плохо обрабатывается резанием. Алюминий имеет большую усадку затвердевания. Высокая теплота плавления и теплоемкость способствуют медленному остыванию алюминия из жидкого состояния, что дает возможность улучшать отливки из алюминия и его сплавов путем модифицирования, рафинирования и других технологических операций.
  Общая характеристика и классификация алюминиевых сплавов. Алюминиевые сплавы характеризуют высокой удельной прочностью, способностью сопротивляться инерционным и динамическим нагрузкам, хорошей технологичностью. Временное сопротивление алюминиевых сплавов достигает 500 - 700 МПа при плотности не более 2850 кг/м3. По удельной прочности некоторые алюминиевые сплавы приближаются или соответствуют высокопрочным сталям. Большинство алюминиевых сплавов имеют хорошую коррозионную стойкость (за исключением сплавов с медью), высокие теплопроводность и электропроводимость и хорошие технологические свойства (обрабатываются давлением, свариваются точечной сваркой, а специальные - сваркой плавлением, в основном хорошо обрабатываются резанием). Алюминиевые сплавы пластичнее магниевых и многих пластмасс. Большинство из них превосходят магниевые сплавы по коррозионной стойкости, пластмассы - по стабильности свойств.
  Основными легирующими элементами алюминиевых сплавов являются Cu, Mg, Si, Mn, Zn; реже-Li, Ni, Ti. Многие легирующие элементы образуют с алюминием твердые растворы ограниченной переменной растворимости и промежуточные фазы. Это дает возможность подвергать сплавы упрочняющей термической обработке. Она состоит из закалки на пересыщенный твердый раствор и естественного или искусственного старения.
  Легирующие элементы, особенно переходные, повышают температуру рекристаллизации алюминия. При кристаллизации они образуют с алюминием пересыщенные твердые растворы. В процессе гомогенизации и горячей обработки давлением происходит распад твердых растворов с образованием тонкодисперсных частиц интерметаллидных фаз, препятствующих прохождению процессов рекристаллизации и упрочняющих сплавы. Это явление получило название структурного упрочнения, а применительно к прессованным полуфабрикатам - пресс-эффекта. По этой причине некоторые алюминиевые сплавы имеют температуру рекристаллизации выше температуры закалки. Для снятия остаточных напряжений в нагартованных полуфабрикатах (деталях), полученных холодной обработкой давлением, а также в фасонных отливках проводят низкий отжиг.
  Конструкционная прочность алюминиевых сплавов зависит от примесей Fe и Si. Они образуют в сплавах нерастворимые в твердом растворе фазы. Независимо от формы (пластинчатой, игольчатой и др.) кристаллы этих фаз снижают пластичность, вязкость разрушения, сопротивление развитию трещин. Легирование сплавов марганцем уменьшает вредное влияние примесей, так как он связывает их в четвертую фазу, кристаллизирующуюся в компактной форме. Однако более эффективным способом повышения конструкционной прочности является снижение содержания примесей с 0,5-0,7% до 0,1-0,3% (чистый сплав), а иногда и до сотых долей процента (сплав повышенной чистоты). В первом случае к марке сплава добавляют букву Ч, например, Д16Ч, во втором-ПЧ, например, В95ПЧ. Особенно значительно повышаются характеристики пластичности и вязкости разрушения в направлении, перпендикулярном пластической деформации.
  Алюминиевые сплавы классифицируют по технологии изготовления (деформируемые, литейные, спеченные), способности к термической обработке (упрочняемые и неупрочняемые) и свойствам.
  Сплавы на основе магния
  Свойства магния. Магний-металл серебристо-белого цвета. Он не имеет полиморфных превращений и кристаллизуется в плотноупакованной гексагональной решетке.
  Магний и его сплавы отличаются низкой плотностью, хорошей обрабатываемостью резанием и способностью воспринимать ударные и гасить вибрационные нагрузки. Теплопроводность магния в 1,5, а электропроводимость - в 2 раза ниже, чем у алюминия. Примерно в 1,5 раза меньше, чем у алюминия, и его модуль нормальной упругости. Однако они близки по удельной жесткости. В зависимости от содержания примесей установлены следующие марки магния (ГОСТ 804-72): Мг96 (99,96% Mg), Мг95 (99,95% Mg), Мг90 (99,90% Mg). Примеси Fe, Si, Ni, Си понижают и без того низкие пластичность и коррозионную стойкость. При нагреве магний активно окисляется и при температуре выше 623°С на воздухе воспламеняется. Это затрудняет плавку и разливку магния и его сплавов. Порошок, тонкая лента, мелкая стружка магния представляют большую опасность, так как самовозгораются на воздухе при обычных температурах, горят с выделением большого количества теплоты и излучением ослепительно яркого света.
  Общая характеристика и классификация магниевых сплавов. Достоинством магниевых сплавов является высокая удельная прочность. Временное сопротивление отдельных сплавов достигает 250-400 МПа. Основными легирующими элементами магниевых сплавов являются Al, Zn, Mn. Для дополнительного легирования используют цирконий, кадмий, церий, ниодим и др. Механические свойства сплавов магния при температуре 20-25°С улучшаются при легировании алюминием, цинком, цирконием. Цирконий и церий оказывают модифицирующее действие на структуру сплавов магния. Особенно эффективно модифицирует цирконий. Добавка 0,5-0,7% Zr уменьшает размер зерна магния в 80-100 раз. Это объясняется структурным и размерным соответствием кристаллических решеток. Кроме того, цирконий и марганец способствуют устранению или значительному уменьшению влияния примесей железа и никеля на свойства сплавов. Они образуют с этими элементами промежуточные фазы большой плотности, которые при кристаллизации выпадают на дно тигля, очищая тем самым сплавы от вредных примесей.
  Увеличение растворимости легирующих элементов в магнии с повышением температуры дает возможность упрочнять магниевые сплавы с помощью закалки и искусственного старения. Однако термическая обработка магниевых сплавов затруднена из-за замедленных диффузионных процессов в магниевом твердом растворе. Малая скорость диффузии требует больших выдержек при нагреве под закалку для растворения вторичных фаз. Благодаря этому такие сплавы можно закаливать на воздухе, они не склонны к естественному старению. При искусственном старении необходимы высокие температуры (до 200° С) и большие выдержки (до 16-24 ч). Наибольшее упрочнение термической обработкой достигается у сплавов магния, легированных неодимом.
  Временное сопротивление и особенно предел текучести магниевых сплавов значительно повышаются с помощью термомеханической обработки, которая состоит в пластической деформации закаленного сплава перед его старением.
  Из других видов термической обработки к магниевым сплавам применимы различные виды отжига: гомогенизация, рекристаллизационный отжиг и отжиг для снятия остаточных напряжений. Для деформируемых сплавов диффузионный отжиг совмещают с нагревом для горячей обработки давлением. Температура рекристаллизации магниевых сплавов в зависимости от их состава находится в интервале 150-300°С, а рекристаллизационного отжига - соответственно в интервале 250-350 °С. Более высокие температуры вызывают рост зерна и понижение механических свойств. Отжиг для снятия остаточных напряжений проводят при температурах ниже температур рекристаллизации.
  Магниевые сплавы хорошо обрабатываются резанием (лучше, чем стали, алюминиевые и медные сплавы), легко шлифуются и полируются. Высокие скорости резания и небольшой расход энергии способствуют снижению стоимости обработки резанием деталей из магниевых сплавов по сравнению с другими сплавами. Они удовлетворительно свариваются контактной роликовой и дуговой сваркой. Прочность сварных швов деформируемых сплавов составляет 90% от прочности основного металла.
  К недостаткам магниевых сплавов, наряду с низкой коррозионной стойкостью и малым модулем упругости, следует отнести плохие литейные свойства, склонность к газонасыщению, окислению и воспламенению при их приготовлении. Небольшие добавки бериллия (0,02-0,05%) уменьшают склонность к окисляемости, кальция (до 0,2%) - к образованию микрорыхлот в отливках. Плавку и разливку магниевых сплавов ведут под специальными флюсами.
  По технологии изготовления магниевые сплавы подразделяют на литейные (МЛ) и деформируемые (МА); по механическим свойствам-на сплавы невысокой и средней прочности, высокопрочные и жаропрочные; по склонности к упрочнению с помощью термической обработки-на сплавы, упрочняемые и неупрочняемые термической обработкой. Для повышения пластичности магниевых сплавов их производят с пониженным содержанием вредных примесей Fe, Ni, Си (повышенной чистоты). В этом случае к марке сплава добавляют строчные буквы "пч", например, МЛ5пч или МА2пч.
 
 
 
 
  Титан и сплавы на его основе
  Свойства титана. Титан-металл серого цвета. Он имеет две полиморфные модификации. Полиморфное превращение (882 °С) при медленном охлаждении происходит по нормальному механизму с образованием полиэдрической структуры, а при быстром охлаждении - по мартенситному механизму с образованием игольчатой структуры.
  Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим ее восстановлением из четыреххлористого титана металлическим магнием. Полученную при этом титановую губку маркируют по твердости специально, выплавленных из нее образцов (ТГ-100, ТГ-110 и т. д.). Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.
  Для уменьшения количества примесей и более равномерного их распределения по сечению слитка рекомендуется его двух-трехразовая переплавка. Характерную для титановых слитков крупнозернистую структуру измельчают путем модифицирования цирконием или бором. Полученный в результате переплава технический титан маркируют в зависимости от содержания примесей ВТ1-00 (? примесей ? 0,398%), ВТ1-0 (? примесей ?0,55%).
 
 Механические свойства иодидного и технического титана
 
 Титан Сумма
 примесей, % ?в ?0,2 ? ? HB МПа % ВТ1-0 Иодидный 0,3
 0,093 450-600 250-300 380-500 100-150 20-25 50-60 50
 70-80 2070 1300
  Отличительными особенностями титана являются хорошие механические свойства, малая плотность, высокая удельная прочность и коррозионная стойкость. Низкий модуль упругости титана, почти в 2 раза меньший, чем у железа и никеля, затрудняет изготовление жестких конструкций. Механические свойства титана характеризуются хорошим сочетанием прочности и пластичности.
  Высокая пластичность иодидного титана по сравнению с другими металлами, имеющими гексагональную кристаллическую решетку (Zn, Cd, Mg), объясняется большим количеством систем скольжения и двойникования.
  Механические свойства титана сильно зависят от наличия примесей, особенно водорода, кислорода, азота и углерода, которые образуют с титаном твердые растворы внедрения и промежуточные фазы: гидриды, оксиды, нитриды и карбиды. Небольшое количество кислорода, азота и углерода повышает твердость, временное сопротивление и предел текучести, однако при этом значительно уменьшается пластичность, снижается коррозионная стойкость, ухудшаются свариваемость, способность к пайке и штампуемость. Поэтому содержание этих примесей в титане ограничено сотыми, а иногда тысячными долями процента. Аналогичным образом, но в меньшей степени, оказывают влияние на свойства титана железо и кремний. Очень вредная примесь в титане - водород. Присутствуя в весьма незначительном количестве, водород выделяется в виде тонких хрупких пластин гидридной фазы на границах зерен, что значительно охрупчивает титан. Водородная хрупкость наиболее опасна в сварных конструкциях из-за наличия в них внутренних напряжений. Допустимое содержание водорода в техническом титане находится в пределах 0,008-0,012%.
  Технический титан хорошо обрабатывается давлением. Из него изготовляют все виды прессованного и катаного полуфабриката: листы, трубы, проволоку, поковки. Титан хорошо сваривается аргонодуговой и точечной сваркой. Сварной шов обладает хорошим сочетанием прочности и пластичности. Прочность шва составляет 90% прочности основного металла.
  Титан плохо обрабатывается резанием, налипает на инструмент, в результате чего тот быстро изнашивается. Для обработки титана требуются инструменты из быстрорежущей стали и твердых сплавов, малые скорости резания при большой подаче и глубине резания, интенсивное охлаждение. К недостатку титана относятся также низкие антифрикционные свойства.
  Влияние легирующих элементов на структуру и свойства титановых сплавов. Легирующие элементы по характеру влияния на полиморфные превращения титана подразделяют на три группы: ?-стабилизаторы, ?-стабилизаторы и нейтральные элементы. Практическое значение для легирования титана имеет только алюминий, так как кислород и азот сильно охрупчивают титановые сплавы.
  Алюминий - широко распространенный, доступный и дешевый металл. Введение его в титановые сплавы уменьшает их плотность и склонность к водородной хрупкости, повышает модуль упругости, прочность при 20-25°С и высоких температурах.
  Добавка к сплавам титана с алюминием таких ?-стабилизаторов, как V, Mo, Mb, Mn, уменьшает склонность к образованию упорядоченной структуры (сверхструктуры). Снижая температуру полиморфного превращения титана, ?-стабилизаторы расширяют область твердых растворов на основе Ti?.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Лекция 10
 Органические полимеры
 
  Органическими называют обширный класс веществ, содержащих в своей основе углерод. Кроме углерода в этих веществах содержится обычно водород, кислород, азот, сера, фосфор. Соединения, в которых содержатся также и другие элементы, называют элементоорганическими. Органические вещества обладают молекулярной структурой, т. е. состоят из отдельных молекул, внутри которых атомы связаны преимущественно весьма прочными ковалентными связями. Между собой молекулы связаны сравнительно слабыми поляризационными силами.
  Большинство органических веществ не содержит свободных электронов и ионов, поэтому они являются диэлектриками. Так как силы поляризационной связи между отдельными молекулами невелики, то органические вещества с малой молекулярной массой являются при обычной температуре газами или жидкостями. Вещества с более высокой молекулярной массой являются твердыми уже при обычной температуре.
  Ввиду поляризационного характера связи, обусловливающего большие расстояния между молекулами, и малого атомного веса элементов, образующих органические соединения, они отличаются невысоким удельным весом. Поляризационный характер связи определяет также невысокую механическую прочность. Органические вещества сравнительно легкоплавки и за некоторыми исключениями отличаются низкой нагревостойкостью. Подавляющее большинство из них горючи. Легкое горение органических веществ объясняется тем, что связи атомов углерода между собой и с водородом в молекулах органических веществ значительно менее прочным, чем связи углерода и водорода с кислородом. Поэтому при реакциях окисления выделяется большое количество тепла, которое разлагает органические вещества перед горением, облегчая их реакцию с кислородом. Горению органических веществ благоприятствует и то, что конечные продукты их окисления - газы легко удаляются от очага горения и не препятствуют его развитию.
  Легкая горючесть большинства органических материалов является их существенным недостатком. Однако в последнее время получен ряд плохо горючих или негорючих элементоорганических соединений. Так, замена водорода органических веществ фтором практически полностью препятствует их воспламенению или горению. Хлор, вводимый в больших количествах в органические вещества, также препятствует их горению и гасит пламя, обрывая развитие цепных реакций горения. Существенно затрудняется горючесть и при образовании кремнийорганических соединений. Различия в свойствах отдельных органических веществ объясняются различиями в их составе и строении.
  Особенно широкое распространение в качестве электроизоляционных материалов получили полимеры.
  По происхождению полимеры могут быть природными материалами (целлюлоза, натуральный каучук, янтарь и др.) или синтетическими продуктами (бакелит, полистирол, полиэтилен и др.). Они приобретают все возрастающее значение в технике и быту благодаря удачному сочетанию многих важных качеств, особенно у новых синтетических высокополимеров. Часто они отличаются высокими электроизоляционными свойствами в широком диапазоне рабочих напряжений и частот (вплоть до СВЧ), при высокой влажности окружающей среды и в широком интервале рабочих температур. Они обладают также хорошими тепло- и звукоизоляционными свойствами. Как правило, не подвержены коррозии, гниению и во многих случаях отличаются высокой химической стойкостью.
  Ввиду малой плотности, сочетающейся с достаточной прочностью, на основе полимеров можно получить материалы (пластмассы, ткани) с высокой удельной прочностью. Многие полимеры отличаются ценными специальными свойствами: прозрачностью, радиопрозрачностью, диамагнетизмом, антифрикционными свойствами, высокой эластичностью и т. д.
  Большинство полимеров легко поддаются различным видам технологической обработки (литье, прессование, вытяжка, обработка резанием, распыление и т. д.) и на их основе производят весьма разнообразные по свойствам продукты: пластмассы и резины, электроизоляционные лаки и лакокрасочные материалы, клеи, компаунды, волокнистые и пленочные материалы. Они находят широкое применение в промышленности и в быту.
  Большинство полимеров может быть получено из дешевого сырья - природных и попутных газов нефтедобычи и переработки нефти, угля в сочетании с водой и воздухом. Поэтому производство полимерных материалов развивается быстрыми темпами.
  По структуре полимеры делятся на линейные, линейно-разветвленные и сетчатые: аморфные, кристаллитные и кристаллитно-ориентированные.
 
 
  Основные виды полимерных молекул и структур полимерных материалов. Молекулы - линейные (а), разветвленные (б), сетчатые (в); структуры - аморфные (г), кристаллитные (3), кристаллитно-ориентированные (е).
 
  Старение полимеров
  Недостатком многих полимерных материалов, проявляющимся при эксплуатации, является изменение их размеров и свойств, называемое старением. Старение связано с физико-химическими превращениями, происходящими во многих полимерах в процессе работы, особенно при нагреве, механическом истирании, радиационном облучении и т. п.
  Процессы превращения в зависимости от природы материала и действующих факторов могут быть весьма различными. Чаще всего это деструкция - реакция, протекающая с разрывом химической связи в главной цепи макромолекулы и образованием продуктов более низкого молекулярного веса. В зависимости от основной причины, вызвавшей ее, различают: термодеструкцию, механодеструкцию, фотохимическую и химическую, в частности окислительную, деструкции. Особенно склонны к процессам окислительной деструкции полиолефины.
 
  Дополнительные компоненты полимерных композиций
  Полимерные материалы: пластические массы, пленки и волокна, лаки, компаунды, клеи, герметики, резины и т. д. редко состоят из одного полимера. Для улучшения их функциональных качеств они представляют собою обычно композиции из различных полимерных и неполимерных материалов, модифицирующих их свойства.
  Чаще всего такими дополнительными компонентами, содержащимися во многих полимерных материалах, являются: стабилизаторы, наполнители, пластификаторы, мягчители и смазки, красители, растворители, другие модификаторы (отверждающие агенты, присадки, сообщающие негорючесть, повышенную нагревостойкость и т. п.).
  Стабилизаторами называются вещества, добавляемые в большинство полимерных материалов (в количестве порядка десятых долей процента) для предотвращения реакций старения.
  Наполнители - это частицы различных материалов, добавляемые во многие полимерные композиции для сообщения им специальных свойств (повышения прочности, сообщения магнитных свойств, электропроводности, снижения звуко- и теплопроводности и т. д.) или для их удешевления. Наполнители могут быть газообразными, жидкими и твердыми. Чаще всего их применяют в виде газообразных или твердых включений в полимерную основу.
  Порошковые наполнители - древесная мука, окислы (ZnO, Ti02, SiO2), мел, каолин и другие. Они мало препятствуют растеканию пресспорошка в пресс-формах и позволяют получить дешевые изделия сложной конфигурации.
  Волокнистые наполнители - хлопчатобумажное, стеклянное, борное волокно, обрезки бумаги и ткани позволяют получать материалы в два и более раза прочнее, чем при порошковых наполнителях.
  Особенно высока прочность пластмасс (композиционных материалов) при применении в качестве наполнителей слоистых материалов ткани, шпона или стеклянных, длинных тонких волокон; волокон бора, графитовых нитей и т. п., уложенных оптимальным образом по отношению к действующим нагрузкам. Такие композиционные материалы обладают максимальной удельной прочностью, что значительно выше, чем у многих металлических материалов. Из них готовят напряженные элементы самолетов и двигателей (корпусы, роторы и лопатки компрессоров, обшивку самолетов и т. д.).
  Наполнение резин сажей или металлическими частицами придает им проводящие, а магнитными (например, ферритами) - магнитные свойства.
  Наполнение газами достигается вспениванием в процессе получения полимеров, введением твердых частиц - порофоров, выделяющих газы при нагреве в размягченный полимер. Иногда вспенивания достигают введением в полимер легкокипящих жидкостей.
  Пластификаторы - вещества, добавляемые в полимерные материалы для повышения эластичности и морозостойкости (снижения хрупкости), а также для снижения температуры переработки материалов в изделия. В некоторых случаях, например для эфиров целлюлозы, такая переработка горячим прессованием вообще была бы невозможна, ибо температура разложения непластифицированных продуктов лежит ниже их температуры размягчения.
  Смазки, часто вводимые в состав различных полимерных композиций, способствуют отлипу деталей металлического оборудования, применяемого при переработке полимерной композиции в изделия. В качестве смазок используют стеарин, стеараты, парафин и другие легкоплавкие вещества.
  Красители вводят в полимерные материалы для придания им красивого декоративного вида или в маркировочных целях. Растворимые в полимере красители нередко называются краской, нерастворимые - пигментами.
  Другие присадки. В полимерных материалах могут содержаться и другие, кроме перечисленных, присадки, придающие материалам специальные качества.
  Так, для уменьшения горючести композиций на основе горючих полимеров в них вводят 10-20% антипиренов - фосфорнокислый аммоний, трехокись сурьмы, хлорированный парафин или перхлорвинил и т. п.
  Для придания полимерным материалам антисептических свойств и стойкости против действия грибковой плесени и разрушающего действия насекомых к ним добавляют антисептики, фунгициды и инсектоциды. В качестве таких веществ нередко служат соли ртути и меди, а также другие ядовитые вещества. Эти присадки особенно часто добавляют в краски, изоляцию проводов и другие полимерные материалы, предназначенные для работы в тропическом климате.
  Неполярные и слабополярные термопласты
  Неполярными или слабополярными являются полимеры с симметричной структурой молекул или со слабополярными связями, например С-Н.