<< Пред.           стр. 4 (из 7)           След. >>

Список литературы по разделу

  19. Шалютин С.М. Искусственный интеллект. Гносеологический
  аспект. М., 1983.
  20. Интеллект человека и программы ЭВМ. М., 1971.
  21. Новая технократическая волна на Западе. М., 1989.
  22. Мелещенко Ю.С. Техника и закономерности её развития.
  Л., 1970.
  23. Волков Г.Н. Социология науки. М., 1968.
  24. Маркс К. Нищета философии // Маркс К. и Энгельс Ф. Соч.,
  т. 4.
  25. Абдеев Г.Ф. Философия информационной цивилизации. М.,
  1994.
  26. Осипов Г. В. Техника и общественный прогресс. М., 1959.
  27. Аристотель. Метафизика // Аристотель. Соч. в 40- томах,
  т.1. М., 1976.
  28. Гагарин Е.И. Из истории развития конструкции автомо -
  бильных двигателей // ВИЕиТ, 1959, вып. 7.
  29. Негодаев И.А. Основы философии техники. Ростов-на-Дону,
  1995.
  Глава 3.
  Техника как реализованное
  знание.
  Изложение предшествующего материала свидетельствует о двух ипостасях техники. С одной стороны техника выступает как специфический вид человеческой деятельности, с другой - как средство этой деятельности. В первом случае речь идет о технической деятельности, направленной на преобразование природных факторов в социально значимые. Эта деятельность невозможна без знаний, причем знаний особого рода - технических. Во втором случае речь идет о средствах человечески-преобразующей деятельности, т.е. об определенных технических средствах, артефактах. Их создание предполагает использование не только материальных факторов - вещества и энергии, но и знаний о способах проектирования, конструирования и функционирования этих артефактов. "В техническом прогрессе участвуют три основных элемента: знания, энергия и материалы, - писал Дж.Томсон-. От этих трех элементов зависит, насколько цивилизация может господствовать над природой. Знание, безусловно является главным их них; без него остальные два элемента бесполезны"(1,40).
  В создании современной техники знание - не единственный духовный фактор. Большую роль играет и интуиция, т.е. способность постигать истину не прибегая к рассуждениям на фоне огромного количества информации. Информации по сложным вопросам вокруг нас так много, что подчас вникнуть в нее нет никакой возможности. Надо поэтому научиться полагаться на интуицию, пишут Дж. Нейсбат и И. Эбедин и продолжают: "В этом и состоит основной вопрос информационного общества: перед нами море информации, но не хватает интеллекта, мыслительных способностей, чтобы рассортировать ее" (2.88). Не интуицией ли мы руководствуемся, когда работая на компьютере применяем "метод втыка"? Но в основном контакт оператора с компьютером основывается на большом круге знаний о программах, особенностях и возможностях ЭВМ. Знание в преобладающем большинстве случаев является духовным фактором как создания и функционирования артефактов, так и технической деятельности.
  По мере технического прогресса объем человеческих знаний , воплощаемых в технических средствах , возрастает. Техника выступает все в большей степени как реализованное или материализованное человеческое знание. Это обстоятельство лежит в русле общесоциологической закономерности возрастания рациональных форм деятельности по мере движения общественного прогресса от его низших ступеней к все более высшим.
  Следовательно, в каком бы аспекте мы не рассматривали технику - антропологическом, инструментальном или социальном техника всегда предстает как реализация человеческих знаний об объективном мире. "Технология", - пишет Дж. Грант,- не столько машины и инструментты, сколько то представление о мире, которое руководит нашим восприятием всего существующего" (3,155), т.е. определенная система знаний "Техника является не чем иным, как преодолением природы посредством человеческого сознания" - пишет Г. Рополь (4,217). При этом техника - это специфический вид знаний. "С первого взгляда techne представляется нам как особый род знания в противоположность другим родам знания, - пишет В.Шадевальд.- Techne- это такое знание и способность, которые направлены на производство и конструирование и таким образом занимают своего рода среднее положение между просто опытом или ноу-хау, empeireia и теоретическим знанием episeme" (4,99).Такую направленность техники как реализованого знания отмечает и К.Ясперс:"В качестве теории техника дает нам методы, целесообразные для достижения цели, т.е.такие, которые, во-первых, соответствуют данной вещи, во-вторых, позволяют не затрачивать лишних усилий и обращаться только к необходимому" (5,118).
  Рассматривая технику как реализованное или материализованное знание нужно иметь ввиду, что сам процесс этой реализации в различные исторические периоды имел свою специфику. Объясняется это не только тем, что содержание и структура знаний претерпевала существенные изменения в ходе истории - от примитивных знаний первобытного человека об окружающей еге природе до современных научных абстракций, но и тем, что, как уже было показано, не менее существенную эволюцию претерпела и техника как средство деятельности - от ручных каменных орудий до автоматов и компьютеров. Вполне естественно, что взаимоотношения знаний и техники в различные исторические периоды было неодинаковыми. Поэтому, выяснив происхождение, сущность и структуру человеческого знания и его главнейшей части - технического знания, мы проанализируем историю и логику взаимосвязи знания и техники, сделаем акцент на исследовании этой логики когда в общей сумме используемого в технике человеческого знания преобладающее место занимает научное знание что привело к современной НТР.
 
 
  1. Знание - феномен человеческой
  деятельности.
  Проблема знания - не новая. Она всегда была предметом внимания философии. Но как всякая традиционная проблема она каждый раз высвечивает свои новые аспекты, требует нового подхода и переосмысления. По мере возрастания роли знаний в практической деятельности людей, накопления огромного и все возрастающего количества знаний, усложнения его структуры возникает необходимость осознания того, что такое знание, каково его происхождение, природа, формы и законы развития, средства получения и т.д.
  Знание - одно из центральных проблем философии. Исследование знания составляет важнейшую задачу философии, вечную проблему философского знания. "Проблема знания не новая, - пишет Н.К.Вахтомин. - Она всегда была и остается предметом изучения философской науки. Уже у самих истоков философии, когда ум человеческий обратился к изучению самого себя, появился такой элемент познания, как знание" (6,3).
  Еще на заре философии знание стало объектом внимания мыслителей. В древнеиндийской и древнекитайской философии содержатся попытки выявления природы знания и ее практической пользы. Индийский философ и поэт 7 века Бхартрихари писал:
  "Знанье - краса величайшая в людях!
  Радость с собой несет оно, счастье и славу!
  Помощь окажет оно на чужбине,
  Знание выше богатства, сильней всех богов!
  Даже цари признают превосходство науки!
  Тот же, кто знанья лишен,
  Тот прозябает как зверь!" (7, 176).
  Не обошла вниманием проблему знания и античная философия. Платон утверждал, что знание есть вместе с тем и незнание , борьба между ними опосредуется мнением, которое вытекает из эмпирического знания тогда как научное знание связано с теоретическим мышлением. Аристотель, отметив стремление людей к овладению знанием, отмечает, что "действительное знание тождественно с предметом познаваемым" (7,458).
  В средневековой философии истинное знание относили к сфере божественного промысла. Новое время отделило сферу знания от веры и объявило знание силой. Акцентируя внимание на опытном происхождении знания, Ф.Бэкон писал, что "знание и могущество человека совпадают, ибо незнание причины затрудняет действие" (8,12). Эту же мысль высказывает Гольбах : "С ростом знаний человека растут его силы и его орудия; наука, искусства, ремесла оказывают ему свою помощь; опыт делает его более уверенным, помогая ему оказывать сопротивление многим явлениям, перестающим пугать его, лишь только он познает их"(9,685). Выявлению природы знания посвящены многие работы немецкой классической философии. Не обошла вниманием проблема знания и марксистская философия. Заслуживает внимания определение знания К.Марксом: "Способ, каким существует сознание и каким нечто существует для него, это - знание"(10,633). Следовательно, по Марксу, знание это способ существования сознания.
  Справедливости ради заметим, что определение знания К.Марксом является не совсем корректным по следующему сображению. Безусловно, сознание проявляется как знание. Но знание - не единственная форма проявления сознания, которое может выступать еще и в виде эмоций, чувств, воли. Поэтому сознание является более широким феноменом чем знание и , следовательно, знание - одна из форм или видов существования сознания.
  Понятие "знание" относится к широко употребляемым в науке и практике. Существует множество определеий этого понятия. Знание определяется как воспроизведение реальности в чувственых и умственных образах и понятиях (М.Г.Ярошевский), как субъективный образ объективного мира (Ф.И.Георгиев), как идеальное воспроизведение в языковой форме объективных закономерных связей практически преобразуемого материального мира (Ю.Н.Тендряков), как теоретическое овладение объектом и предпосылка практической деятельности человека (П.В.Копнин) и др. В словарях руского языка знание определяется также неоднозначно: как деятельность сознания, результат этой деятельности, состояние знающего что-нибудь субъекта, совокупность сведений.
  Несмотря на разнообразие этих определений все они отражают две характерные черты знания. Первая из них состоит в том, что знания являются результатом познания, адэкватным отражением реальности. Вторая заключена в том, что знания добываются в процессе практически преобразующей деятельности человека и служат в свою очередь этой деятельности.
  Для понимания природы и сущности человеческого знания необходимо обратиться к его источику - человеческой практике, труду. Знание- необходимая предпосылка труда, потому что труд включает в себя не только материальную, но и идеальную деятельность. Идеальная деятельность при этом предшествует материальной. Знание есть результат идеальной деятельности, духовного производства, идеального отражения объективной реальности в процессе человеческой практики.
  Знание возникает в предметной деятельности, в результате взаимодействия субъекта и объекта. Основной принцип этого взаимодействия - принцип единства мышления и бытия. Этот принцип выражается в адекватности действий субъекта объекту, поскольку знание - отражение предмета имеющего социальную обусловленность своего существования. "Знание возникает не только под воздействием субъекта на объект, на возникновение знания оказывает влияние весь предшествующий опыт субъекта, который выражается в категориях, - пишет Н.И.Вахтомин. - Именно поэтому знание - синтез объективного и субъективного, предметного и идеального"(6,128).
  В ходе своей практики люди вступают в субъектно-объектные отношения которые и порождают знание. "Всякое знание основано на совпадении объективного и субъективного,-писал Ф.Шеллинг.- Ибо знают только истинное; истина же состоит в совпадении представлений с соответствующими им предметами"(11,232).
  Иногда обращают внимание на то, что знание нельзя отождествлять с истиной поскольку де всякая истина есть знание, но не всякое знание - истина. "Знание может неадекватно отражать предмет и поэтому не будет истиной"- пишет Н.К.Вахтомин (6,127). Это мнение он обосновывает тем, что всякое эмпирическое знание отражает явление, которое не обязательно совпадает с сущностью и поэтому может быть истинным или не истинным. Мы полагаем, что здесь допущена неточность: знание отождествляется с незнанием. В действительности любое знание так или иначе представляет собой субъективное восприятие абсолютной истины в ее относительном проявлении, относительной истины, содержащей в себе частицу истины абсолютной. Адекватность знания тому или иному предмету или процессу объективного мира есть его необходимый признак. Однако степень адекватности может быть различной.
  Безусловно, изучение знания имеет определенные трудности и особенности. Они вытекают не только из того, что, что термин "знание" употребляется в различных значениях, но и из того, что знание само по себе не существует вне человека, стремящегося к его изучению. В этом случае человек использует определенную систему знания для познания знания. Это обстоятельство позволяет иногда сравнивать данную - бесперспективную, по мнению некоторых авторов - ситуацию с положением человека, пытающимся вытащить за волосы самого себя из воды. Однако знание действительно существует, его наличие есть неоспоримая реальность и поэтому принципиально возможно не только поставить, но и дать ответ на вопрос о его источниках и содержании обращаясь к общественной практике в ходе которой, как было уже сказано, формируется познавательный процесс и возникают субъектно-объектные отношения, диалектическая взаимосвязь между объектом познания и познающим субъектом.
  Объект - это существующая вне субъекта реальность, однако его нельзя сводить ко всей объективной действительности. Объект познания - это часть объективной реальности, определенные явления и процессы, на которых нацелено внимание познающего субъекта. Следовательно, те или иные явления и процессы объективной реальности становятся объектом познания только тогда, когда они включены в практическую познавательную и преобразовательную деятельность субъекта - человека , определенной социальной группы или общества в целом. Объект познания невозможен без субъекта познания.
  Объект познания выступает как источник знания. Но он обладает свойством быть безразличным к познающему субъекту. Активность в процессе познания проявляет познающий субъект руководствуясь своими практическими целями. Именно поэтому знание является не зеркально-идеальным отражением реальности, это идеальное отражение реальности субъектом сквозь призму его практических задач. Человек избирательно отражает те или иные стороны предметов и явлений, в том или ином ракурсе и связях и создает образ, возможный для последующего материального создания вещи. В процессе этой творческой деятельности происходит, с одной стороны, субъективизация объекта путем его превращения в факт сознания и приобретение объектом субъективных свойств благодаря воплощению замысла субъекта. С другой стороны, происходит противоположный процесс - объективизация субъекта когда его деятельность как бы выносится вовне, воплощается в форму предмета или в знание. Так, создание артефактов - яркий пример опредмечивания знаний человека в процессе его практики. Если активность субъекта при формировании знания выражается обычно в духовной деятельности, то при использовании знаний активность субъекта выражается главным образом в материально-предметной деятельности на основе знаний.
  Таким образом, знание имеет два источника: объект и субъект познания. Объект дает материал, а субъект - сведения об этом материале. Конечный результат - знание обусловлен характером и свойствами этих обоих источников. Конечно, объект обусловливает характерную форму знания, но один и тот же объект может отражаться субъектом в различных аспектах и выражаться в различных по глубине знаниях. Знание не обладает имманентным содержанием, оно отражает внешний мир который определяет его содержание. Но возникнув, оно существует и развивается как образ субъекта, преобразующего реальность. Будучи в целом зависима от конкретной человеческой практики, на основе имманентно присущих ему логических закономерностей знание одновременно имеет форму некоторой самостоятельности и дифференцированности. Так, сейчас различают разные ступени знания, например, первичные познавательные структуры, инвариантные образования и продукты памяти, а также знание теорий и законов. Если не ограничиваться лишь признанием чувственно-познавательных процессов, то мы увидим, что путем комбинации знания образуется гипотетическое и прогностическое знание, что знание может выполнять прогностическую функцию. В этой связи С.В.Крымский совершенно правильно отмечал, что знание "строит перспективные конструкции, опережая существующую практическую ситуацию и выполняя предсказательные функции " (12,37).
  Знания вне активного воздействия субъекта на объект не только не существует, но и не может возникнуть. "Недеятельное" знание не способно к развитию и превращается в фикцию. Следовательно, сущность знания заключена в творческом отображении и преобразовании действительности. Знание - это возникшее в процессе практического отношения человека к действительности и сформировавшееся как результат познания адекватное отражение реальности в чувственных образах и логических формах, являющееся необходимым условием человеческой деятельности.
  Наличие различных форм деятельности и различных способов их отражений определяют сложность структуры человеческого знания, которая является предметом философского внимания на протяжении многих веков. Так, Конфуций выделял высшее знание - врожденное, низшее - приобретенное учением и знания, приобретенные в итоге преодоления трудностей. Аристотель выделял знания по степени совершенства либо потому, что есть знания о более возвышенных и удивительных вещах. В средневековье истинное знание было прерогативой бога, а низшее - людей. Ныне знания делятся на обыденное и теоретическое, эмпирическое и логическое, чувственное и рациональное, знание индивида и знание коллектива, научное, философское и обыденное и т.д.
  Причиной большого разнообразия систем классификации знания является то, что знание является полем внимания ряда дисциплин - логики, психологии, философии, науковедения, истории и социологии науки и т.д. Каждая из этих дисциплин выделяет свой аспект анализа знания - психологический, логический, эвристический, теоретико-информационный, социологический. Не трудно заметить, что во всех этих случаях знание классифицируется по различным основаниям. Совершенно прав А.В.Славин, утверждая, что "все приобретенные человеком новые знания целесообразно подвергнуть классификации. Основания для классификации могут быть различными" (13,51).
  Обычно различают два уровня знания - обыденное и систематизированное.
  Обыденное знание человек приобретает в своих ежедневных занятиях и в результате своего общения. Объекты обыденного знания носят, как правило, эмпирический и случайный характер. Это результат спонтанной ориентировки человека в окружающем его мире. В процессе повседневного познания человек приобретает жизненный опыт и так называемый здравый смысл, т.е. под влиянием повседневной жизненной практики он накапливает взгляды на окружающую действительность и закономерности.
  Под систематизированным знанием в большинстве случаев понимают научное знание, противопоставляемое обыденному знанию, причем последнее рассматривают как несистематизированное. Действительно, системность есть одна из важнейших характерных черт научного знания. Г.В.Плеханов совершенно справедливо писал, что "наука как раз и есть знание, приведенное в систему" (14,32).
  Но, во-первых, помимо системного характера научное знание обладает и другими, не менее важными, признаками - теоретичностью, формально-логической непротиворечивостью, общезначимостью и др. Во-вторых, нужно учитывать также, что всякое научное знание системно, но не всякая система знаний будет научным знанием. Область системного знания шире научного знания и включает в свое содержание помимо науки различные формы идеологии - от политического сознания до философии и искусства. Что касается несистематизированного (обыденного) знания, то кроме эмпирического знания возникшего в процессе труда сюда включены социальная психология и народное творчество.
  Обыденное знание, по нашему мнению, следует рассматривать как результат прямого отражения условий жизни людей, а научное знание - как систематизированную, формально-логически непротиворечивую систему эмпирического и теоретического знания. Эти уровни различаются своим генезисом, качеством и формой выражения, а также по субъектам-носителям.
  При рассмотрении структуры человеческого знания мы , исходя из целей нашего исследования, утверждаем, что в соответствии с тремя формами объективной реальности - природой, техникой и обществом и формами утилизации знания можно выделить три области знания - естествознание, техникознание и обществознание. Каждая из этих областей человеческого знания имеет обыденные и систематизированные ( в том числе и научные) уровни. Поэтому можно говорить о трех больших отраслях научного знания - естественных науках, технических науках и общественных науках.
  Сказанное не означает отсутствия таких знаний и наук, которые не укладываются в это членение. Существует большой класс наук, которые имеют общий характер, относятся или к материальному миру в целом (философия), или к отдельным его свойствам (кибернетика, математика, общая теория систем). Но в данном случае речь идет о конкретных областях человеческого знания и конкретных науках, т.е. областях знания и науках, имеющих своим объектом знания определенные фрагменты объективной реальности.
  По своей природе знание идеально и свою материализацию она прежде всего находит в знаковой форме, языке. Но знаки, являющиеся материальной, языковой оболочкой мысли, не являются единственной формой материализации знания. В действительности человеческое знание реализуется в различных формах, важнейшие из которых - с учетом языка - таковы: научные теории и методы, художественные формы и образы, этические нормы и правила, политические, правовые и философские взгляды и, наконец, практическое овладение предметами и явлениями в различных областях человеческой деятельности. Материализация знаний в объективной действительности реализуется прежде всего в промышленности, которая является раскрытой книгой овеществления сущностных сил человека. Материальное производство выступает как способ материализации знаний. Знание находит свою опредмеченную форму прежде всего в технике и технологии.
  Таким образом, знание выступает как элемент духовной культуры и по своему содержанию относится к сфере общественного сознания. Когда же знание функционирует в своей конкретной социальной определенности, оно выступает как элемент производительных сил. В этом своем качестве из всех видов человеческого знания - естествознания, техникознания и обществознания - на первое место выдвигается техническое знание.
 
 
 
 
 
  2.Техническое знание как духовный
  фактор техники.
 
  В состав производительных сил общества входят не только материальные, но и духовные производительные силы. Последние существуют как совокупность духовных потенций субъекта, реализованные в его трудовых актах и в существующих технических устройствах. Духовные потенции субъекта - это его сознание и воля, опыт и навыки, знания в обыденной и систематизированной формах. Главным элементом духовного фактора производительных сил общества выступает техническое знание.
  Технические знания являются той частью человеческого знания, которые реализуются в технике и технологии. В последних воплощаются далеко не все человеческие знания, поскольку знание людей призвано обслуживать все сферы их деятельности, одной из которых, правда главнейшей, является техническая. Более того, человеческие знания реализуются в различных формах, основными из которых являются научные теории и методы, художественные образы, этические нормы и правила, политические, правовые и философские взгляды и убеждения, практическое создание вещей и процессов. В техническом знании мы имеем дело с обыденными и научными знаниями, используемыми в процессе создания артефактов и технологических процессов.
  Формирование технических знаний уходит в глубокое прошлое и связано с трудовой деятельностью человека. Именно в процессе этой деятельности люди научились сознательно изготовлять орудия своего труда. Необходимость решения ближайшей, трудовой задачи заставляла человека обдуманно вносить изменения в предмет, служивший ему орудием. Благодаря общественной форме существования людей, знания, приобретенные каждым отдельным индивидом, передавались отдельным соплеменникам а также последующим поколениям, которые, в свою очередь, совершенствовали его. Проверяя на практике эффективность своих действий, человек отбрасывал все нерациональное и сохранял и развивал практически полезное. Таким образом происходило накопление совокупного опыта, зарождались первые ростки технического знания.
  Способность отвлекаться от конкретной ситуации и мысленно представлять еще не совершенные действия позволила людям проводить предварительную мысленную разработку орудий труда. Каждое новое поколение делалось богаче предшествующего по объему и по уровню знаний, накапливало большие запасы новых методов и приемов труда, новых видов умения и опыта.
  Самими ранними средствами передачи информации, необходимой для создания новых орудий, служили уже применявшиеся орудия а также устные указания, рецепты, следуя которым человек создавал новые, но пока еще мало отличающиеся от предшествующих, орудия труда. С развитием мышления появляется возможность пользоваться знаками и символами, "замещающими" чувственно воспринимаемые и представляемые предметы, т.е. появляется возможность кодирования информации, добываемой в процессе чувственного восприятия.
  В развитии техники большая роль принадлежит рисунку. От первобытного рисунка ведут начало важнейшие средства передачи информации и закрепления технических знаний - чертеж и письмо. Письменность сыграла огромную роль для передачи речи на расстояние и закрепления мысли во времени. Она имела значение и для закрепления и передачи технического опыта. Со времени достижения определенного уровня развития графики действенным средством наглядного изображения технического знания стали рисунки, схемы, а позднее чертежи.
  Возникновение технической документации связано с началом такой организации производственного процесса, при котором графические и описательные материалы стали средством фиксирования заданий и отчета о выполненной работе. Чертеж развился в аксиометрические и перспективные изображения, позволяющие создателям технических средств выражать любые замыслы не только в удобной и понятой, но и в стимулирующей дальнейшее творчество форме. Использование графического изображения явилось проявлением сознательного предвидения результатов технической деятельности людей и способствовало усилению их познавательных возможностей.
  Большой практический опыт служил основанием для формирования идеи создания новых орудий труда. Ощупью, по образу и подобию существующих конструкций создавались новые технические средства. Но параллельно с развитием практических способов построения орудий труда происходила эволюция технических знаний.
  В "Механических проблемах", вышедших из школы Аристотеля, были описаны устройства для подъема тяжестей, упоминались блок, ворот. Архимед определил центр тяжести, создал теорию рычага, определил давление балок на опоры. Усиленное развитие техники Римской империи обусловило попытки преобразования абстрактно-философских положений греческой механики с целью придания ей формы, удобной для практических целей. Ветрувий в своем сочинении "Десять книг об архитектуре" уже признает необходимость научных и технических знаний для практики, хотя теория для него является не основой практических действий, а служит оценкой работ, выполненных эмпирически добытыми приемами и средствами. Ограниченный объем теоретических знаний, которые сводились в основном к положениям статики, отсутствие должной подготовки у создателей техники исключали широкую возможность применения теоретических знаний. Действия технических творцов не расходились с законами природы, но использовались эти законы интуитивно.
  В период раннего средневековья использование технических знаний ремесленников и передача этих знаний по традиции составляли основную линию развития совокупного опыта общества по разработке орудий труда. Позднее, когда эти знания были сформулированы и записаны, они составили первоначальную основу будущих технических наук. Средневековая техническая литература представляет собой обширные и подробные описания и инструкции о способах работы, собрание рецептов, правил и предписаний на каждый случай технической практики.
  Переход к капиталистической мануфактуре связан как с некоторыми новыми научными открытиями, так и с использованием опыта, практики и знания предшественников, что послужило причиной спорадического соприкосновения практических знаний с научными. Примером этому может служить деятельность ученого и инженера, философа и художника Леонардо да Винчи, которая , если быть справедливым, к сожалению, еще не оказала существенного влияния на его современников.
  Отражение богатого практического опыта, проведение определенной систематизации накопленных технических знаний, теоретическое обоснование отдельных положений технической практики нашли место в сочинениях эпохи Возрождения. Эти сочинения, авторами которых были не столько ученые сколько практики, явились техническими энциклопедиями своего времени. Почетным делом стало изобретательство и в начале 17 века были сделаны попытки осознать, осмыслить процесс изобретательств с целью распространения его опыта.
  Спорадическое применение машин в 17 столетии стимулировало рост технических знаний большой вклад в которые внесли математики. Изучение законов природы и разработанных человеком технических средств стимулировало развитие естествознания, которое, в свою очередь, стало основой технических наук в 18 веке как прикладных отраслей естественных наук.
  Научные знания, имевшие в основном качественный характер, не могли быть использованы для определения каких-либо параметров создаваемых машин. Промышленная революция 18 века не была еще следствием применения научных достижений к технике. Однако в профессиональную техническую мудрость техников, механиков, ремесленников были уже вкраплены частицы знаний, ставших потом элементами технических наук, составляющих особый вид технического знания, разговор о которых пойдет у нас несколько позже.
  Техническое знание представляет собой один из краеугольных камней человеческого знания. Это знание о целесообразной производственной деятельности субъекта. Поскольку истоки этого знания восходят к началу трудовой деятельности человека, то оно так же древне, как и само человечество и при переходе к более высоким ступеням технизации труда содержание технического знания становилось все более богатым.
  Техническое знание отражает мотивированную активность рабочей силы в единстве со средствами труда и зависимость рабочей силы и средств труда от предмета труда. Важнейшим вопросом технического знания всегда был и будет вопрос "как", применяемый к производству и воспроизводству.
  Техническое знание является той частью человеческого знания, которая реализуется в технике и технологии. В последних воплощаются далеко не все человеческие знания. Знания человека призваны обслуживать все сферы человеческой практики, одной из которых, правда главнейшей, является техническая деятельность. В техническом знании мы имеем дело с обыденными и научными знаниями используемыми в процессе этой деятельности. Это обстоятельство не отменяет того положения, что в процессе технической деятельности могут быть использованы и используются и не технические - экономические, эргономические и другие - знания.
  Являясь центральным звеном, важнейшей частью человеческого знания, технические знания имеют огромное значение в жизнедеятельности общества. По мнению К.Поппера они играют в обществе не меньшую, а даже большую роль, чем техника. "Представьте себе, - пишет он, - что наша экономческая система, включая всю промышленность и все социальные организации, уничтожена, но научные и технические знания сохранились. В этом случае потребовалось бы не так уж много времени для восстановления промышленности... Вообразите теперь, что исчезли все наши знания, а материальные вещи сохранились. Это равносильно тому, что случилось бы, если бы дикое племя поселилось в высокоиндустриальной, но покинутой ее жителями стране. Это вскоре привело бы к полному исчезновению всех материальных основ цивилизации" (15,127). Это же обстоятельство отмечает и А.Турен, утверждая, что "знание стало производительной силой, присвоение которой обществом является проблемой столь же важной, сколь важна в индустриальном обществе проблема собственности" (3,429).
  Как духовный фактор общественного производства техническое знание играет роль своеобразного интегратора различных областей человеческого знания от экономики до эстетики для использования их в создании и функционировании артефактов. Интегрирующая роль технического знания не исключает однако отличия техникознания от других сфер знания, его сущности, заключающейся в том, что техническое знание - это часть человеческого знания, которая служит для проектирования, конструирования, развития и функционирования искусственно созданных средств целесообразной деятельности людей.
  Интегрирующая роль технического знания нисколько не означает, что оно включает в свое содержание определенные части естествознания и обществознания, т.е.те их части, которые используются для проектирования, конструирования и функционирования техники. В действительности, те или иные части естествознания и обществознания из элементов этих систем превращаются в элементы другой системы - техникознания. Включаясь в эту новую систему в виде ее элементов, они приобретают другие системные свойства - свойства системы техникознания. Так, определенные части физики как элемента естествознания превращаются в техникознании в электротехнику, теплотехнику, гидравлику и др.; химии - в химическую технологию; эстетики как элемента обществознания - в художественное конструирование и т.д.
  "Естественные науки, - писал К.Ясперс, - создают свой мир, совершенно не помышляя о технике. Бывают естественнонаучные открытия чрезвычайного значения, которые по крайней мере вначале, а быть может, и вообще остаются в техническом отношении безразличными" (5,121). Нельзя экспериментально достигнутые в науке результаты рассматривать как инструкцию к техническим действиям. Безусловно, техническая деятельность основывается на знании объективных законов и явлений, открываемых естествознанием. Но знание об этих законах природы должны трансформировать свою абстрактно-теоретическую форму в правила практического действия, имеющих подчас рецептурный характер.
  Вообще техническое знание имеет свои особенности, отличающие его от других видов человеческого знания.
  Характеризуя специфику технического знания нужно, прежде всего, отметить, что техническое знание - это знание об искусственной природе, второй форме объективной реальности. Техникознание отражает, объекты, их конструктивные особенности, их функционирование в производственном процессе. В этом плане техническое знание выступает мощным орудием господства человека над природой.
  К специфическим чертам техникознания следует отнести ярко выраженную практическую направленность технического знания. Оно не просто в идеальной форме воспроизводит образ не существующих в природе искусственных устройств, а ориентирует человека на его материализацию, создание этих или ему подобных устройств.
  В ходе общественного прогресса человечество накопило знание двух видов - знание о свойствах предметов и процессов объективного мира и знание об использовании этих свойств с целью создания орудий труда. Не дифференцированное на заре человеческой истории знание в дальнейшем разделилось. Естествознание и обществознание отражают явления и процессы объективного мира, дают знание о нем. Техникознание нацелено на практическое использование, реализацию практических возможностей и естествознания и обществознания. Раскрывая проявление законов природы, техникознание объективизирует их, воплощая в технических устройствах все более точные и глубокие знания, материализуя в них соотношение между абсолютной и относительной истинами. Специфика технического знания в данном случае состоит в том, что на пути движения к абсолютной истине происходит смена одних технических форм другими.
  В силу своей ярко проявляющейся практической направленности техникознание все свойства предметов и процессов объективного мира "просматривает" сквозь призму возможностей их использования в процессе создания технических устройств. Техникознание использует данные физических, химических, биологических, математических и других наук в практическом аспекте, как бы в аспекте их практической утилизации. "К курсу математики техник предъявляет свои требования и свои запросы,- писал известный математик и кораблестроитель А.Н.Крылов. - Он изучает математику с целью практической, прикладной и рассматривает ее не как самостоятельный объект изучения, а как подсобное орудие, как инструмент для решения ряда вопросов, встречаемых в некоторой ограниченной области практической деятельности" (16,576).
  Специалист в области техники из всей совокупности естествознания и обществознания берет только то, что он может превратить в техникознание и воплотить в технических устройствах и технологии. Этих специалистов обычно не интересует не сущность объективных явлений и процессов самих по себе, а способ их использования для практических нужд. "Инженер, использующий физику для того, чтобы построить мост, - пишет К. Поппер, - интересуется преимущественно конкретным предсказанием: может ли мост, описанный определенным образом ( с помощью тех или иных исходных условий) , выдержать определенный груз. Универсальные законы являются для него средством решения этой задачи и принимаются без доказательств" (15,304). И далее: "Инженер исследует вещи преимущественно с практической точки зрения так же, как и фермер. Практика - не враг теоретического знания, а наиболее значимый стимул к нему" (15,257). Практическая направленность технического знания нисколько не принижает ее роли в общей сумме человеческого знания, а напротив, увеличивает значимость этой области знаний для практических потребностей общества. Научная теория считается "лучшей" если она проще и нагляднее объединяет заданную информацию, соединяет различные феномены в одном универсальном понятии и стимулирует дальнейшее исследование. Критерии технического знания относятся к обеспечению конкретных производственных процессов, эффективности, надежности, долговечности артефактов, удобству их обслуживания.
  В содержании техникознании эмпирическое знание преобладает над теоретическим. Объясняется это обстоятельство опять-таки утилитарной направленностью техникознания. Техническое знание по преимуществу имеет эмпирический характер. Здесь понятия образуются на основе непосредственных эмпирических данных без необходимой теоретической ориентации. Многие явления и свойства широко используются в технике, хотя не имеют теоретического объяснения. "Техника не заботится много о лабораторных опытах, мало интересуется теоретическими размышлениями и "возможностями", - пишет М.О.Доливо-Добровольский, - она приветствует открытия лишь тогда, когда ей покажут, что из них можно кое-что сделать, покажут хотя бы и не в законченной, но по крайней мере, в сколько-нибудь практической форме" (17,19).
  В техникознании эмпирическое объяснение тех или иных процессов часто отстает от их теоретического решения на много лет. Более ста лет существует технология производства бесшовных труб, а теоретического объяснения этого процесса не существует. В отличие от естествознания, для признания тех или иных технических решений часто довольно распространения их применений на практике. Академик С .Северин говорил, что ему не приходилось слышать. чтобы какой нибудь новый метод в технике имея большое число сторонников не применялся.
  Преимущественное эмпирическое содержание технического знания не отрицает их научности. Научное знание имеет различные уровни - эмпирический и теоретический. Эмпирический уровень отражает явления и процессы со стороны их внешних связей и проявлений как они даны живому созерцанию в процессе непосредственной практики и выражены в виде особой логической формы - суждения. Конечно, теоретическое знание отражает реальность глубже и точнее.
  Техническое знание специфично по форме своего функционирования. С одной стороны, оно как всякое знание, функционирует в субъективной форме - в чувственных образах и в логических формах человеческого мышления. С другой - формой его функционирования является техника и технология, объективная форма техникознания как овеществленная сила знания. Благодаря противоречию между этими сторонами технического знания оно способно развиваться, совершенствоваться, обогащаться.
  К специфическим чертам технического знания следует отнести терминологическую строгость технического знания и специфические методы его фиксации. Здесь понятия образуются на основе отражения предметов и их свойств в условиях непосредственной практики или эксперимента. Поскольку они предназначены для овеществления в технических объектах, каждая неточность грозит большими неприятностями. Отсюда - терминологическая строгость, проявлением которой следует считать тенденцию к машинному описанию технических объектов, такие точные методы фиксации технического знания, как графики, параметры процессов и явлений, схемы, справочные таблицы, чертежи, специальные записи в программах компьютеров, спецификация узлов и деталей, технические указания.
  Наконец, особенностью техникознания является его разделение на проектно-конструкторское и технологическое. Проектно-конструкторское знание представляет собой знание, используемое в процессе создания технических средств, их компонентов, а также целых совокупностей технических систем. Технологическое знание - это знание о функционировании технических средств и связанных с этим изменений свойств, состояния, формы и положения обрабатываемого предмета.
  Такое разделение технических знаний есть первый шаг к их классификации, выяснения структуры техникознания.
  До сих пор техническое знание рассматривалось в его целостности и в соответствии с человеческим знанием. Однако техническое знание представляет собой определенную систему, структура которой классифицируется по разным основаниям. В одних случаях технические знания делят по отраслям техники, выделяя производственное техническое знание, с дальнейшим его дроблением на машиностроительное, химическое, металлургическое и др.; знание техники связи, быта, науки, транспорта и т.д. В других выделяют различные уровни технического знания - эмпирический и теоретический. В-третьих- по областям технических наук.
  При определении структуры технического знания мы исходим из того, что эта структура, как и структура любого вида знания, должна опираться на те или иные признаки объективной действительности, в данном случае на структуру технической деятельности - сферу применения техникознания. Поскольку область наших интересов - техникознание в его отношении к общественному производству, нам представляется правомочным положить в основу определения структуры техникознания признак разделения труда.
  В составе совокупного работника, участвующего в технической деятельности, можно выделить труд рабочих, инженерно-технических работников и ученых. В соответствии с этим, возможно выделение трех уровней технического знания - профессионально-техническое знание рабочих, инженерно-техническое знание и научно-техническое знание. Такое деление определяется не природой техникознания, а его функционированием в обществе с конкретно-исторической системой разделения труда. Поэтому необходимо при такой классификации техникознания не оставлять без внимания динамику смены, переходов, различий разных уровней знания, наконец, нужен учет общетехнического знания, необходимого всем людям в быту, поскольку оно так или иначе связано с другими уровнями знания. Задача состоит в анализе структур технического знания разных уровней и различных степеней обобщения. С этим соприкасается проблема полного использования всех имеющихся возможностей, связанных с получением образования и квалификации.
  Отметим еще раз, что представляемая здесь структура техникознания весьма приближенна и не учитывает многих обстоятельств. Так, указанные структурные уровни технического знания очень подвижны, относительны и не существуют в чистом виде. Между этими структурными уровнями есть переходные зоны, которые ждут своего исследования. Но в первом приближении, по отношению к различным формам разделения труда правомочно говорить об этих трех структурных уровнях техникознания.
  Необходимо также иметь в виду, что научно-техническая революция вносит существенные изменения в содержание и структуру технического знания. В частности, заканчивается становление технических наук, возрастает их роль и значение в общей сумме техникознания - происходит онаучивание инженерно-технического знания, профессионально-техническое знание рабочих все в большей мере основывается на научном и инженерно-техническом знании, появляются переходные структурные уровни техникознания что составляет сферу производственных экспериментов, разработок, изобретательства, внедрения, меняются теоретические основы технических наук, усиливается взаимосвязь техникознания с другими областями знания. Имея ввиду все эти обстоятельства, дадим краткий анализ трех уровней технического знания.
  Первый уровень технического знания - профессионально-техническое знание рабочих.Это знания, полученные на базе производственного опыта, производственной деятельности рабочих и их профессионально-технического образования, используемые для оптимизации функционирования техники, рационализации и изобретательства.
  Являясь областью деятельности рабочих и крестьян осуществляющих производство средств жизни общества, профессионально-техническое знание рабочих по своему содержанию представляет собой преимущественно эмпирическое знание. Большую роль здесь играет индивидуальное мастерство работника, его сноровка, учет прошлого своего и других опыта, нахождение решения методом проб и ошибок и даже определенная производственная интуиция. Конечно ныне профессионально-технического знания как обобщенного производственного опыта в "чистом" виде не существует. Необходимым элементом деятельности работника становится духовное производство, происходит усиленное приобщение рабочих к духовному труду. Производственно-технические знания рабочих включают в себя не только определенные элементы инженерного знания, но часто и технических наук. В этом своем содержании они являются необходимым условием развития и функционирования современной техники, требующей развитых форм труда.
  В условиях машинного производства в труде рабочего исполнительскую функцию выполняет машина. В этом случае физический труд человека отступает на задний план а на передний выступают рациональные действия работника по управлению работой машины. Это требует от работника более полного использования своих интеллектуальных сил, все более глубоких технических знаний.
  Параллельно с превращением производства в технологическое применение науки сам процесс труда все в большей степени основывается на использовании научных данных. От рабочего требуется обладание определенными профессионально-техническими и научными знаниями и умение применить их при решении конкретных производственных вопросов. На этапе автоматизации производства рабочему требуется еще более высокий уровень знаний, в которые органически включаются как нормативно-технические в процесс труда. Такими знаниями являются знания о способах и приемах обработки предмета труда, функционировании технических средств, оптимальном режиме их работы, контроле и способах устранения сбоев в автоматической системе машин, их быстром ремонте и наладке. Сюда же можно отнести определенные конструкторские знания рабочих, позволяющие им рационализировать технические устройства. В противоположность прежнему труду, полностью подчиненному системе машин, современный производственный труд становится полем приложения всей совокупности человеческих сил и способностей.
  Более того, ныне труд работника предполагает не только потребление уже имеющегося знания, но и непосредственное участие рабочих в создании новых знаний. Известно, что техническое творчество рабочих дополняет научное и инженерное решение технико-технологических проблем производства и является необходимым элементом производственной деятельности. В процессе своего технического творчества рабочие зачастую исправляют просчет инженерной мысли. С другой стороны, техническое творчество рабочих является источником развития не только инженерно-технического, но и научного знания. Ученые и инженеры, участвующие во внедрении технических нововведений в производство, знают сколько полезных мыслей могут высказывать рабочие-умельцы в ходе производственного эксперимента.
  Таким образом, под современным профессионально-техническим знанием рабочих следует понимать не только эмпирические технические знания. Сюда часто включаются определенные элементы инженерного и даже научно-технического знания, определенные экологические, экономические, правовые и другие знания. Это - разноцветный и богатый спектр знаний, используемый работниками в соответствии с требованиями определенной профессии, регламентируемый содержанием трудовых функций. Определяемое уровнем развития техники и технологии, выполняемой работой, профессионально-техническое знание рабочих формируется как система образовательных и политехнических знаний в связи с производственным опытом. Эти знания применяются при решении конкретных проблем возникающих в ходе функционирования и развития технико-технологической основы производства.
  Второй уровень технического знания - инженерно-техническое знание. Это знание о законах проектирования, конструирования и функционирования технических объектов и практическом использовании законов природы и общества в этом процессе, в общественном производстве в целом.
  Поскольку крупное машинное производство, особенно автоматизерованное и компьютизированное, основывается на сознательном техническом использовании науки, с появлением производства между ученым и непосредственным агентом производства - рабочим встает инженер, являющийся проводником применения научно-технических знаний к непосредственному технологическому процессу сквозь призму своего производственного опыта. Таким образом источники инженерно-технического знания можно разделить на две группы. Первые образуются на основе познания техники как материальных объектов , проектно-конструкторской документации и производственного опыта. Вторые являются результатом познания законов природы как естественно-научной основы техники и итогом научного познания технических устройств и технологических процессов. Используя научные и технические источники, инженерно-техническое знание развивается, обогащается производственным опытом. Это стимулирует дальнейшее развитие техники и технологии, поскольку система машин развивается вместе с накоплением общественных знаний.
  Специфика инженерно-технического знания состоит не только в том, что оно сплавляет в единое целое научно-техническое знание и производственный опыт, но и в том, что оно синтезирует собственно технические знания с социальным. Социальное знание в инженерном знании нужно рассматривать как определенную сферу, в которой раскрываются сведения о целях применения техники, ее социальном назначении, глубоко гуманном характере инженерной деятельности, ставящей силы и вещества природы на службу обществу, человеку.
  Само инженерно-техническое мышление специфично. Вначале инженер от технических источников знания переходит к научным и, прежде всего, к научно-техническим знаниям. Последние представлены для него в "готовом" виде в справочниках, ГОСТах, нормах, методиках и т.д. Однако поскольку эти знания в определенной системе фиксируют уже прошедший этап, их порой явно недостаточно для создания новой, более совершенной техники. Для решения этой задачи инженеру необходимы новые естественнонаучные и научно-технические знания, еще не применявшиеся в этих конкретных целях в процессе технической практики. Имеющиеся у инженера знания к началу работы над новой задачей являются лишь остовом нужных ему знаний. К ним относятся специальное образование, имеющийся у инженера производственный опыт и его конструкторская практика. В процессе решения конкретной задачи инженерно-технические знания обогащаются за счет научно-технических. Именно это обеспечивает воплощение всей суммы инженерно-технических знаний в конкретных новых образцах технических объектов, зафиксированных в проектно-конструкторской документации. Поэтому если научно-технические знания фиксируются в определенных логических формах, то для инженерно-технического знания характерно то, что являясь синтезом научного знания и производственного опыта, оно фиксируется в инженерно-справочном материале - единой системе конструкторской документации, единой системе технологической документации, стандартах, нормалях, нормативах, определенных правилах. Творчество в инженерной деятельности связано с соблюдением постоянного контроля. В этих условиях к техническому специалисту предъявляются важнейшие требования: находить на основе уже готовых , типовых, стандартных элементов новые оригинальные решения и компоновать новые конструкции.
  Уместно вспомнить, что для инженерного труда особенно характерны две черты. Первая из них заключается в том, что инженерный труд, в отличие от труда других слоев интеллигенции (педагогов, врачей, композиторов и др.) по своей роли в общественном производстве является производительным трудом, непосредственно участвующим в создании национального дохода. Инженерно-технические работники выполняют одну из обособившихся функций совокупного работника.
  Вторая черта инженерной деятельности состоит в том, что инженерный труд в целом отличается высокой степенью интеллектуальности, творчества о чем мы уже говорили. Часто рассуждают о творчестве артистов, писателей, художников, ученых. Но разве меньше нужно затратить творческих усилий инженеру, чтобы материализовать предельно оптимально при огромном выборе технических возможностей и жестком нормативе ту идеальную модель, которую создал в своем сознании инженер?
  Помимо своих профессионально-технических функций инженер выполняет ряд других, в том числе социальных, функций. Эти функции в первом приближении могут быть определены так:
  - прогнозирование развития техники и технологии на предприятии и непосредственно на производственном участке, где работает инженер.
  - организация производства и управление технологическим процессом.
  - разработка и осуществление перспективных планов повышения качества продукции.
  - техническая ( конструкторская и технологическая) подготовка производства новых видов продукции.
  - инженерная переработка решений, принимаемых руководителями предприятий.
  - подготовка организационно-технических данных для проектирования и конструирования.
  - организация труда рабочих, его нормирование, оплата и стимулирование.
  - контроль за качеством продукции, соблюдение стандартов, технологической дисциплины, норм и нормативов охраны природы, техники безопасности.
  - инженерный контроль за эксплуатацией производственных машинных систем управления.
  - участие в управлении производством.
  - организаторская и воспитательная работа с различными категориями работников.
  Все эти области функционирования инженерного знания свидетельствуют о широком диапазоне инженерной деятельности и его связи с наукой. Обращают на себя внимание те функции, которые помогают инженеру быть проводником науки в сферу материального производства. Без инженерных работ с использованием инженерно-технического знания результаты научных исследований не могут быть воплощены в реальные производственные процессы и конкретные промышленные объекты.
  Для своей плодотворной и новаторской деятельности инженеру недостаточно иметь большой объем знаний. Ввиду быстрого "старения" знаний ( у молодого инженера ежегодно "стареет" 5 % его знаний) необходимо постоянное обновление и пополнение знаний. Для новых технологий нужен новый инженер - инженер будущего, который в процессе своей подготовки должен быть менее всего "накачан" техническими знаниями, имеющими тенденцию к быстрому старению. Инженер должен обладать солидной физико-математической подготовкой, компьютерной грамотностью, усвоить дух гуманитарной культуры и знание принципов и правил диалектико-логического мышления. Его будущая деятельность должна учитывать внетехнические условия - экономические и экологические, эргономические и эстетические параметры. Готовить таких инженеров - задача технических университетов.
  Приступая к техническому решению инженер обязан видеть многогранный объект своей деятельности во всех его многочисленных связях. Поэтому он должен, безусловно, иметь знание как фундаментальных наук, так и прикладные. Как правило, самыми интересными инженерными решениями оказываются те, при разработке которых использованы знания из различных, относительно далеких отраслей науки и техники. Поэтому чем шире диапазон знаний инженера, тем оригинальнее его решения. В ходе конструкторской и технологической работы творчество инженера заключается не только в том, чтобы умело использовать имеющиеся знания, но и в том, чтобы постоянно извлекать новое инженерное знание из объекта работы, уметь осмыслить полученные сведения, использовать новейшие способы оперативной обработки информации.
  Творческий характер труда инженера особенно ярко проявляется в процессе разработки, когда происходят целенаправленные исследования, проектирование и создание опытного образца нового технического средства. Разработки находятся на стыке науки и производства и представляют собой самостоятельный этап, самостоятельное звено в цепи научных исследований и производственной практики, направленное на создание принципиально новых объектов техники. Они не могут быть отнесены только к науке или только к производству, но должны быть рассмотрены в связи с ними. Такое понимание места и сущности разработок в системе "наука - производство" означает, что инженерно-техническое мышление должно способствовать установлению взаимосвязи двух различных общественных явлений - науки и техники, явлений, развитие и функционирование которых проходят в рамках различных и подчас противоположных параметрах. Следовательно, инженерно-техническое знание должно сочетать научный полет мысли с холодным и здравым практическим расчетом.
  Третий уровень технического знания - научно-техническое знание.
  Научно-техническое знания нельзя отождествлять с техническим знанием, что встречается довольно часто. Так, В.П.Карасев пишет: "Говоря о технических знаниях, мы будем рассматривать в основном те знания, выражением и воплощением которых выступает техника. Эти знания, построенные в целостную систему, составляют технические науки" (18,87). В действительности, как видно из изложенного выше, научно-технические знания являются лишь одним из видов технического знания, возникшем на определенной ступени развития человеческого знания и материального производства.
  На ранних стадиях общественного развития человеческие знания еще не расчленялись на знания о свойствах природных тел и знания о способах их овеществления с целью создания технических средств. Разделение труда на умственный и физический привело к более глубокой дифференциации общественного труда, в частности, к разделению на две сферы самого умственного труда. Одна сфера развивалась на фоне материального производства как средство его функционирования и развития. Она концентрировала в себе громадный жизненный опыт, обыденные сведения и составила донаучное или вненаучное , в том числе и техническое знание. Другая сфера духовного производства породила абстрактно-теоретическое или научное знание, которое обслуживало самые разнообразные формы деятельности и быта людей, обогащалось в процессе своего развития, порождая новые формы, новые области, одной из которых и было научно-техническое знание. Как же возникла эта форма знания, в чем ее сущность и специфика?
  Научно-техническое знание - это знание об искусственно созданных средствах деятельности людей, отвечающее всем признакам научности. Его специфика заключается в том, что оно призвано обслуживать техническую деятельность человека, нацеленного на производство и применение технических средств.
  Часто нучно-техническое знание рассматривают лишь как результат процесса научного познания в области технических наук. Однако технические науки хотя и включают эти знание в свой состав не сводятся к ним. Технические науки - особая форма научно-технического знания, для которой характерна системность научно-технических знаний. Мы уже упоминали, что системность - одно из важных свойств любой области научного знания. Кроме того для формирования технических наук важно наличие профессиональной деятельности по производству и применению научных знаний. "Формирование новой технической науки становится фактом не тогда, когда впервые возникает ее специфическая базовая теория, - пишет Б.И.Козлов,- а когда получает логическое завершение структура специализированных институтов, обеспечивающих функционирование и дальнейшее развитие новой области научно-технических знаний, ориентированной на решение выдвинутых практикой технических задач"(19,123).
  В процессе генезиса и дальнейшего развития научно-технические знания предшествовали формированию технических наук и составляют как бы их предысторию. Рассматривая эту предысторию технических наук Б.И.Козлов пишет, что "нельзя полностью абстрагироваться от исследования предыстории этого развития, от его предпосылок еще и потому, что таким образом мы получаем материал для сравнения, базу, относительно которой и выделяются особенности современного состояния предмета"(19,10).
  Действительно, уже в истории Древнего Востока содержатся зачатки научно-технических знаний в виде внедрения в техническую деятельность математических расчетов при возведении построек и конструирования военной техники. Античность нам дает необходимые предпосылки становления научного знания о технике в виде механического знания об условиях равновесия тел, решения задачи распределения тяжести тел между опорами и проблемы выигрыше в силе посредством применения технических устройств. Первой в истории системой раннего научно-технического знания была механика Архимеда. Статика, гидростатика, диоптрика явили теоретический уровень технического знания. В мануфактурный период развилась теория производства равномерного движения, кинематики, баллистики. Для 14-15 веков наряду с учением о машинах складывается комплексная область научного технического знания об обработке сырья и материалов, чуть позже возникает горная наука, чему в большой мере способствовали труда Агриколы, особенно его работа "О металлах". В 16 веке во Франции создаются государственные военные академии. В 17-18 веках в Европе формируется ряд инженерных школ, способствующих становлению технических наук. В 18 веке бурно развивается теоретическая механика которая заложила основы множества других технических наук. В становлении новой механической картины мира огромная заслуга принадлежит И.Ньютону. Хотя первоначальные изобретения промышленной революции 18 века были основаны главным образом на техническом опыте, эта революция породила в конечном счете крупное машинное производство которое не могло уже развиваться и функционировать на основе сознательного использования науки. Это и предопределило формирование особого класса наук, впитавших в себя богатейший материал добытый всем предшествующим научно-техническим знанием.
 
  3.Технические науки как специфичес-
  кая форма технического знания.
  Технические науки в орбиту философского внимания включены по сравнению с другими отраслями науки недавно. Обычно когда речь шла о науке, имели ввиду физику, химию, биологию и другие естественные науки. Иногда определенное внимание уделялось общественным наукам. Что касается наук технического цикла, то они удосуживались методологического или социально-философского исследования намного реже. Совершенно справедливо замечание Б.И.Козлова что "до сих пор издается немало серьезных теоретических работ о науке, в которых вопросам возникновения и развития технических наук не уделяется никакого внимания" (19,6). Более того, в относительно немногочисленных работах о технических науках высказываются различные точки зрения на рассматриваемые проблемы в связи с чем возникла парадоксальная ситуация: " с одной стороны, концепция технических наук явно необходима практике и усиленно разрабатывается, с другой - многие ее компоненты, развиваемые разными авторами, не всегда сопоставимы, а потому не могут использоваться при теоретическом анализе науки" (19,6).
  Однако какие бы разногласия не существовали при философском анализе технических наук явным является то обстоятельство, что технические науки возникли на определенных этапах развития научно-технического знания и технического прогресса, они имеют как теоретические, так и практические предпосылки своего генезиса.
  Практическими предпосылками формирования технических наук является появление крупного машинного производства которое требовало для своего развития и функционирования сознательного применения научных знаний. Исторические факты показывают, что технические науки сформировались в связи с усложнением технических средств производства в период становления машин и явились своего рода инструментом, существенным образом изменившим способ конструирования машин.
  Теоретическими же предпосылками формирования технических наук являются как развитие научно-технического знания о котором у нас уже шла речь, так и развитие естественных наук и математики в 19 веке, особено механики И.Ньютона.
  Процесс формирования технических наук начался с формирования на рубеже 18-19 веков технических наук механического цикла - теории машин и механизмов, деталей машин, баллистики, теплотехники и других. Машина стала пониматься как реализация естественного процесса, технические средства отныне могли быть использованы как особая форма овеществления явлений и процессов природы.
  Несомненная заслуга в становлении технических наук принадлежит Сади Карно - создателю термодинамики, который абстрагировался от конкретных конструкций паровых двигателей, создал идеальную паровую машину или теоретическую модель этой машины и рассмотрел принцип получения движения из тепла. Реальные паровые машины сводились к системе физических величин, взаимодействие узлов и деталей машин - к протекающим в них физическим процессам. Эти физические величины и процессы мог использовать инженер в своей конструкторской и технологической деятельности, что дало огромный толчок развитию крупного машинного производства в горниле которого выкристаллизовалась новая система научно-технического знания - технические науки, включающие ряд наук механического цикла, теоретические основы конструирования. Возникает технология как научно-техническая дисциплина и ряд отраслевых технологических дисциплин.
  Начало изложения технических наук и их преподавания в высших технических учебных заведениях относится к 18 веку. В 1777 году И. Бекман опубликовал работу "Введение в технологию". Знания, заимствованные И.Бекманом из французских и английских источников и использованные им в работе свидетельствуют о притягательной силе автора к новым отношениям между теорией и практикой. Его "научная" технология многое объясняет путем классификации, хотя классическая система машин, порожденная промышленной революцией, находится еще вне поля его зрения. Бекмановское понимание технологии предполагало необходимость кооперирования и комбинирования специальных знаний и умений как более высокой ступени развития производительных сил. Технология определялась как наука обучающая переработке природных веществ или знанию ремесел. Бекман писал, что если в мастерских только указывают что для изготовления товара нужно сделать, то технология в систематизированном виде дает основательное руководство как достичь этой конечной цели исходя из определенных принципов и опыта, как находить средства, объяснять и использовать их при работе с теми или иными предметами.
  Следуя своим политическим целям, французская буржуазия начала реформу системы технического образования. В сентябре 1794 года в Париже была основана Политехническая школа, что говорило о стремлении найти новые, более содержательные формы подготовки инженеров, дать специальному техническому образованию теоретическую основу. Относительно высокое развитое во Франции техническое образование и богатые традициями школы французских математиков и механиков создали прочную основу для того, чтобы Политехническая школа в короткий срок стала центром математики, а также теоретической и прикладной механики.
  Другое положение было в Германии. Феодальная раздробленность и экономическая отсталость привели к тому, что здесь французскому примеру последовали, не без колебаний, лишь спустя три десятилетия. В двадцатых годах 19 века в ряде германских земель возникли технические учебные заведения, в документах об образовании которых подчеркивалась необходимость математического и естественнонаучного образования будущих инженеров, однако уровень преподавания в них был намного ниже, чем в Политехнической школе. После снятия континентальной блокады в 1813 году промышленность Германии оказалась под сильным давлением английской конкуренции что заставило прибегнуть к самому простому решению: готовить специалистов, которые могли бы копировать английские машины, проводить некоторые улучшения и, в лучшем случае, давать новые комбинации основных известных типов машин. Однако в 30-40-х годах в Германии появляются зачатки технического образования нового типа. В учебных программах доля физики и химии неуклонно возрастала. Машиноведение, бывшее вначале почти только эмпирическим собранием рекомендаций, приобрело черты научности. Строительство и химическая техника нуждались в советах, которые намного должны были превосходить опыт обычной для того времени практики. Стремительно развивающееся строительство железных дорог требовало научных исследований как для прокладки трасс, так и для расчета соответствующих железнодорожных объектов.
  В России специальные учебные заведения были созданы в самом начале 18 века. В инженерной школе, основанной в 1700 году, и в школе "математических и навигацких наук", учрежденной в 1701 году, преподавались прикладные дисциплины. Специалистов по горнозаводскому делу подготавливали в специальных школах при заводах.Основанный в 1755 году Московский университет выпускал специалистов, обладавших серьезными знаниями по теоретической и прикладной механике.
  Учебные институты технического профиля в Англии возникли в первой половине 19 века ( Эдинбург - 1821 г., Лондон, Глазго -1823 г.). В 1841 году в Лондонском университетском колледже были организованы три технических кафедры: гражданского строительства, механики и машиностроения. В 1824 году основан первый в США Политехнический институт, который через 10 лет полностью перешел на выпуск инженеров.
  Конец 18 - середина 19 веков является, таким образом, периодом возникновения технических наук, установления эмпирических законов, ориентацией исключительно на решение практических конкретных задач.
  Накопление технического знания и дифференциация его на отдельные технические науки и переход последних на теоретический уровень приходится на середину 19 - середину 20 веков. Вторая половина 19 века характеризовалась возникновением дисциплин, основанных на гораздо более широкой платформе различных отраслей физики и химии. Особую важность для строительства тепловых машин имела теплотехника, основанная на законах термодинамики, сформулированных в 1850 году Р.Клаузиусом. Продолжали развиваться отрасли наук, связанные с материаловедением. В итоге соответственно целям машинного производства формируется целостная система специализированных технических наук. Их специализация происходит не только по предметам, но и по этапам создания новой техники: выделяются науки, обслуживающие научно-исследовательскую деятельность и экспериментальные разработки, конструирование и технологическую подготовку и, наконец, сам производственный процесс.
  Если в первые десятилетия 19 века представители технических наук должны были довольствоваться изучением механических процессов в эмпирически созданных технических системах, то во второй половине 19 века уровень технических наук все более предполагает применения технических наук для получения новых конструктивных и технологических решений. Начались фундаментальные исследования в области кинематики и динамики. Если в первой половине 19 века рядом с огромной массой техников с ремесленной подготовкой инженеры со специальным техническим образованием являлись еще исключением и в этот период лишь были заложены основы подготовки инженеров с высшим образованием, то теперь уже происходило реальное наполнение содержания высшего образования технических учебных заведений. Важным событием для Западной Европы явилось основание в 1854 году Политехникума в Цюрихе где одновременно проводились фундаментальные естественнонаучные исследования и научно-технические разработки. Их взаимовлияние создало почву для плодотворного развития технических наук. Стали развиваться деловые связи политехнических школ с университетами. Это выражалось в дополнительных занятиях видных ученых-техников в университетах и в привлечении университетских профессоров к чтению фундаментальных естественнонаучных циклов в политехнических школах, что особенно было характерно для Германии. Весьма сильной эта тенденция стала после начала преподавания электротехники в учебных заведениях.
  Если в машиностроении научные знания дополняли практические, то электротехника явилась одной из первых научных дисциплин, образовавшихся на теоретической основе. Электротехническая наука и смежные с ней дисциплины формировались во время широкого технологического применения физики и химии. Вместе с тем электротехнические науки возникали и под воздействием производственных запросов: переход от паровых машин к электрическим совершался в тесной связи с научными данными об электричестве и магнетизме. Конечно, какое-то знание в этой области было накоплено еще в 17 веке, однако вследствие перехода физики к электромагнитной картине мира применение этих данных, включая накопленный при этом практический опыт, привело к созданию электротехники как первой технической науке, основанной преимущественно на теоретических положениях. Выделение электротехники как относительно независимой от физики науки характеризуется тем, что она обладает собственным объектом и собственным предметом изучения, собственными целями и особыми методами. Первоначально она была ориентирована на изучение машин и создала их теорию: теорию трансформаторов, изоляторов, генераторов, токов, источников тока и т.д. В период становления электротехники выделялись работы по созданию электрического двигателя.
  Цикл электротехнических наук оказал огромное влияние как на производство, так и на дальнейшее развитие всех технических наук. В середине 20 века возникают качественно новые технические проблемы, стимулирующие совершенно новый этап в развитии науки. Этот этап приходится уже на научно-техническую революцию, которая обусловила переход к теоретическому исследованию автоматических технических систем, появление новых областей техники и технических теорий, основанных на теоретических открытиях в естественных науках. Так, с открытием лазера связано появление лазерной техники, с делением атома - ядерной техники. В принципе совершенно аналогично идет развитие космонавтики и технической кибернетики. Правда, теоретические основы кибернетики позволили создать информационные системы. Изучением и совершенствованием этих систем заняты такие технические науки как техническая кибернетика, информатика и др.
  Научно-техническая революция оказывает все большее воздействие на особенности и результаты развития и функционирования современной системы технических наук. Меняется значимость технических наук в общей сумме научного знания. Если лидер современного естествознания - физика. то лидер современных наук - технические науки. Меняется их соотношение с естественными и общественными науками. Выступая в качестве связующего звена между наукой и производством, технические науки имеют большую вероятность получения положительного результата и непосредственный экономический эффект, способствуют созданию материально-технической базы общества, активно воздействуют на формирование главной производительной силы общества - человека.
  Увеличение значимости социальных функций технических наук обусловило повышение интереса к изучению методологических и социальных проблем их функционирования и развития. Повышение такого интереса вызвано и тем, что в самих технических науках происходят серьезные изменения, требующие своего осмысления. Изменяется содержание и структура этих наук. Теперь уже в технических науках различаются фундаментальные и прикладные исследования, причем удельный вес фундаментальных исследований постоянно возрастает. Организуются самостоятельные специфические теоретические основы отдельных наук с возникновением новых понятий и формированием новых законов науки, качественно меняются их методы исследования. Происходит теоретизация технических наук, их формализация и математизация. Технические науки имеют собственный предмет, собственную методологию и специальную терминологию.
  Правда, технические науки подчас понимаются как науки более низкого уровня, как прикладные, в отличие от теоретических, "чистых наук". В подобных слусаях техническое знание лишается статуса научности и, более того, противопоставляется научному знанию, как знанию об искусной, эффективной деятельности. Так, Дж.Циман и Х.Сколимовски, обосновывая "ненаучный" характер технического знания, пишут, что не следует смешивать "чистое знание", получаемое в целях удовлетворения интеллектуальных потребностей, с техническим знанием, необходимым для достижения человеческих потребностей. Технические науки в данном случае рассматриваются как прикладные в отличие от теоретических.
  В действительности нет теоретических и прикладных наук, а есть теоретические и прикладные наручные исследования и любая наука в том или ином соотношении имеет теоретические и прикладные разделы. К техническим наукам можно полностью отнести мнение С.Л.Рубенштейна, который писал, что "мышление не может быть сведено к функционированию уже готовых знаний; оно должно быть раскрыто прежде всего как продуктивный процесс, способный приводить к новым знаниям" (20,55). Технические науки выполняют познавательные функции. Более того, современные технические науки часто опережают развитие естествознания и приобретают знания, которые не могут быть обосновыны с помощью уже познанных законов природы. В этом случае технические науки стимулируют усилия естественных наук в их стремлении познать неизвестные еще законы природы. При исследовании техники и технологии могут быть открыты неизвестные ранее законы объективного мира. Так, в связи с решением проблемы непосредственного превращения теплоты в электричество и созданием МГД-генераторов в рамках технических наук были разработаны основы теории плазмы.
  Новые научно-технические направления часто появляются на стыке технических и естественных наук. В 1916 году А.Эйнштейном было предсказано явление индуцированного излучения. В 1927 году Дирак дал его строгое обоснование . Все это послужило основой для открытия принципиально нового метода генерации и усиления электромагнитных волн. В 1952 - 1954 годах независимо в нашей стране и в США была выдвинута идея молекулярного генератора. В 1954 - 1955 годах появилась первая теория лазера. На стыке квантовой механики (квантовой теории излучения) и радиофизики (радиоспектроскопии) было сделано фундаментальное открытие и создан первый квантовый прибор - молекулярный генератор на аммиаке. Это положило начало новому научно-техническому направлению - квантовой электроники.
  Особенно быстро развиваются те технические науки, которые доводят уже имеющееся знание до технико-технологического применения, как, например, электроника или научное приборостроение. Усложнение научных экспериментов привело к необходимости автоматизировать сбор и обработку больших массивов информации. Появились измерительно-вычислительные системы (ИВС) в модульном исполнении. Они создаются на основе серийных измерительно-вычислительных комплексов в которых ЭВМ управляет функционированием измерительных датчиков и ходом самого эксперимента в зависимости от получаемых результатов. Исследователь с помощью ЭВМ получает нужную ему информацию и имеет возможность влиять на ход эксперимента.
  В условиях происходящей в мире научно-технической революции происходят качественные изменения в технических науках и четко определяется их предмет. Если раньше технические науки рассматривались как прикладные отрасли естествознания, то теперь общепризнанно, что технические дисциплины обладают своей собственной отличной от естественных наук предметной областью. Технические науки открывают и изучают законы, явления и процессы технических устройств и способы реализации законов природы в процессе технического творчества. "Технические науки,- пишет В.А.Веников,- есть специфическая система знания о целенаправленном преобразовании природных тел и процессов в технические объекты, о методах конструктивно-технической деятельности, а также о способах функционирования технических объектов в системе общественного производства"(21,8). Каково же взаимоотношение технических наук с другими, их специфика и структура? Для места и значимости технических наук в системе современного научного знания характерны два параметра.
  Во-первых, технические науки занимают лидирующее положение в системе наук. Это лидерство подтверждается не только тем, что большинство ученых развитых стран заняты в области технических наук, но и тем, что они поглощают большую часть расходов этих стран на науку и, в свою очередь, дают наибольший и непосредственный экономический эффект.
  Второе обстоятельство, характеризующее положение технических наук в научном мире связано в тем, что эти науки выполняют роль своеобразного интегратора всех других областей научного знания и об этом следует сказать особо.
  Связи, которые возникли между техническими и другими науками, имеют не случайный, а вполне обоснованный характер. Объективной основой этих взаимосвязей является существование единого материального мира. В этом отношении содержит зерно истины замечание М.Планка о том, что "наука представляет собой внутреннее единое целое. Ее разделение на отдельные области обусловлено не столько природой вещей, сколько ограниченными способностями человеческого познания" (22,590).
  Технические науки занимают ключевое положение между естественными и общественными. Это обстоятельство Б.М.Кедров охарактеризовал следующим образом: "Техническая наука - двусторонняя, ибо одной своей частью она ориентирована на определенные отрасли человеческой деятельности, а другой - на особый тип природных форм движения, используемых технически. В одном случае накладывает большой отпечаток отрасли естествознания, а в другом - определенная отрасль человеческой деятельности, например, конкретная экономика. Поэтому-то технические науки и выступают как связующее звено между естественными и общественными науками, и сами они носят на себе определенный теоретический отпечаток" (23,14). Следовательно, технические науки в системе наук не теряют своей относительной самостоятельности, а дополнительно приобретают функцию связующего звена.
  Интегрирующая роль технических наук в совокупности наук обусловлена спецификой технических объектов, которые имеют различные характеристики. В случае технической характеристики артефакты рассматриваются как искусственно созданные средства деятельности людей, конструктивное создание структур, не встречающихся в природе. Естественнонаучная характеристика понимает технику как естественный объект, как частный случай реализации законов природы, входящих в компетенцию естественных наук. Оющественнонаучная характеристика рассматривает технику как особое явление, выполняющее определенные экономические и социальные функции.
  Таким образом, под техническими структурами понимаются объекты технических, естественнных и общественных наук, несмотря на то, что предметы их изучения различны. Следовательно, технические науки воплощают непосредственно адекватный практике результат единства науки. В связи с этим возникает необходимость изучить все каналы по которым осуществляются взаимосвязи между естественными, техническими и общественными науками. Эти каналы взаимосвязи могут быть представлены следующей схемой (рис.3).
 
 
 
 
 
  Рис. 3. Система взаимосвязей наук.
 
  Рассмотрим сначала отношения между естественными и техническими науками.
  Без сомнения, технические науки с самого начала развивались в тесных взаимосвязях с естественными науками. Однако уже первые проявления технических наук были не только творческим переложением естественнонаучных данных. Они раскрывали также научное содержание технических проблем и указывали на необходимость их естественнонаучного изучения. Таким образом, уже ранняя техническая мысль стимулировала развитие естественных наук. Термодинамика, возникшая в первой половине 19 века, является типичным примером сказанному. Необходимо также учесть и то, что естественные науки не могли и не могут обходиться без арсенала технико-экспериментальных средств, постоянно расширяемых техническими науками.
  В условиях научно-технической революции эти традиционные связи между естественными и техническими науками приобретают существенно новые черты. Раньше проблема познания законов была прерогативой фундаменталных наук, а выявление возможностей конструирования артефактов - предметом технических наук. В новых научных направлениях эти два ряда исследований находятся в тесной связи. Это, к примеру, характерно для бионики где процесс познания биологических систем непосредственно детерминирован инженерными задачами. Развитие в области полупроводников и микроэлектроники, лазерной и ядерной техники, криофизики, космонавтики или фармацевтики также выявляет зависимость естествоиспытателей от технических наук и технических условий их научной деятельности.
  С тех пор как искусственные технические условия дали естествоиспытателю новые возможности изучения объективных законов, явлений и процессов природы возник вопрос о присутствии технических законов в естественнонаучном исследовании. По мере того как углубляются теории естественонаучных дисциплин инженерная мысль и здесь обретает прочные позиции. Теперь уже становится относительным такое определение предмета естественных наук, которое, исходя из традиционных представлений, видит свою задачу только в отражении нетронутой человеком природы и исследовании "спонтанно" открываемых объективных законов природы. Если быть точным, то вероятно кроме упрощенных описаний элементарных основ естествознания, ни в современной физике, ни в химии, ни в биологии такого положения сегодня не встретишь. Когда физик работает над основами лазерной техники или же химик занимается технологическими условиями модификации твердого, жидкого и газообразного горючего, то его объектом ни в коем случае не является"девственная" природа.
  По мере углубления естественнонаучного обоснования своих выводов и целенаправленного использования законов природы в технических структурах и технологических процессах технические науки усиливают свое влияние на естественнонаучные исследования. Они все чаще ставят перед естествоиспытателями новые проблемы ждущие теоретического решения, помогают естеествоиспытателям в обнаружении новых и углублении исследований традиционных объектов. Так, многочисленные исследования привели к выводу, что применение литых и металлопорошковых деталей в машиностроении можно существенно расширить после того, как физика ответит на вопрос как происходят образование центров кристаллизации и рост кристаллов в технологическом процессе литья. Потребности технических наук стимулируют построение теории нелинейного анализа, технической математики, решаюших сложные теоретические математические проблемы.
  Взаимосвязь естественных и технических наук становится столь органичной, что во многих случаях оказывается затруднительным, а иногда и просто бессмысленным попытаться ответить на вопрос, к каким наукам отнести данное исследование - естственным или техническим. Это видно хотя бы из того, что в некоторых странах лазерную технику по традиции причисляют к физике, а в других странах - к техническим наукам.
  Для современного развития взаимосвязи естественных и технических наук большое значение имеет естественнонаучная и математическая обработка технических проблем. Объем и содержание этой обработки приобретают новое качество. Технические науки в ходе своего развития наряду с исторически первоначально преобладавшими данными эмпирико-описательного характера стали давать выводы теоретико- поясняющего свойства. Теоретическое объяснение существующей или возможной техники все сильнее превращается в условие конструктивных и технологических решений, позволяющих создавать как комплексные технологические процессы, так и соответствующие машины и оборудование. Естественнонаучное и математическое обоснование технических наук вносит существенный вклад в создание теоретических предпосылок. Этот процесс осуществляется разными путями и на разных уровнях. Он предъявляет новые требования как к естественным и техническим наукам, так и к их взаимосвязи. Некоторые моменты этого процесса, столь важного для развития науки и находящегося во многих сферах исследования еще в начальной стадии, следует подчеркнуть особо.
  Прежде всего нужно назвать задачу теоретического объяснения структурных и функциональных связей имеющихся в практически используемых технических средствах и процессах.
  В давно известных машинах, оборудовании, приборах и способах есть еще очень много явлений, которые, будучи эмпирически описанными, не имеют теоретического обоснования. Если учесть, что в технических средствах и процессах всегда присутствуют связи и взаимодействия, не объясненные теоретически, то значительное сокращение их сегодня еще сравнительно большего числа стала насущной задачей технических наук. Естественнонаучное и математическое обоснование технических связей, расматривающихся до сих пор в основном феноменологически, может дать для известных в принципе конструкций и технологий значительный выиграш в скорости и точности, надежности, долговечности, удобстве обслуживания, экологичности. Чем шире удается распознавать и математически описывать действующие в технологических процессах законы природы, тем лучшие условия для их оценки и использования.
  В качестве примера рассмотрим технологию металлообрабатывающей промышленности. Вряд ли можно ожидать что в ближайшие десятилетия ведущие технологии этой отрасли будут потеснены новыми функциональными принципами. Однако автоматизация главных, вспомогательных и второстепенных процессов на базе микроэлектроники позволяет получить существенный рост производительности прежде всего за счет дальнейшего сокращения времени обработки и повышения загрузки технологических систем. Это, в свою очередь, требует для многих отраслей конструирования и технологии научно-технических данных, получивших естественнонаучное и математическое обоснование. Это относится к теоретическим решениям по сокращению стадий технологических процессов, автоматизации процессов сборки, изготовлению деталей, к динамическим и статистическим характеристикам машин. Данные физики, химии и математики в своей совокупности начинают играть здесь все большую роль. Например, без математического моделирования вряд ли можно было бы изучить сложные технологические процессы с их взаимосвязями. Целью подобных исследований является путем теоретически обоснованного усовершенствования до конца использовать все конструктивные и технологические возможности существующей техники.
  Естественнонаучное и математическое обоснование технических наук вносит вклад в совершенствование технических средств и процессов путем использования новых принципов, которые сейчас, как правило, основываются на целесообразном применении современных данных естественных наук и математики.
  Примером этому могут служить способы электрохимической и электроэрозионной обработки металлов, современные способы сварки ( электродуговая сварка плавлением, сварка давлением, сварка в вакууме, электронно-лучевая сварка), развитие гидравлических средств для обработки металлов, новые способы термообработки, манипуляторы, тонкослойное улучшение поверхностей. Все эти факты свидетельствуют о трансформации естественнонаучных данных техническими науками.
  Естественнонаучное и математическое обоснование технических наук продвигается вперед также за счет того, что немало современных технических средств и технологий берут свое начало непосредственно в познании и технологическом применении физических, химических либо биологических эффектов. В этом отношении показательна продукция микроэлектроники, интегральные схемы и технология их изготовления и применение в блоках управления и мини-ЭВМ, которые в значительной мере основаны на последних достижениях естественных наук и математики. Аналогичный характер имеют исследования способов получения и применения тонких пленок, которые уже используются в микроэлектронике, информационной технике и для улучшения металлических поверхностей.
  Эти и другие области тесного взаимодействия естественнонаучных, математических и научно-технических исследований оказывают сильное влияние на процесс теоретического обоснования технических наук в целом. Результаты этих исследований ускоряют разработку научно-технических теорий и одновременно позволяют вводить технологические изменения во многие области техники. Действительно, рациональное и широкое применение таких новых принципов как, например, микроэлектроника, требуют также совершенствования конструктивных и технологических решений в области их применения.
  Большое значение этих технически созданных эффектов для прогресса техники и технических наук в их совокупности не должно однако приводить к выводу о том, что научно значимое должно осуществляться только в этих областях. Без интенсивных исследований почти во всех конструктивных, технологических и металловедческих отраслях системы технических наук было бы нельзя использовать широкие возможности, которые дают техническому прогрессу микроэлектроника, физика пограничных и тонких слоев, математика, цифровые вычислительные устройства и т.д. Опережающее развитие теории во всех технических дисциплинах и углубление их интегративных отношений в этом процессе являются, следовательно, не только результатом, но и обязательной предпосылкой качественно новой ступени развития взаимосвязи технических наук с математикой и естественными науками
  В качестве другого уровня естественнонаучного и математического обоснования технических наук можно назвать целенаправленный и длительный поиск возможностей технического применения природных процессов, которые до настоящего времени почти или вообще не использовались. Речь идет о фундаментальных исследованиях, объединяющих методы естественных, математических и технических наук с целью выработки новых функциональных принципов путем технически направляемого освоения явлений природы. Исследования в этих направлениях весьма разнообразны. Мысли о бионизации производства и создании биологической технологии быстро наполняются реальным содержанием. Изучение органических, проводящих и изолированных пленок, оптоэлектроники, термодинамики необратимых процессов в определенной мере уже реализованы в технической действительности.
  Углубление взаимосвязи технических наук с естественными науками и с математикой не является преходящим явлением в развитии науки, призванным лишь восполнять теоретическое отставание технических наук. Это взаимовлияние и взаимообогащение будет развиваться и далее. Ныне уже видны тенденции этого развития. Прогрессирующее естественнонаучное и математическое обоснование и связанное с этим усиление комплексности и технологической привязанности научно-технических систем повышает технический уровень и интегративные моменты в технических науках.
  Обмен веществ между человеком и природой нельзя сводить к естественному процессу, это - социально-экономический процесс. Средства труда, включающие в себя технические средства и процессы, выступают показателем тех общественных отношений, при которых совершается труд. Поскольку техника является социальным феноменом и выполняет определенные социальные функции, входит в систему социальных связей и отношений, происходит "социологизация" технических наук, все усиливающаяся связь и взаимодействие технических наук с общественными.
  Хотя взаимосвязь технических наук с общественными имеет объективную основу, она не устанавливается автоматически, осуществляется через деятельность ученых, ищущих контакты друг с другом при решении междисциплинарных и комплексных проблем. Для этого должен существовать ряд условий.
  Признание социально-экономической обусловленности технических наук является первым решающим шагом, выводящим инженера из изолированности узкоспециального мышления. В научно-инженерном мышлении происходит качественный переворот, открывается путь способу мышления на основе единства технических наук с общественными.
  Важной предпосылкой и основой углубления взаимосвязей между техническими и общественными науками является более глубокое понимание диалектики теории и практики в научно-технической деятельности. Хотя в технических науках единство теории и практики в элементарном виде присутствует всегда, это не исключает очень узкого взгляда на это отношение. Зачастую связь с практикой сводится в основном к техническим потребителям производства и к некоторым первичным производственно-экономическим параметрам, которые следует учитывать в результате исследования. Общественная практика в широком смысле во внимание не принималась. Вследствие этого, поскольку удовлетворялись лишь частные, эмпирически воспринимаемые требования практики, творческий труд оставался лишь частным трудом. Знание социальных предпосылок научно-технической деятельности открывает новый ход мысли в направлении широко понимаемой практики, ориентированной на социальные критерии.
  Чем глубже ученые, работающие в области технических наук, познают закономерности и явления, тенденции и процессы общественной жизни, тем более они осознают социальную ответственность за свою деятельность, ее социальный смысл, ее гуманистическую ценность.
  Взаимосвязи между техническими и общественными науками сегодня определяются также и вненаучными, практическими соображениями. Эти области научного знания объединяются не столько на почве своей логической общности, сколько на почве ожидаемого практического эффекта.Целью такой практической интеграции является выработка рекомендаций и практических правил поведения (например, в градостроительстве, при формировании окружающей среды, в стратегии развития транспорта, при оценке отдельных географических регионов и т.д.).
  Следовательно социальные условия и знание общественных наук являются факторами, необходимыми для перевода взаимосвязи технических наук с общественными из области объективно необходимого в область реально возможного.
  Взаимосвязь технических наук с естественными и общественными нисколько не отменяет их специфики. Специфические черты технических наук лежат в русле специфики технического знания вообще, о котором уже шла речь. Однако здесь имеются определенные особенности, определяемые своеобразием технических наук как одним из видов технического знания.
  Часто, особенно среди представителей теоретической или если хотите "академической" науки технические науки понимаются как науки низшего ранга или как прикладные отрасли естественных наук. Если лет 200 тому назад это мнение имело некоторые свои основания, то теперь такая точка зрения является не только неправильной, но и вредной. Ныне технические науки совершенно неправомерно представлять прикладным естествознанием, поскольку технические науки обладают собственной, отличной от естественных наук предметной областью, которая является вторая форма объективной реальности - искусственное создание предметов и процессов. Естественные и технические науки имеют свои специфические задачи. Для естественных наук основные задачи сводятся к познанию еще не раскрытых явлений и процессов природы, к овладению их законов. Основные задачи технических наук заключаются в приспособлении новых открытий естественных наук для создания техники и технологии, изучении законов, процессов и явлений не в том виде, в каком они даются природой, а в том, как они проявляются в практико-пребразующей природу деятельности людей. Естествознание открывает, что может быть использовано человеком в процессе его практической деятельности, технические науки - как естественнонаучные знания могут быть использованы в интересах людей. Конечно, естественные науки не оставляют без своего внимания мир техники. Но они отражают физические, химические или биологические процессы, происходящие в технических устройствах, безотносительно к функционированию этих устройств, в то время как технические науки отражают функционирование технических устройств в их связях со строением, структурой этих устройств. В этом плане естественнонаучное знание выступает не целью, а теоретическим средством технического знания и технической практики.
  В последнее время технические науки стали объектом внимания науковедов, экономистов, философов и социологов в работах которых намечены основные аспекты анализа этих наук - организционный, экономический, мировоззренческий, методологический. Наука при этом рассматривается как сложная динамическая система знаний, форма общественного сознания, информационная система, производительная сила. Мы выделяем три основных аспекта науки, понимая ее как особую сферу человеческой деятельности, как систему знаний им как духовную потенцию материального производства (см.24,49-64). Выделение этих аспектов анализа вполне применимо при исследовании технических наук.
  Как особая сфера человеческой деятельности технические науки представляют собой область труда ученых, где ведутся преимущественно прикладные научные исследования, направленные непосредственно на разрешение проблем, возникающих в ходе технической практики людей. Технические науки, с одной стороны, аккумулируют опыт производства, изобретательства, творческой смекалки а , с другой - конкретизируют данные теоретического естествознания, переводят их на инженерный язык для определенной технической или технологической задачи. "Иначе говоря, принадлежа к науке и материальному производству, технические науки обеспечивают "перевод" достижений общественных и естественных наук на язык технических теорий и методов, непосредственно применяемых в сфере производства,- пишет Б.И.Козлов,- и наоборот, обобщают и теоретически осмысливают эмпирические знания и практические задачи, возникающие в процессе производства, для последующей передачи их в сферу фундаментальных исследований" (19,8).
  Человеческая деятельность происходит по законам объективной действительности. Но законы естественных и общественных наук не являются правилами этой деятельности. Для материализации знаний этих законов необходима их дополнительная подготовка, при которой должны учитываться особенности и требования практического отношения к действительности. Это предполагает, что эти знания должны быть приспособлены к конкретной практической цели и задаче, что они получают своеобразный нормативный характер для выбора оптимального варианта решения этой задачи. Короче говоря, подготовка знаний для их материализации требует того, чтобы они были соотнесены с особенностями объекта на который надо воздействовать в конкретной обстановке.
  Теоретические знания вырабатываются на основе практики, производственного опыта, но вне его и представляют собой обобщенный образ, не совпадающий во всех деталях с прообразом. Потому эти знания в "чистом" виде на практике не могут быть использованы и не используются. Выработанные в сфере теоретического мышления знания подчиняются законам науки. Их надо подчинить законам производственной деятельности, превратить из образа объективной действительности в прообраз практического действия. Являясь теоретической основой для выработки правил практического действия, законы теоретического знания из абстрактного знания трансформируются в нормативные правила практического действия. Эта трансформация и является задачей научной деятельности в области технических наук.
  Как духовная потенция материального производства технические науки выступают в качестве элемента производительных сил общества. Именно через технические науки "финиширует" процесс превращения науки в производительную силу общества. Связь естественных наук с практикой не является прямой и непосредственной, она опосредована техническими науками.
  Наконец, как определенная система знаний технические науки представляют собой теоретическое знание, хотя в его составе наличествует большая доля эмпирического материала. Более того, это определенная система знаний, элементами которой являются научные факты, научные понятия, законы науки, принципы науки, научные теории и другие средства фиксации выработанного знания, гипотезы, рекомендации к практическим приложениям, эмпирический материал.
  Все элементы технических наук как системы знаний имеют свою специфику. В технических науках основным источником знания служит эксперимент, непосредственное наблюдение, сбор опытных данных. Главную роль здесь играют методы со значительным преобладанием содержательных средств исследования над формальными. Если в естественных науках образование новых понятий определяется успехами аналитического исследования и обобщением их в теории, то в технических науках новое понятие образуется на основе опыта, результатов естественных наук и использования математического аппарата. В первом случае мысль движется от анализа объективно существующего предмета к понятию, во втором - от знания законов природы к понятию а затем уже к материальному предмету. В последнем случае понятие формируется как образ будущего, еще не существующего предмета.
  Специфичны и технические теории. Они используют понятие теоретического естествознания и вырабатываю свои собственные, являются эмпирически проверяемыми и представляют собой идеализированные модели действительности. Поскольку технические теории призваны описывать связи между характеристиками элементов структуры артефактов и их функционированием, они используют особую идеальную модель объекта - модель структуры объекта. Создается конструкция объекта, составленная из идеальных элементов, которые реализуют идеальный физический процесс. Здесь содержание модели фиксирует существенные черты артефакта и служит основанием теории для определенного типа технического устройства. Задача конструктора сводится к реализации в наибольшей степени свойств идеального объекта в конструктивных элементах. концептуальном плане технические теории беднее, чем теории "чистой" науки, поскольку менее глубоки так как нацелены главным образом на конкретные конечные результаты.
  Что касается законов технических наук, то они также имеют свою специфику. По своей сущности технические законы фиксируют устойчивые, необходимые, существенные и повторяющиеся при наличии определенных условий связи материальных образований технической области человеческой деятельности. В них реализуются строго заданные параметры материальных процессов, позволяющие создавать технические устройства. Законы технических наук являются феноменологическими и динамическими законами, выражающими количественные отношения технических объектов. Базируясь на экспериментальных данных, эти законы не столь точны как законы фундаментальных наук, отражают реальные связи объективного мира лишь приблизительно. Наконец, технические законы имеют ограниченный характер, они не универсальны и всегда имеются причины, ограничивающие сферу их действия.
  Следует сказать и о специфике результатов технических наук, которые выступают не только в логических формах фиксации полученного знания, но и в виде конструктивных и технологических решений, практических рекомендаций, инженерно-справочного материала. То, что в других науках проходит идеализацию, в технических науках реализуется путем моделирования. Но постепенно ( и довольно быстрыми темпами) технические науки из эмпирически сложившихся наук превращаются в систему теоретического знания.
  Технические науки - это сложный комплекс наук, который классифицируется по различным основаниям. Так, технические науки выделяются по отраслям знания, производства, техники. В этом случае речь идет о прикладных исследованиях, опытно-конструкторских разработках и научном обслуживании производственных процессов. Иногда технические науки делятся по предмету знания на науки о материалах, энергии и технических устройствах. Технические науки расчленяются также на науки изучающие структуры, функции и процессные признаки технических объектов. Наконец, выделяются науки, исследующие законы и принципы построения новых технических устройств и представляющие собой теорию использования природных закономерностей в технических устройствах удовлетворяющих общественную практическую потребность, и науки изучающие технологические принципы массового производства и использования технических устройств. В этом случае говорят о технических и технологических науках и утверждают, что первые имеют функции поиска и матариализации технических идей, в вторые - поиск путей скорейшего производства технических устройств и их наилучшего использования для практики.
  Однако в большинстве случаев обычно выделяют общетехнические науки, дающие общую теорию технических систем (теоретическая механика, электротехника, сопротивление материалов, теплотехника, гидравлика, теория механизмов и машин, технология машиностроения и др.) и частные технические науки (технология сварочного производства, станки и инструменты, автоматизация производственных процессов, приборы точной механики, технология литейного производства, робототехника, мехатроника, информатика и др.). Эту структуру технических наук можно считать общепринятой.
  Таким образом, как специфическая область технического знания технические науки представляют собой определенную систему научных знаний, отличную от других областей человеческого знания. Основная ее особенность - нацеленность на практику, на технику. Именно через технические науки осуществляется связь всего корпуса научных знаний с техникой на протяжении всей истории науки и техники. Эта взаимосвязь науки и техники имеет свои определенные этапы и закономерности, о которых дальше и пойдет речь.
 
 
  4. История и логика взаимосвязи
  науки и техники.
  Ныне нет необходимости доказывать, что наука и техника развиваются в тесной взаимозависимости друг с другом. Автоматы и роботы, компьютеры и станки требуют научных знаний как для своего проектирования и конструирования, так и для функционирования. Поскольку техника выступает как материализованное знание, ее существование невозможно без науки. Между техникой как средством человеческой деятельности и наукой как рациональной формой человеческих знаний возникли сложные взаимоотношения, имеющие диалектически противоречивый и исторический характер. История этих взаимоотношений начинается с формирования машинного производства и проходит определенные этапы или фазы.
  Г.Беме выделяет три таких фазы в применении к Западной Европе. Первая фаза (1660-1750 гг.) начинается в эпоху расцвета абсолютизма. Это эпоха дифференциации сфер науки и техники и, вместе с тем, определенной ориентации науки на технику. Появляется техника научных инструментов, формируется технический принцип познания в виде механической картины мира. Вторая фаза начинается с промышленной революции и охватывает весь 20 век. Развитие техники вызывает спрос на науку, что в свою очередь приводит к онаучиванию техники. Научные приборы и инструменты, методы исследования начинают проникать в технику. На третьей фазе взаимный обмен в спросе и предложении между наукой и техникой становится систематическим и стратегически планируемым. Разработка техники осуществляется через построение научной теории. Этот процесс начался во второй половине 19 века и играет все больщую роль в 20 веке (4,109- 110).
  Рассматривая эволюцию науки и техники и взаимоотношения между ними, П.Вайнгард определяет также три фазы этого процесса. На первой фазе (17-18 века) ни техника, ни наука еще не оформились как отдельные системы. Хотя произошла дифференциация теоретических и практических сторон производства знаний, "новая наука" Бэкона и Декарта ускорила временное слияние науки и техники, провозгласила единство истинности и полезности. Вторая фаза (последняя половина 19 века вплоть до 20 века) характеризовалась инстуционализацией науки, ведущей в конечном счете к дифференциации науки и техники. Третья фаза- современная, когда наука и техника восстанавливают свои дружеские отношения. Это эпоха "сциентификации" техники. Технические проблемы достигают такой сложности, что их решение требует научных методов, выработки специальных технических теорий, основанных на систематических экспериментах и на математическом описании. Часто усилия технического исследования переносятся в сферу фундаментального научного исследования, поскольку ученые и инженеры имеют дело с одними и теми же объектами. Опыт как регулятор действия заменяется систематическим знанием (4,133-134).
  В.Г.Горохов отмечает различные точки зрения на соотношение науки и техники, различные модели этого соотношения. Так называемая линейная модель, существующая довольно длительный период времени, рассматривала технику в качестве простого приложения науки или даже - как прикладную науку. Наука и техника в этой модели представляют различные функции, выполняемые одним и тем же способом. В эволюционной модели развитие науки и техники рассматриваются как автономные, но скоординированные. На определенных стадиях своего развития наука использует технику инструментально, техника задает условия для выбора научных вариантов, а наука в свою очередь - технических. Согласно третьей точки зрения наука развивалась опираясь на развитие технических аппаратов и инструментов и представляет собой ряд попыток исследовать способ функционирования этих инструментов. Четвертая точка зрения оспаривает предыдущую и утверждает, что техника научных экспериментов и измерений всегда обгоняла технику повседневной жизни. Наиболее реалистической и исторически обоснованной В.Г.Горохов считает точку зрения, согласно которой вплоть до конца 19 века регулярного применения научных знаний в технической практике не было, но это характерно для технических наук сегодня. Согласно последней точки зрения взаимоотношения между наукой и техникой в ходе своей эволюции прошли четыре этапа. На первом (донаучном) формируются различные типы технических знаний, на втором - происходит зарождение технических наук, на третьем (классическом) строятся ряд фундаментальных технических теорий, наконец, на четвертом (современном) осуществляются комплексные исследования, происходит интеграция технических наук с естественными и общественными и дальнейшее "отпачковывание" технических наук от других областей научного знания (25,305-312).
  Несмотря на определенное различие в понимании содержания основных этапов взаимосвязи науки и техники, исследователи этой проблемы сходны в одном: взаимосвязь науки и техники изменялась на протяжении истории общества по мере развития производства и научного познания окружающего мира.
  Но протяжении большей части своей истории техника и наука развивалась в отрыве друг от друга. Техника ручных орудий труда не требовала для своего развития применения науки и обслуживалась производственным опытом и обыденными знаниями. Наука же еще не обладала знаниями, годными для их технического применения. Положение меняется по мере усложнения техники и развития науки. В дальнейшем взаимоотношения между наукой и техникой развивались от еще неосознаваемого и внешнего единства науки и техники (17-18 века) к их дифференциации (конец 19 - начало 20 века), когда научная и техническая деятельности стали самостоятельными областями человеческой деятельности со своими специфическими признаками, и далее - к органической взаимосвязи науки и техники на современном этапе их функционирования. Безусловно, решающую роль в установлении тесной взаимосвязи между наукой и техникой сыграло появление крупного машинного производства, техника которого, как уже неоднократно указывалось, не могла развиваться и функционировать без сознательного использования науки.
  Рассматривая историю и логику взаимосвязей науки и техники, нужно иметь ввиду, что эти взаимоотношения носят глубоко диалектический характер и абсолютизация, преувеличенное значение одной из тенденций этих взаимоотношений обедняет, а порой искажает их действительную картину. К примеру, нельзя согласиться с мнением, что "отношенеие между естествознанием и техникой должно быть определено по-новому. Скорее естествознание должно быть понято как вторичное следствие техники, чем техника как применение естественной науки"(4,298). В этом случае явно преувеличена роль техники в развитии естествознания и преуменьшено значение науки для развития техники. Основываясь на таких позициях науке отказывают во внутренней логике своего развития и в ее относительной самостоятельности развития и функционирования от практических (в том числе и технических) запросов.
  В действительности, наука и техника находятся во взаимной диалектической взаимосвязи, они воздействуют друг на друга и порой трудно установить их вклад в общее дело этой взаимосвязи. "Если иметь ввиду современную ситуацию, - справедливо пишет Ф.Рапп,- то взаимное переплетение техники и естествознания неоспоримо. При этом речь идет, с одной стороны, об онаучивании техники... Этому противостоит, с другой стороны, технизация естественных наук... Эта технизация, помимо прочего, имеет своим следствием то, что с крупными научными проектами (большая наука) можно справиться лишь с помощью коллективной работы естествоиспытателей и инженеров" (4,277-278).
  Какова же действительная логика взаимосвязи науки и техники на современном этапе их развития? Эта логика определяется определенными закономерностями этой взаимосвязи, к числу главнейших из которых принадлежат: воздействие техники на развитие науки, отсутствие жестко детерминированных связей между наукой и техникой, обратное воздействие науки на развитие техники.
  Можно утверждать. что ныне сложилась система "наука-техника" и указанные закономерности составляют структуру этой системы. То, что в развитой системе лежит одно возле другого, в процессе развития появилось одно вслед за другим. Структура системы есть итог ее развития.
  Воздействие техники на все стороны нашей жизни ныне является очевидным фактом "Технология, - пишет Дж.Грант, - пронизывает собой все наши мысли о мире и о нас самих. Пришествие технологии потребовало изменений в наших представлениях о том, что хорошо, что такое хорошо, как надо понимать здравомыслие и безумие, справедливость и несправедливость, рациональность и иррациональность, красоту и безобразие" (3,161). В числе тех социальных феноменов, на которых техника оказывает влияние, на одном из первых мест стоит наука. Как само возникновение, так и дальнейшее развитие и современное ее функционирование в огромной степени определяются техническими запросами производства.
  Техника играет роль доминанта в развитии и функционировании науки, является первичной по отношению к науке в силу того, что она возникла намного раньше науки, играет (в плане соотношения материального и идеального) по отношению к науке в конечном счете определяющую роль, наконец, потому, что одной из главнейших функций науки является ее удовлетворение запросов техники.
  Воздействие техники на развитие и функционирование науки выступает в качестве одного из основных законов взаимодействия науки и техники.
  Это воздействие техники на науку выражается прежде всего в том, что технические потребности производства на основе выработанного в процессе производственной деятельности опыта и эмпирических сведений выдвигают определенные проблемы, требующие своего научного решения, и тем самым, определяют предмет научного исследования. Действительно, в ходе развития техники возникают такие задачи, которые производственный опыт решить не может. В этом случае сознательно или непреднамеренно производство ставит перед наукой определенные задачи ничего не говоря о том, как их решить. Этими вопросами занимается наука со свойственными ей специфическими средствами и методами.
  В современных условиях зависимость развития науки от технического состояния и потребностей общественного производства усиливается. Это, в частности, выражается в том, что производство не только ставит перед наукой определенные задачи, но и предоставляет науке необходимые материальные средства для их решения, т.е. создает определенную материально-техническую базу науки в виде лабораторного оборудования, научных приборов и пр.
  Когда-то, в период средневековья появляется первое научное оборудование - часы, весы и термометр, получившие название "философских инструментов". Из стен монастырских келий алхимиков они вышли на широкий простор и, в конечном счете, в значительной степени содействовали появлению эмпирического естествознания. Ныне техническая оснащенность науки - это огромный арсенал различных приборов и инструментов, сложного лабораторного оборудования, экспериментальных установок, измерительно-вычислительных систем и комплексов. Вся эта научная аппаратура подразделяется на научные приборы и научные инструменты и выполняет определенные функции в процессе научных исследований.
  В качестве научных приборов она употребляется для расширения и уточнения сенсорного восприятия предметов научного исследования. К научным приборам относятся:
  - средства усиления и преобразования (микроскопы, ускорители частиц, телескопы и пр.).
  - регистрирующие и измеряющие устройства ( счетчики, осциллографы, самозаписывающие устройства, датчики, гальванометры, термометры и пр.).
  В качестве научных инструментов научная аппаратура употребляется для расширения моторных операций субъекта с изучаемым объектом. К научным инструментом относятся:
  - приготовляющие устройства (источники света, генераторы и пр.).
  - изолирующие устройства (защитные экраны, вакуумные приборы и насосы и пр.).
  - устройства, непосредственно осуществляющие воздействие на изучаемый объект (преломляющие среды, призмы для света, магнитные поля, дифракционные решетки и пр.).
  Сейчас благодаря успехам техники научного эксперимента появилась возможность формировать новые научные дисциплины, например, электронная микроскопия. В ближайшем будущем можно ожидать возникновение научных направлений, использующих достоинства квантовых генераторов.
  Появление компьютерной техники оказало стимулирующее влияние на развитие науки. Возникает ряд новых областей математики (например, вычислительная математика). Широкое развитие получают линейное и динамическое программирование, теория игр, которые возникли еще до появления компьютеров. Применение компьютеров способствовало математизации ряда наук биологического и гуманитарного циклов.
  Высокая оснащенность научных исследований освобождает труд ученых от утомительных и кропотливых операций, содержащих многократные повторения одних и тех же манипуляций с прибором, исследуемым объектом и непосредственными данными измерения. Все это экономит труд ученых, повышает его результативность. Максимальная экономия умственного труда путем применения сложного научно-лабораторного оборудования -одна из важнейших закономерностей научно-технического прогресса.
  Раньше успех в научном исследовании в решающей степени зависел от индувидуального мастерства экспериментатора. Сейчас успех в научной деятельности в большой степени зависит и от технической оснащенности научной деятельности. Безусловно, индивидуальные качества ученого, его профессионализм и ныне играют свою роль. Не надо забывать и того, что могут быть и бывают теоретические открытия, открытия "на кончике пера". Однако и они обусловлены в конечном счете глубокими экспериментальными исследованиями, которые невозможны без соответствующей материально-технической базы часто перерастающие в целые промышленные установки (например, ускорители частиц). Теоретические научные исследования, таким образом, не оторваны от материально-технической базы науки, тем более что в настоящее время созданию новой техники эксперимента предшествуют большие теоретические исследования, а научный эксперимент вступает во все более тесную связь с промышленным.
  Техническая оснащенность научных исследований влияет на выбор темы исследования, применяемые в процессе этого исследования методы, ход и темпы исследования, наконец, на достоверность и эффективность результатов проведенных научных изысканий.
  Темы научных исследований для научно-исследовательских институтов и вузов определяются государственными промышленными предприятиями, приватизированными предприятиями, акционерными обществами или научными интересами работников НИИ и вузов. Но в любом случае ученый может приступить к исследованию предлагаемой или им желаемой проблемы если он располагает соответствующей научной аппаратурой и вообще материальной базой.
  Новая материально-техническая база науки оказала сильное воздействие на методы исследования, изменив старые и породив новые. К их числу можно отнести методы аналогии, формализации, моделирования, математической экстраполяции. Техника научных исследований оказывает влияние не только на общенаучные, но и частные методы научного исследования. Так, новая техника эксперимента позволила разработать полярографический метод определения состава вещества вместо применявшихся длительных методов физико-химического анализа. Техника дала астрономии новые методы фотографирования, радиолокации, изучения световых волн, а производство рентгеновских аппаратов - новые методы исследования в физике. химии, биологии и медицине,например, рентгеноспектральный и рентгеноструктурный анализы. Огромное прямо таки революционизирующее воздействие на методы научного исследования оказала информатика. Оснащенность научных исследований техническими средствами, влияя на методы научного исследования, создает условия для превращения их в методы промышленного производства, производственную технологию.
  В зависимости от технической оснащенности исследования находятся его ход и темпы. Конечно последовательность исследования намечается ученым заранее в соответствии с целевым заданием. Однако реальная этапность исследования часто определяется наличествующими техническими средствами. Часто техническая оснащенность работы ученого изменяется, в ходе исследования появляются новые приборы, аппаратура, установки. Это вынуждает ученого изменить сам порядок исследования и оказывает влияние на темпы достижения цели.
  Необходимая достоверность результатов исследования достигается постановкой определенного количества экспериментов. Недостаточная обеспеченность исследования техническими средствами невольно снижает это число экспериментов, а, следовательно, и достоверность полученных выводов. На современном этапе развития науки, вторгшейся в глубинные сокровенные тайны природы, имеющей дело со сложными явлениями и процессами, без высокоточного и высокопроизводительного оборудования немыслимо получение в короткие сроки качественных результатов. Их эффективность будет тем значительнее, чем качественнее проведено исследование, чем оно больше соответствует техническому заданию и чем быстрее внедрено в производство.
  Качество выполнения задания зависит от степени точности изучения определенных явлений и процессов. Вполне естественно, что чем совершеннее научная аппаратура тем точнее ее показатели, параметры и количественные характеристики. Отсюда чем больше техническая оснащенность научных исследований, тем выше ее эффективность.
  Под результатами научного исследования, внедряемыми в производство, ныне все чаще понимают не только полученные наукой определенные конструктивные решения, химические вещества, но и те методы, которыми получены эти результаты. Все чаще методы научного исследования обращаются в технологические приемы. Это делает науку не только родоначальником новой техники, но и технологии производства, а следовательно повышает ее роль в жизнедеятельности людей. Это особенно характерно для технических наук, а также для ядерной физики и химии. Такова история получения чистых веществ, очищения воды и т.д.
  Не только методы научного исследования превращаются в технологические производственные процессы, но и научная аппаратура, созданная для нужд лабораторных исследований, часто возвращается в повседневную жизнь в виде производственного оборудования. Современные телевизионные трубки были катодными трубками - деталью чисто научной аппаратуры, изобретенной в стенах научных лабораторий для измерения массы электрона. Широкое распространение в производстве получили научные приборы и аппаратура, применяемые в аналитической химии: дозиметры, толщиномеры, уровнемеры.
  Воздействие техники на науку выражается и в том, что она выступает в роли критерия истинности научных исследований. От субъективной идеи человек идет к объективной истине через практику и, прежде всего, через практику создания технических устройств. Конечно, истинность тех или иных естественнонаучных результатов можно установить путем их логического доказательства, математического обоснования и т.д. Однако техническая реализация научных идей является высшим критерием их истинности. Отмечая роль техники как критерия истинности естественнонаучных положений, К.А.Тимирязев писал: "Поэтому я и считаю завоевания техники не посторонними отбросами естествознания, а вижу в них логические доводы. Если бы мы не добыли этих практических результатов, то мы не знали бы, к какому прийти заключению. Только те суждения, которые осуществляются на деле, верны"(26,308).
  Это, конечно, не означает, что если те или иные научные идеи не находят в данное время технического или вообще практического применения, то они не верны. Дальнейший прогресс техники может подтвердить истинность тех научных положений, которые до сего времени не имели технического применения.
  Хотя наука все более теоретизируется и в ее содержании имеется большая доля выводного знания, в развитии современной науки, особенно в технических науках, огромную роль продолжает играть эксперимент который превратился в одну из форм практики. Высокое качество научного эксперимента продолжает играть роль обязательного фактора успешного развития науки. Еще большее значение для практики имеет производственный эксперимент, который является сферой соприкосновения науки с техникой. Именно через производственный эксперимент осуществляется обратная связь техники с наукой, вносятся коррективы, оценивается правильность тех или иных научных утверждений.
  Таким образом в механизме взаимоотношения техники с наукой техника является определяющим элементом этого механизма. Технические потребности производства предоставляют науке фактический материал, определяя научную проблематику и, тем самим, предмет исследования; техника вооружает науку материальными средствами для ее познавательной деятельности, создает техническую базу науки; наконец, техническая реализация научных идей является высшим критерием их истинности. В этом плане влияние техники на развитие науки выступает законом взаимосвязи науки и техники.
  Зависимость науки от техники ярко прослеживается как сегодня, так и в исторической ретроспективе. Но правильным ли будет утверждать, что техника - предпосылка любого научного открытия? Можно ли согласиться с положением о том, что "всякое научное открытие, изобретение определяется техническими потребностями общества" ? (27,82). История науки полна примерами открытий, сделанных вне связи не только с техникой, но и с практикой вообще. Достаточно вспомнить имена Коперника, Галилея, Эйнштейна и других ученых. Диалектическому пониманию взаимосвязи науки и техники чуждо вульгарно-материалистическое решение этого вопроса, когда причину любого научного открытия пытаются найти в технических потребностях. Между развитием и функционированием науки и техники нет жестко детерминированных связей. В рамках общей зависимости развития науки от техники наука обладает некоторой самостоятельностью в своем развитии. Эту самостоятельность нельзя абсолютизировать и выдавать науку в качестве независимого от техники явления.
  Относительная самостоятельность развития науки от технических потребностей производства является законом взаимосвязи науки и техники.
  Относительная самостоятельность развития науки проявляется в том, что это развитие может отставать от технических потребностей производства, а может опережать их на много лет, т.е. изменения в науке далеко не всегда определяются изменениями в технике. Как не важна зависимость развития науки от технических нужд производства все особенности развития науки нельзя объяснить только этими нуждами. Эту зависимость мы можем проследить лишь тогда, когда будем рассматривать длительные периоды их развития. Для таких периодов кривая развития науки, в основном, будет идти параллельно кривой развития техники. При рассмотрении же более коротких периодов истории науки и техники обнаруживается отклонение от этой общей закономерности то в одну, то в другую стороны. В последнем случае логика развития науки не совпадает во всех своих деталях с логикой развития техники. Историческую последовательность возникновения и развития наук и появление отдельных научных открытий нельзя механически выводить из закономерной связи, существующей между различными ступенями развития производства.
  Иногда техника ставит перед наукой в явной форме вполне определенные задачи. Но наука еще не развилась настолько, чтобы в данное время их решить. Требуются иногда многие годы для того, чтобы наука прошла необходимые стадии своего развития и у нее появилась возможность решить эти задачи. Сейчас, к примеру, перед наукой стоит задача определения путей управления термоядерной реакцией, которая до сих пор не получила технического решения. Вместе с тем история науки полна и противоположными примерами, когда крупные научные открытия обгоняли технические запросы производства. Такова, к примеру судьба открытия в древнем мире движущей силы водяного пара. Предвидеть судьбу подобных открытий, оценить их практическую значимость дело довольно не легкое.
  В начале исследования того или иного материального объекта наука не подходит к нему утилитарно, только с точки зрения практической пользы этого объекта. Крупнейшие ученые не раз предостерегали против узкого практицизма. Наука приходит к практике потом, но прежде она должна как бы "уйти" от практики и приспособиться к объекту познания, рассмотреть его "в чистом виде" что является одним из принципов диалектической логики.
  Можно было бы привести много примеров относительной самостоятельности науки, примеров, когда научные исследования не диктовались запросами производства, намного обгоняли свое время и лишь впоследствии получили свое практическое применение. При этом, чем более теоретический характер имеют научные исследования, тем менее уловима их связь с практикой.
  В чем же причина того, что логика развития науки не совпадает полностью с логикой развития техники, что наука в своем развитии относительно не зависит от технических потребностей производства?
  Эта относительная самостоятельность вытекает уже из того, что наука и техника хотя и связаны между собой в процессе своего развития и функционирования, все же представляют отличные друг от друга общественные явления, имеющие свои специфические законы не сводимые друг к другу. Деятельность в области науки и техники - это два ряда деятельности людей, тесно связанных друг с другом и имеющих не только общие черты, но и свои особенности.
  Известная свобода науки и техники друг от друга существует еще и потому, что далеко не все научные знания используются в материальном производстве. Как форма общественного сознания наука призвана обслуживать все сферы общественной жизни. с другой стороны, не вся совокупная техника строится только на научных знаниях. В технике большое значение имеет изобретательство, рационализация, мастерство, использование производственного опыта. Необходимо также учесть и то, что научные положения, на которых базируется техника, существуют более длительный срок, чем их конструктивное техническое решение.
  На логику развития науки кроме техники влияют другие общественные явления вплоть до конкретной социально-политической обстановки, связь с другими формами общественного сознания - моралью, философией, политической идеологией и т.д. В силу этого логика науки не может быть зеркальным отображением логики развития техники. Необходимо учесть и то, что характер развития науки и научные теории испытывают также известный отпечаток индивидуальных особенностей ученых-творцов, их личных стимулов.
  На развитие науки влияют и внутренние связи, вытекающие из логики процессов научного познания. Наука всегда система, она не может развиваться отрывочно, эпизодически и под влияние только внешних импульсов. Строго логический переход от одной ступени абстракции к другой, логическая доказательность правомерности выведения каждой новой теории, логическая последовательность в ходе развития научной мысли - все это составляет внутреннюю логику развития науки.
  Существование относительной самостоятельности в развитии науки связано также с необходимостью систематизации имеющихся знаний. Наука время от времени как бы останавливает свой стремительный бег, чтобы навести порядок в своем хозяйстве, привести в строго логическую систему накопившиеся научные факты, согласовать свои теоретические положения.
  Часто достигнутый результат исследования эмпирического материала служит исходным для дальнейшего теоретического исследования, в результате которого получаюется порой выводы, далекие от потребностей практики. Поэтому каждое новое теоретическое положение не только обобщает новый фактический материал, но и обобщает и переосмысливает уже имеющиеся в науке теоретические знания.
  Иногда под влиянием насущных нужд практики отдельные научные положения могут быть выведены и сформулированы без достаточного теоретического обоснования. В истории науки были случаи, когда более сложные объекты познавались раньше простых. Химия начала с молекулы, а не с атома, хотя молекула, состоящая из атомов, является более сложным материальным образованием.
  Относительная независимость науки от технических потребностей производства приводит к тому, что историческая последовательность возникновения наук не совпадает полностью с логикой технического прогресса. Было бы совершенно неправильным вырабатывать стандартную схему, связывающую происхождение всех наук с техническими запросами производства. Если эта зависимость ясно обнаруживается при анализе технических наук, то связь каждой естественной науки, а часто и отдельных ее разделов, с техникой имеет свои особенности, которые можно указать только в общих чертах. Так, производство ставит задачи перед физикой через технические науки, на развитие математики влияет механика и физика.
  В условиях современности наука должна обгонять технику. Но если наука ныне призвана обгонять технику, то она неизбежно уходит подчас в такие теоретические сферы, которые до определенного периода времени не дают никакого практического эффекта. Однако то обстоятельство, что некоторые проблемы, рассматриваемые наукой, не получают непосредственного применения, не дают основание утверждать, что в этом случае научный труд бесполезен. Наука - система развивающихся знаний и для успешного движения вперед той или иной области необходимо равномерно развивать все ее разделы, хотя некоторые из них в определенное время могут не иметь практико-преобразующего значения.
  Теоретические исследования, не приносящие никакой непосредственной практической пользы, дают принципиально новые знания об изучаемых явлениях и процессах и в конечном счете служат основой радикального изменения существующей и создания качественно новой техники. Казалось бы абстрактное, не имеющее практического значения исследование свойств материи рано или поздно приводит к революционным сдвигам в промышленности и тем более глубоким, чем большее чисто научное значение имеет это исследование.
  Убедительный пример того, как самые отвлеченные разделы науки превращаются в основу, на которой создаются новые отрасли промышленности, представляют труды А.Эйнштейна. Вряд ли кто-нибудь мог предвидеть, что открытое им соотношение между массой и энергией станет исходным пунктом для возникновения огромной отрасли промышленности, производящей атомную энергию в мирных и военных целях.
  Относительная самостоятельность развития науки усиливается год от года, что является одной из важных закономерностей. В самом деле, еще столетие тому назад открытия в физических и химических науках были тесно связаны с техническими запросами производства, а их конкретное проявление можно было непосредственно предугадать. Сейчас же очень трудно понять связь между тем или иным научным открытием и той практической его пользой, которое оно дает после длинной цепи разработок.
  Следует иметь в виду, что не наука в целом, а отдельные науки или даже отдельные отрасли наук могут идти впереди техники. Хотя развитие науки в общем плане закономерно зависит от технических запросов производства, наука развивается по своим внутренним закономерностям и в известных пределах эти закономерности на зависят от практики.
  Причины того, что наука на определенном отрезке истории начинает обгонять технику в конечном счете обусловлены развитием этой техники. Потребности самой практики требуют чтобы наука опережала технику, производство в своем развитии. Только в этом случае она может выполнить свою общественную функцию - служить практике, промышленности в качестве своего рода теоретического орудия. Наука обгоняет запросы техники чтобы лучше ее обслуживать.
  Современная техника ставит перед наукой все более и более сложные задачи, для решения которых наука должна познать более глубокие свойства и законы развития тех или иных материальных объектов или процессов. Выполняя эти требования, наука должна как бы расширить сферу своей деятельности, создавать теоретический задел. Логические основы науки все более и более удаляются от данных опыта.
  В силу всех указанных выше обстоятельств во взаимной связи науки и техники проявляется единство двух противоположных тенденций. С одной стороны, возрастает роль техники в развитии науки, усиливается зависимость развития науки от уровня развития и запросов техники. С другой - увеличивается относительная самостоятельность развития науки от техники что проявляется, в частности, в опережении отдельными отраслями науки непосредственных запросов техники и даже в рождении наукой отдельных отраслей техники. Эти противоположные и взаимосвязанные тенденции свидетельствуют о не одинаковых темпах развития техники на ее разных структурных уровнях. Темпы развития техники как источника развития науки являются большими, чем темпы развития самой науки. Этим обеспечивается, с одной стороны, определяющая роль техники по отношению к науке. С другой стороны, темпы развития техники как результата реализации научных знаний ниже темпов роста научных знаний. В силу этого рост научных знаний опережает непосредственные запросы техники. Эти две противоположные тенденции во взаимосвязях науки и техники в современных условиях проявляются настолько ярко, что даже получили свое математическое выражение.
  Определяющая роль производства и техники по отношению к науке выражается формулой
 
 
 
  где S' - количественная характеристика науки, T' - техники, P' - производства, t - времени.
  Опережающее развитие науки по отношению к производству выражается формулой
 
 
  где S - количественная характеристика науки, T - техники, P - производства, t - времени.

<< Пред.           стр. 4 (из 7)           След. >>

Список литературы по разделу