<< Пред. стр. 1 (из 17) След. >>
А.И.Орлов
ЭКОНОМЕТРИКА
Учебник
Москва
"Экзамен"
2002
Содержание
Предисловие - 6
Глава 1. Структура современной эконометрики - 9
1.1. Эконометрика сегодня - 9
1.2. Эконометрика = экономика + метрика - 10
1.3. Структура эконометрики - 11
1.4. Специфика экономических данных - 13
1.5. Нечисловые экономические величины - 15
1.6. Статистика интервальных данных - научное направление на стыке
метрологии и математической статистики - 19
1.7. Эконометрические модели - 20
1.8. Применения эконометрических методов - 22
1.9. Эконометрика как область научно-практической деятельности - 23
1.10. Эконометрические методы в практической и учебной деятельности - 24
Цитированная литература - 26
Глава 2. Выборочные исследования - 27
2.1. Построение выборочной функции спроса - 27
2.2. Маркетинговые опросы потребителей - 30
2.3. Проверка однородности двух биномиальных выборок - 40
Цитированная литература- 44
Глава 3. Основы теории измерений - 45
3.1. Основные шкалы измерения - 46
3.2. Инвариантные алгоритмы и средние величины - 49
3.3. Средние величины в порядковой шкале - 52
3.4. Средние по Колмогорову - 53
Цитированная литература - 54
Глава 4. Статистический анализ числовых величин
(непараметрическая статистика) - 55
4.1. Часто ли распределение результатов наблюдений является
нормальным? - 55
4.2. Неустойчивость параметрических методов отбраковки
резко выделяющихся результатов наблюдений - 59
4.3. Непараметрическое доверительное оценивание
характеристик распределения - 63
4.4. О проверке однородности двух независимых выборок - 67
4.5. Какие гипотезы можно проверять с помощью
двухвыборочного критерия Вилкоксона? - 74
4.6. Состоятельные критерии проверки однородности
для независимых выборок - 83
4.7. Методы проверки однородности для связанных выборок - 86
Цитированная литература - 93
Глава 5. Многомерный статистический анализ - 94
5.1. Оценивание линейной прогностической функции - 94
5.2. Основы линейного регрессионного анализа - 101
5.3. Основные понятия теории классификации - 110
5.4. Эконометрика классификации - 117
Цитированная литература - 123
Глава 6. Эконометрика временных рядов - 124
6.1. Модели стационарных и нестационарных временных рядов,
их идентификация - 124
6.2. Системы эконометрических уравнений - 126
6.3. Оценивание длины периоды и периодической составляющей - 128
6.4. Метод ЖОК оценки результатов взаимовлияний факторов - 136
Цитированная литература - 140
Глава 7. Эконометрический анализ инфляции - 141
7.1. Определение индекса инфляции - 141
7.2. Практически используемые потребительские корзины
и соответствующие индексы инфляции - 145
7.3. Свойства индексов инфляции - 150
7.4. Возможности использования индекса инфляции
в экономических расчетах - 158
7.5. Динамика цен на продовольственные товары в Москве
и Московской области - 162
Цитированная литература - 169
Глава 8. Статистика нечисловых данных - 170
8.1. Объекты нечисловой природы - 170
8.2. Вероятностные модели конкретных видов объектов
нечисловой природы - 182
8.3. Структура статистики объектов нечисловой природы - 194
8.4. Законы больших чисел и состоятельность статистических оценок
в пространствах произвольной природы - 202
8.5. Непараметрические оценки плотности в пространствах произвольной
природы - 213
Цитированная литература - 217
Глава 9. Статистика интервальных данных - 219
9.1. Основные идеи статистики интервальных данных - 219
9.2. Примеры статистического анализа интервальных данных - 224
9.3. Статистика интервальных данных и оценки погрешностей
характеристик финансовых потоков инвестиционных проектов - 227
Цитированная литература - 230
Глава 10. Проблемы устойчивости эконометрических процедур - 231
10.1. Общая схема устойчивости - 236
10.2. Робастность статистических процедур - 236
10.3. Устойчивость по отношению к объему выборки - 239
10.4. Устойчивость по отношению к горизонту планирования - 244
Цитированная литература - 248
Глава 11. Эконометрические информационные технологии - 249
11.1. Проблема множественных проверок статистических гипотез - 249
11.2. Проблемы разработки и обоснования статистических технологий - 253
11.3. Методы статистических испытаний (Монте-Карло) и датчики
псевдослучайных чисел - 262
11.4. Методы размножения выборок (бутстреп-методы) - 265
11.5.Эконометрика в контроллинге - 268
Цитированная литература - 271
Глава 12. Эконометрические методы проведения экспертных исследований
и анализа оценок экспертов - 273
12.1. Примеры процедур экспертных оценок - 273
12.2. Основные стадии экспертного опроса - 276
12.3. Подбор экспертов - 278
12.4. О разработке регламента проведения сбора
и анализа экспертных мнений - 280
12.5. Методы средних баллов - 286
12.6. Метод согласования кластеризованных ранжировок - 289
12.7. Математические методы анализа экспертных оценок - 293
Цитированная литература - 298
Глава 13. Эконометрические методы управления качеством
и сертификации продукции - 300
13.1. Основы статистического контроля качества продукции - 300
13.2. Асимптотическая теория одноступенчатых планов
статистического контроля - 311
13.3. Некоторые практические вопросы статистического контроля
качества продукции и услуг - 313
13.4. Всегда ли нужен контроль качества продукции? - 317
13.5. Статистический контроль по двум альтернативным признакам
и метод проверки их независимости по совокупности малых
выборок - 324
13.6. Эконометрика качества и сертификация - 331
Цитированная литература - 338
Глава 14. Эконометрика прогнозирования и риска - 340
14.1. Методы социально-экономического прогнозирования - 340
14.2. Основные идеи технологии сценарных экспертных прогнозов - 346
14.3. Различные виды рисков - 349
14.4. Подходы к управлению рисками - 355
Цитированная литература - 357
Глава 15. Современные эконометрические методы - 359
15.1. О развитии эконометрических методов - 359
15.2. Точки роста - 362
15.3. О некоторых нерешенных вопросах эконометрики и
прикладной статистики - 370
15.4. Высокие статистические технологии и эконометрика - 376
Цитированная литература - 385
Приложение 1. Вероятностно-статистические основы эконометрики - 388
П1-1. Определения терминов теории вероятностей и прикладной
статистики - 388
П1-2. Математическая статистика и ее новые разделы - 410
Цитированная литература - 413
Приложение 2. Нечеткие и случайные множества - 415
П2-1. Законы де Моргана для нечетких множеств - 415
П2-2. Дистрибутивный закон для нечетких множеств - 415
П2-3. Нечеткие множества как проекции случайных множеств - 416
П2-4. Пересечения и произведения нечетких и случайных множеств - 419
П2-5. Сведение последовательности операций над нечеткими множествами
к последовательности операций над случайными множествами - 420
Цитированная литература - 423
Приложение 3. Методика сравнительного анализа родственных эконометрических моделей - 424
П3-1. Общие положения - 424
П3-2. Родственные математические модели - 424
П3-3. Теоретические единичные показатели качества - 426
П3-4. Эмпирические единичные показатели качества - 427
П3-5. Методы согласования ранжировок - 428
П3-6. Методы проверки согласованности, кластеризации и усреднения ранжировок - 428
П3-7. Пример сравнения родственных математических моделей на основе эмпирических единичных показателей качества - 429
П3-8. Математические основы методов согласования ранжировок и классификаций - 432
П3-9. Теоретические основы методов проверки согласованности, кластеризации и усреднения ранжировок - 436
Цитированная литература - 437
Приложение 4. Примеры задач по эконометрике - 438
Глава 1. Структура современной эконометрики
Эконометрика - это наука, изучающая конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей (Энциклопедический Словарь). Эконометрические методы - это прежде всего методы статистического анализа конкретных экономических данных, естественно, с помощью компьютеров. В нашей стране они пока сравнительно мало известны, хотя именно у нас наиболее мощная научная школа в области основы эконометрики - теории вероятностей. В настоящей главе дается общее представление о структуре и возможностях эконометрики, включая ее последние достижения.
Что дает эконометрика для формирования мышления менеджера и экономиста? Почему необходимо учить будущих экономистов и менеджеров эконометрике? Эти вопросы - центральные для нашего обсуждения.
1.4. Эконометрика сегодня
Статистические (эконометрические) методы используются в зарубежных и отечественных экономических и технико-экономических исследованиях, работах по управлению (менеджменту). Применение прикладной статистики и других статистических методов дает заметный экономический эффект. Например, в США - не менее 20 миллиардов долларов ежегодно только в области статистического контроля качества. В 1988 г. затраты на статистический анализ данных в нашей стране оценивались в 2 миллиарда рублей ежегодно [1]. Согласно расчетам сравнительной стоимости валют на основе потребительских паритетов (см. главу 7), эту величину можно сопоставить с 2 миллиардами долларов США. Следовательно, объем отечественного "рынка статистических и эконометрических услуг" был на порядок меньше, чем в США, что совпадает с оценками и по другим показателям, например, по числу специалистов.
Публикации по новым статистическим методам, по их применениям в технико-экономических исследованиях, в инженерном деле постоянно появляются, например, в журнале "Заводская лаборатория", в секции "Математические методы исследования". Надо назвать также журналы "Автоматика и телемеханика" (издается Институтом проблем управления Российской академии наук), "Экономика и математические методы" (издается Центральным экономико-математическим институтом РАН).
Однако необходимо констатировать, что для большинства менеджеров, экономистов и инженеров эконометрика является экзотикой. Это объясняется тем, что в вузах современным статистическим методам почти не учат. Во всяком случае, по состоянию на 2001 г. каждый квалифицированный специалист в этой области - самоучка.
Этому выводу не мешает то, что в вузовских программах обычно есть два курса, связанных со статистическими методами. Один из них - "Теория вероятностей и математическая статистика". Этот небольшой курс читают специалисты с математических кафедр и успевают дать лишь общее представление об основных понятиях математической статистики. Кроме того, внимание математиков обычно сосредоточено на внутриматематических проблемах, их больше интересует доказательства теорем, а не применение современных статистических методов в задачах экономики и менеджмента. Другой курс - "Статистика" или "Общая теория статистики", входящий в стандартный блок экономических дисциплин. Его читают экономисты, не всегда хорошо подкованные в математике. Фактически он является введением в прикладную статистику и содержит первые начала эконометрических методов (по состоянию на 1900 г.). Учебники по "Общей теории статистики" являются неисчерпаемой копилкой математико-статистических ошибок, они порождают поток публикаций, разоблачающих эти ошибки (см., например, [2]). Ничего удивительного в этом нет - такие учебники писали и пишут высококвалифицированные в своей области экономисты, однако они, как правило, плохо знают математику.
Эконометрика (как учебный предмет) призвана, опираясь на два названных вводных курса, вооружить экономиста, менеджера, инженера современным эконометрическим инструментарием, разработанным за последние 50-70 лет. Не владея эконометрикой, отечественный специалист - менеджер и инженер - оказывается неконкурентоспособным по сравнению с зарубежным. Во многих странах мира - Японии и США, Франции и Швейцарии, Перу и Ботсване и др. - статистическим методам обучают в средней школе, ЮНЕСКО постоянно проводят конференции по вопросам такого обучения [3] . В СССР и СЭВ, а теперь - по плохой традиции - и в России игнорируют этот предмет в средней школе и лишь слегка затрагивают его в высшей. Результат на рынке труда очевиден - снижение конкурентоспособности специалистов.
Обсудим сложившуюся ситуацию, уделив основное внимание статистическим методам в экономических и технико-экономических исследованиях, т.е. эконометрике.
1.5. Эконометрика = экономика + метрика
Сначала необходимо выяснить, что обычно понимают под эконометрикой. Затем обсудим современное состояние эконометрики как научно-практической дисциплины.
Во вводных монографиях по экономической теории, как правило, выделяют в качестве ее разделов макроэкономику, микроэкономику и эконометрику. При этом о макроэкономике и микроэкономике обычно подробно рассказывается в тех же монографиях или в дальнейших учебных пособиях, в то время как об эконометрике узнать что-либо самостоятельно российскому студенту почти невозможно. Лишь в последнее время появились отдельные курсы в нескольких московских экономических вузах и соответствующие учебники, увы, трактующие ее крайне узко.
В одном из наиболее распространенных в России вводном курсе западной экономической теории сказано: "Статистический анализ экономических данных называется эконометрикой, что буквально означает: наука об экономических измерениях" [4, с.25]. Действительно, термин "эконометрика" состоит из двух частей: "эконо-" - от "экономика" и "-метрика" - от "измерение". Эконометрика (в другом русско- и англоязычном варианте названия этой дисциплины - эконометрия) входит в обширное семейство дисциплин, посвященных измерениям и применению статистических методов в различных областях науки и практики. К этому семейству относятся, в частности, биометрика (или биометрия), технометрика, наукометрия, психометрика, хемометрика (наука об измерениях и применении статистических методов в химии). Особняком стоит социометрия - этот термин закрепился за статистическими методами анализа взаимоотношений в малых группах, т.е. за небольшой частью такой дисциплины, как статистический анализ в социологии. Эконометрика, как и другие "метрики", посвящена развитию и применению статистических методов в конкретной области науки и практики - в экономике, прежде всего в теории и практике менеджмента.
В мировой науке эконометрика занимает достойное место. Нобелевские премии по экономике получили эконометрики Ян Тильберген, Рагнар Фриш, Лоуренс Клейн, Трюгве Хаавельмо. В 2000 г. к ним добавились еще двое - Джеймс Хекман и Дэниель Мак-Фадден. Выпускается ряд научных журналов, полностью посвященных эконометрике, в том числе:
Journal of Econometrics (Швеция),
Econometric Reviews (США),
Econometrica (США),
Sankhya. Indian Journal of Statistics. Ser.D. Quantitative Economics (Индия),
Publications Econometriques (Франция).
Однако в нашей стране по ряду причин эконометрика не была сформирована как самостоятельное направление научной и практической деятельности, в отличие, например, от Польши, которая стараниями О.Ланге и его коллег покрыта сетью эконометрических "институтов" (в российской терминологии - кафедр вузов). В настоящее время в России начинают развертываться эконометрические исследования, в частности, начинается широкое преподавание этой дисциплины.
Кратко рассмотрим в настоящей главе современную структуру эконометрики. Знакомство с ней необходимо для обоснованных суждений о возможностях применения эконометрических методов и моделей в экономических и технико-экономических исследованиях.
1.3. Структура эконометрики
В эконометрике, как дисциплине на стыке экономики (включая менеджмент) и статистического анализа, естественно выделить три вида научной и прикладной деятельности (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):
а) разработка и исследование эконометрических методов (методов прикладной статистики) с учетом специфики экономических данных;
б) разработка и исследование эконометрических моделей в соответствии с конкретными потребностями экономической науки и практики;
в) применение эконометрических методов и моделей для статистического анализа конкретных экономических данных.
Кратко рассмотрим три только что выделенных вида научной и прикладной деятельности. По мере движения от а) к в) сужается широта области применения конкретного эконометрического метода, но при этом повышается его значение для анализа конкретной экономической ситуации. Если работам вида а) соответствуют научные результаты, значимость которых оценивается по общеэконометрическим критериям, то для работ вида в) основное - успешное решение задач конкретной области экономики. Работы вида б) занимают промежуточное положение, поскольку, с одной стороны, теоретическое изучение эконометрических моделей может быть весьма сложным и математизированным (см., например, монографию [5]), с другой - результаты представляют интерес не для всей экономической науки, а лишь для некоторого направления в ней.
Прикладная статистика - другая область знаний, чем математическая статистика. Это четко проявляется и при преподавании. Курс математической статистики состоит в основном из доказательств теорем, как и соответствующие учебные пособия. В курсах прикладной статистики и эконометрики основное - методология анализа данных и алгоритмы расчетов, а теоремы приводятся как обоснования этих алгоритмов, доказательства же, как правило, опускаются (их можно найти в научной литературе). Внутренняя структура статистики как науки была выявлена и обоснована при создании в 1990 г. Всесоюзной статистической ассоциации (см., например, статью [6]). Прикладная статистика - методическая дисциплина, являющаяся центром статистики. При применении к конкретным областям знаний и отраслям народного хозяйства получаем научно-практические дисциплины типа "статистика в промышленности", "статистика в медицине" и др. С этой точки зрения эконометрика - это "статистические методы в экономике". Математическая статистика играет роль математического фундамента для прикладной статистики. К настоящему времени очевидно четко выраженное размежевание этих двух научных направлений. Математическая статистика исходит из сформулированных в 1930-50 гг. постановок математических задач, происхождение которых связано с анализом статистических данных. В настоящее время исследования по математической статистике посвящены обобщению и дальнейшему математическому изучению этих задач. Поток новых математических результатов (теорем) не ослабевает, но новые практические рекомендации по обработке статистических данных при этом не появляются. Можно сказать, что математическая статистика как научное направление замкнулась внутри себя. Сам термин "прикладная статистика", используемый с 1960-х годов, возник как реакция на описанную выше тенденцию. Прикладная статистика нацелена на решение реальных задач. Поэтому в ней возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими методами, т.е. путем доказательства теорем. Большую роль играет методологическая составляющая - как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.
Рассматриваемое соотношение математической и прикладной статистик отнюдь не являются исключением. Как правило, математические дисциплины проходят в своем развитии ряд этапов. Вначале в какой-либо прикладной области возникает необходимость в применении математических методов и накапливаются соответствующие эмпирические приемы (для геометрии это - "измерение земли" в т.н. Древнем Египте). Затем возникает математическая дисциплина со своей аксиоматикой (для геометрии это - время Евклида). Затем идет внутриматематическое развитие и преподавание (считается, что большинство результатов элементарной геометрии получено учителями гимназий в XIX в.). При этом на запросы исходной прикладной области перестают обращать внимание, и та порождает новые научные дисциплины (сейчас "измерением земли" занимается не геометрия, а геодезия и картография). Затем научный интерес к исходной дисциплине иссякает, но преподавание по традиции продолжается (элементарная геометрия до сих пор изучается в средней школе, хотя трудно понять, в каких практических задачах может понадобиться, например, теорема о том, что высоты треугольника пересекаются в одной точке). Следующий этап - окончательное вытеснение дисциплины из реальной жизни в историю науки (объем преподавания элементарной геометрии в настоящее время постепенно сокращается, в частности, ей все меньше уделяется внимания на вступительных экзаменах в вузах). К интеллектуальным дисциплинам, закончившим свой жизненный путь, относится средневековая схоластика. Как отмечает проф. МГУ им. М.В. Ломоносова В.Н.Тутубалин [7], теория вероятностей и математическая статистика успешно двигаются по ее пути - вслед за элементарной геометрией.
Подведем итог. Хотя статистические данные собираются и анализируются с незапамятных времен (см., например, Книгу Чисел в Ветхом Завете), современная математическая статистика как наука была создана, по общему мнению специалистов, сравнительно недавно - в первой половине ХХ в. Именно тогда были разработаны основные идеи и получены результаты, излагаемые ныне в учебных курсах математической статистики. После чего специалисты по математической статистике занялись внутриматематическими проблемами, а для теоретического обслуживания проблем практического анализа статистических данных стала формироваться новая дисциплина - прикладная статистика. (Ее центральным печатным органом в нашей стране является упомянутая выше секция "Математические методы исследования" журнала "Заводская лаборатория", где за последние 30 лет опубликовано более 1000 статей по прикладной статистике.)
В настоящее время статистическая обработка данных проводится, как правило, с помощью соответствующих программных продуктов. Разрыв между математической и прикладной статистикой проявляется, в частности, в том, что большинство методов, включенных в статистические пакеты программ (например, в заслуженные Statgraphics и SPSS или в более новую систему Statistica), даже не упоминается в учебниках по математической статистике. В результате специалист по математической статистике оказывается зачастую беспомощным при обработке реальных данных, а пакеты программ применяют (что еще хуже - и разрабатывают) лица, не имеющие необходимой теоретической подготовки. Естественно, что они допускают разнообразные ошибки (напомним, анализ типовых ошибок при применении критериев согласия Колмогорова и омега-квадрат дан в [2]), в том числе в таких ответственных документах, как государственные стандарты по статистическим методам (ниже подробнее рассказано об удручающих результатах анализа этих стандартов; итоги суммированы в статье [8]).
Ситуация с внедрением современных статистических (эконометрических) методов на предприятиях и в организациях различных отраслей народного хозяйства противоречива. К сожалению, при развале отечественной промышленности в 1990-е годы больше всего пострадали структуры, наиболее нуждающиеся в эконометрических методах - службы качества, надежности, центральные заводские лаборатории и др. Однако толчок к развитию получили службы маркетинга и сбыта, сертификации, прогнозирования, инноваций и инвестиций, которым также полезны различные эконометрические методы, в частности, методы экспертных оценок.
1.5. Специфика экономических данных
Для анализа экономических данных могут применяться все разделы прикладной статистики, а именно:
статистика случайных величин;
многомерный статистический анализ;
статистика временных рядов и случайных процессов;
статистика объектов нечисловой природы, в том числе статистика интервальных данных.
Перечисленные четыре области выделены на основе математической природы элементов выборки: в первой из них это - числа, во второй - вектора, в третьей - функции, в четвертой - объекты нечисловой природы, т.е. элементы пространств, в которых нет операций сложения и умножения на число. Примерами объектов нечисловой природы являются значения качественных признаков, бинарные отношения (ранжировки, разбиения, толерантности), последовательности из 0 и 1, множества, нечеткие множества, интервалы, тексты (см. главы 8 и 9 ниже)..
Как и для применений статистических методов в иных областях, в эконометрике решаются задачи описания данных (в том числе усреднения), оценивания, проверки гипотез, восстановления зависимостей, классификации объектов и признаков, прогнозирования, принятия статистических решений и др.
Однако в некоторых отношениях экономические данные отличаются от технических или астрономических, и эти отличия необходимо учитывать при выборе методов анализа конкретных экономических данных.
Многие экономические показатели неотрицательны. Значит, их надо описывать неотрицательными случайными величинами. А вот нормальные распределения принципиально не подходят, поскольку для них вероятность отрицательных значений всегда положительна.
Экономические процессы развиваются во времени, поэтому большое место в эконометрике занимают вопросы анализа и прогнозирования временных рядов, в том числе многомерных. При этом в одних задачах больше внимания уделяют изучению трендов (средних значений, математических ожиданий), например, при анализе динамики цен. В других же - важны отклонения от средней тенденции, например, при применении контрольных карт (карт Шухарта, кумулятивных сумм и др.). Однако в целом спектральный анализ и выделение различных периодов, циклов и типов волн менее распространены, чем, скажем, в биометрике и медицине.
В экономике доля нечисловых данных существенно выше, чем в технике и технологии, соответственно больше применений для статистики объектов нечисловой природы (ниже разберем это утверждение подробнее).
Количество изучаемых объектов в экономическом исследовании часто ограничено в принципе, поэтому обоснование вероятностных моделей в ряде случаев затруднено. Уникальные объекты, например, город Москва, трудно рассматривать как элемент выборки из генеральной совокупности с каким-то определенным распределением, поскольку подобное рассмотрение противоречит здравому смыслу. Вспоминается давняя обложка журнала "Крокодил", на которой изображены два хозяйственника с монетой в руках: "Если упадет орлом, будем строить завод, если решкой - не будем". Подобная рандомизация решений выглядит бессмысленной при принятии ровно одного решения, однако при контроле качества в массовом производстве такой подход оправдан.
Поэтому в эконометрике часто применяются детерминированные методы анализа данных, в отличие от, например, технических наук, в которых обычным является использование вероятностных моделей. Неопределенность приходится описывать не в терминах вероятностно-статистических моделей, а иными способами, например, в терминах теории нечеткости (fuzzy sets theory) или математики и статистики интервальных данных.
Есть два принципиально различных подхода к изучению поведения организаций и людей. Согласно первому из них вполне допустимо описывать действия человека в вероятностных терминах, например, считать его ответ на заданный вопрос случайной величиной. Сторонники второго подхода полагают, что поведение человека или организации является детерминированным, определяется теми или иными причинами, а случайность при анализе выборки возникает лишь из-за случайности при отборе лиц для опроса или предприятий для изучения. Если ответ на вопрос имеет вид "да" - "нет", то число ответов "да" при первом подходе, как известно, имеет биномиальное распределение, а при втором - гипергеометрическое. К счастью для эконометриков, при увеличении объема генеральной совокупности эти два распределения сближаются (если доля выборки в генеральной совокупности мала, например, меньше 10%, то вместо гипергеометрического распределения можно использовать биномиальное), так что при обоих подходах можно применять одни и те же эконометрические методы, не тратя сил на решение философского вопроса о детерминированности или случайности поведения экономического агента- человека или организации.
Итак, специфика эконометрики проявляется не в перечне применяемых для анализа конкретных экономических данных статистических методов, а в частоте использования тех или иных методов.
1.5. Нечисловые экономические величины
В теоретических и практических задачах экономики и менеджмента постоянно используются различные величины, обычно рассматриваемые как числовые. Например, рыночная цена товара, прибыль предприятия, индекс инфляции, валовой внутренний продукт, чистая приведенная величина для потока платежей и т.д. При более тщательном анализе оказывается, что подобные величины не имеют определенного численного значения, они размыты, имеют нечисловой характер, и описывать их следует с помощью нечисловых математических понятий, относящихся к тем или иным классам объектов нечисловой природы, таким, как нечеткие множества, интервалы, распределения вероятностей и др.
Действительно, можно ли считать, что существует рыночная цена на некоторый товар, выраженная числом? Рассмотрим всем привычный товар - хлеб. Для определенности рассмотрим стандартный батон белого хлеба, который стоил 25 копеек в 1990 г. В настоящее время (июнь 2001 г.) в различных торговых точках Москвы его можно купить по ценам от 6 руб. 50 коп. до 7 руб. 30 коп. Сотрудники Института высоких статистических технологий и эконометрики в течение нескольких лет собирала информацию о ценах на 35 продовольственных товаров в 11 "точках" Москвы и Подмосковья (итоги подведены в статье [9]), и максимальная из отмеченных цен превышала минимальную, как правило, на 30-50%. Можно говорить о цене товара при конкретном акте купли-продажи, при покупке в конкретном магазине, но нельзя говорить о конкретном числовом значении рыночной цены товара. Так, говорить о "рыночной цене" конкретной квартиры (не в новостройке) бессмысленно. Цена выявится только в результате соглашения продавца и покупателе при совершении акта купли-продажи. С другой стороны, полностью отказываться от этого укоренившегося в литературе понятия нецелесообразно. Мы предлагаем принять, что рыночная цена - объект нечисловой природы, и описывать ее для стандартного батона белого хлеба, например, в виде интервала [6,50; 7,30] руб.
Анализируя реальные данные, убеждаемся, что интервальный характер имеют рыночные цены на двигатели, черный и цветной металл, сплавы, электроэнергию, нефть, бензин, автоприборы и автомобили, трактора, различные виды приводной техники и другие промышленные товары, точно так же как и на разнообразные услуги. Цены зависят от конкретного договора между поставщиком и потребителем. Часто появляется дополнительный мешающий фактор - инфляция. Так, с сентября 1995 г. по январь 1996 г. доллар США подешевел в нашей стране почти в 2 раза (если сравнивать по покупательной способности в области продовольственных товаров).
Нечисловой характер имеют не только цены. При обсуждении понятия "прибыль предприятия" начнем с очевидной бессмысленности выражения "максимизация прибыли" без указания интервала времени, за который прибыль максимизируется. Только задав интервал времени, можно принять оптимальные решения и рассчитать ожидаемую прибыль. Ясно, что оптимальные решения зависят от интервала планирования. Известная в экономической теории проблема "горизонта планирования" состоит в том, что оптимальное поведение зависит от того, на какое время вперед планируют, а выбор этого горизонта не имеет рационального обоснования. В монографии [5] рассмотрен ряд примеров указанной зависимости и предложено использовать асимптотически оптимальные планы. Дополнительная сложность состоит в том, что будущая прибыль не может быть определена точно, а потому сама должна описываться как объект нечисловой природы. Итак, задача "максимизации прибыли" может приобрести точный смысл, например, лишь как максимизация нечеткой прибыли на нечетком интервале времени. Оптимизация в случае нечетких переменных рассматривалась в литературе (см., например, [10]), однако пока не получила широкого практического внедрения.
Для приведения экономических величин к одному моменту времени (к сопоставимым ценам) используются индексы инфляции, в другой терминологии, дефляторы. Рассчитывают их с помощью тех или иных потребительских корзин. При этом на нечеткость "рыночных цен" товаров накладывается произвол в выборе состава потребительской корзины и объемов потребления. Теоретический анализ этой ситуации привел нобелевского лауреата по экономике В.В.Леонтьева к выводу о принципиальной невозможности сравнения экономических величин, относящихся к различным моментам времени [11]. Возможный выход состоит в задании индекса инфляции в интервальном виде. Так, расчеты по собранным Институтом высоких статистических технологий и эконометрики данным о ценах показывают, что для Москвы индекс инфляции с марта 1991 г. по апрель 1999 г. описывается интервалом [21,5; 24,0] (при использовании деноминированных рублей).
Еще более размыты обобщенные макроэкономические показатели типа "валового внутреннего продукта" (ВВП), особенно при их сравнении по годам и странам. По мнению известного экономиста О.Моргенштерна [12] подобные макроэкономические показатели могут быть определены лишь с точностью 5-10%. Однако, если пользоваться одной и той же методикой расчета, то можно заметить и изменения в 0,1 %. Проблема в том, что сама методика может вызывать сомнения. Например, по применяемой Госкомстатом РФ "системе национальных счетов" банковские услуги составляют 13% ВВП. С точки зрения здравого смысла это - абсурдно высокая величина. Она объясняется тем, что, например, выдача кредита в 1 миллион рублей рассматривается как услуга стоимостью в 1 миллион рублей, эквивалентная выпечке и продаже 150 000 батонов хлеба. При всей высокой оценке тяжкого труда банковских боссов, клерков и охранников трудозатраты крестьян, мукомолов, пекарей, транспортников и продавцов 150 000 батонов хлеба, очевидно, несоизмеримо выше.
Нечеткость в неявной форме присутствует и в натуральных показателях. Пусть, например, выпущена партия из 1000 автомашин определенной марки. Нечеткость, связанная с этой партией, состоит в неопределенности реального срока службы автомашин, полезных и вредных эффектов от их эксплуатации. Для снятия этих неопределенностей необходимо, в частности, экономически оценить потери от гибели людей в автокатастрофах. Сколько стоит жизнь человека? При всем уважении к оценкам страховых компаний сама постановка этого вопроса вызывает неловкость. Многие этические и религиозные учения исходят из бесценности человеческой жизни. Из-за принципиальной недопустимости выражения стоимости человеческой жизни в денежных единицах не получили распространения, в частности, методы статистического контроля качества, основанные на учете народнохозяйственного ущерба от пропуска дефектных изделий при контроле.
Более подробно рассмотрим проблемы управления инвестиционными процессами. Одна из них - проблема сравнения инвестиционных проектов. С чисто финансовой точки зрения такой проект - это финансовый поток (cash flow), другими словами, поток платежей и поступлений, т.е. последовательность моментов времени, каждому из которых соответствует некоторая величина платежей (для определенности учитываем их со знаком "минус") или поступлений (учитываем со знаком "плюс"). Как оценивать такие потоки в целом, как их сравнивать? Из многих характеристик потоков платежей рассмотрим здесь две - чистую приведенную величину, называемую в отечественных публикациях также чистой текущей стоимостью или чистым дисконтированным доходом (есть и иные названия) и обозначаемую NPV (Net Present Value), и внутреннюю норму доходности, или прибыли IRR (Internal Rate of Return).
При определении NPV, как известно, для приведения величин платежей и поступлений к одному моменту времени используется постоянный дисконт-фактор. В реальности дисконт-фактор не является заранее известной функцией от времени и зависит от динамики как макроэкономических показателей - ставки рефинансирования Центрального банка РФ и индекса инфляции, так и микроэкономических - финансового положения инвестора, кредитной и депозитной ставок конкретного банка и др.. Кроме того, размеры и моменты осуществления платежей и поступлений также могут быть известны лишь с некоторой точностью. Следовательно, как функция от неопределенных (размытых) величин такая характеристика инвестиционного проекта, как NPV, сама является неопределенной. Лишь частично эту неопределенность можно снять, рассматривая NPV как функцию одной независимой переменной - дисконт-фактора. Если все перечисленные неопределенности можно описать интервалами (т.е. задать границы - "от" и "до"), то NPV также описывается интервалом, границы которого можно рассчитать с помощью подходов, развитых в статистике интервальных данных (см. главу 9 ниже). В результате в ряде случаев становится невозможным сделать однозначный выбор при сравнении двух инвестиционных проектов по NPV. Дело в том, что сравнение чисел можно провести всегда, а сравнение интервалов - лишь тогда, когда они не пересекаются. Если же пересекаются - целесообразно заявить об эквивалентности двух рассматриваемых инвестиционных проектов по чистой текущей стоимости NPV.
Внутренняя норма доходности IRR - это значение постоянного дисконт-фактора q, при котором NPV как функция q обращается в 0. К сожалению, как хорошо известно, при "неудачном" распределении поступлений и платежей уравнение NPV(q) = 0 может иметь не одно, а много решений. В литературе указывают и некоторые иные причины, по которым IRR нецелесообразно использовать для сравнения потоков платежей. Кроме того, в случае IRR имеются те же источники неопределенности, что и для NPV - размытость дисконт-фактора, моментов и величин поступлений и платежей. Эта размытость приводит к необходимости рассматривать IRR как интервал, а при непустоте пересечения интервалов, соответствующих двум инвестиционным проектам, сравнение этих проектов сводится к утверждению об их равноценности.
Итак, рассмотренные характеристики инвестиционных проектов NPV и IRR, как и любые иные, имеют неустранимые неопределенности. Игнорировать это объективное обстоятельство, завышать точность экономических расчетов - это значит обманываться самому либо вводить в заблуждение заказчиков расчетов.
Как же поступать при анализе инвестиционных проектов? Рассмотрим два корректных подхода к такому анализу. Во-первых, можно постараться явным образом учесть имеющиеся неопределенности (в том числе перечисленные выше) и применить те или иные способы анализа неопределенных величин, в частности, разработанные в теории нечеткости и в статистике объектов нечисловой природы (см., например, монографии [5,10]). Другими словами, требуется более тщательный экономико-математический анализ ситуации, предполагающий построение соответствующих эконометрических моделей, разработку и/или применение необходимого программного обеспечения. А для этого нужны обученные кадры, время и деньги.
Во-вторых, вместо расчетов можно обратиться к интуиции специалистов, применив современные методы экспертных оценок (см. ниже главу 12), в частности, основанные на сборе оценок экспертами нечисловых экономических величин и их анализе методами статистики объектов нечисловой природы. Для практического использования представляется перспективным оценивание в виде интервалов (частный случай применения теории нечетких множеств) и соответственно их анализ методами статистики интервальных данных. Применение комбинированных подходов, предполагающих использование систем, интегрирующих как эконометрические и экономико-математические модели, так и методы экспертных оценок - пока дело будущего.
1.10. Статистика интервальных данных - научное направление на стыке метрологии и математической статистики
В статистике интервальных данных (СИД) элементами выборки являются не числа, а интервалы, в частности, порожденные наложением ошибок измерения на значения случайных величин. Подробнее этот сравнительно новый, но весьма перспективный раздел эконометрики рассмотрим в главе 9. Здесь дадим лишь общее представление о статистике интервальных данных в сравнении с классической математической статистикой. Прежде всего отметим, что СИД входит в теорию устойчивости (робастности) статистических процедур и примыкает к интервальной математике. В СИД изучены практически все задачи классической прикладной математической статистики, в частности, задачи регрессионного анализа, планирования эксперимента, сравнения альтернатив и принятия решений в условиях интервальной неопределенности и др. Основная идея СИД является общеинженерной - каждая величина должна приводиться вместе с погрешностью ее определения. К сожалению, эта идея еще не стала общеэкономической.
Рассмотрим развитие в течение последних 15 лет асимптотических методов статистического анализа интервальных данных при больших объемах выборок и малых погрешностях измерений. В отличие от классической математической статистики, сначала устремляется к бесконечности объем выборки и только потом - уменьшаются до нуля погрешности. Разработана общая схема исследования, включающая расчет двух основных характеристик - нотны (максимально возможного отклонения статистики, вызванного интервальностью исходных данных) и рационального объема выборки (превышение которого не дает существенного повышения точности оценивания и статистических выводов, связанных с проверкой гипотез). Она применена к оцениванию математического ожидания и дисперсии, медианы и коэффициента вариации, параметров гамма-распределения в ГОСТ 11.011-83 и характеристик аддитивных статистик, для проверки гипотез о параметрах нормального распределения, в т.ч. с помощью критерия Стьюдента, а также гипотезы однородности двух выборок по критерию Смирнова, и т.д.. Разработаны подходы к учету интервальной неопределенности в основных постановках регрессионного, дискриминантного и кластерного анализов.
Многие утверждения СИД отличаются от аналогов из классической математической статистики. В частности, не существует состоятельных оценок: средний квадрат ошибки оценки, как правило, асимптотически равен сумме дисперсии этой оценки, рассчитанной согласно классической теории, и квадрата нотны. Метод моментов иногда оказывается точнее метода максимального правдоподобия (см. ГОСТ 11.011-83). Нецелесообразно с целью повышения точности выводов увеличивать объем выборки сверх некоторого предела. В СИД классические доверительные интервалы должны быть расширены вправо и влево на величину нотны, и длина их не стремится к 0 при росте объема выборки.
СИД позволяет снять некоторые противоречия между метрологией и классической математической статистикой. Например, вторая из названных дисциплин утверждает, что путем увеличения числа измерений можно сколь угодно точно оценить параметр, а первая вполне справедливо оспаривает это утверждение. Результаты СИД уточняют интуитивные представления метрологов (которые сосредотачивались, впрочем, вокруг весьма частного с точки зрения эконометрики вопроса - оценивания математического ожидания) и развенчивают "гордыню" математической статистики.
1.11. Эконометрические модели
Статистические и математические модели экономических явлений и процессов определяются спецификой той или иной области экономических исследований. Так, в экономике качества модели, на которых основаны статистические методы сертификации и управления качеством - модели статистического приемочного контроля, статистического контроля (статистического регулирования) технологических процессов (обычно с помощью контрольных карт Шухарта или кумулятивных контрольных карт), планирования экспериментов, оценки и контроля надежности и другие - используют как технические, так и экономические характеристики, а потому относятся к эконометрике, равно как и многие модели теории массового обслуживания (теории очередей). Экономический эффект только от использования статистического контроля в промышленности США оценивается как 0,8% валового национального продукта (20 миллиардов долларов в год), что существенно больше, чем от любого иного экономико-математического или эконометрического метода.
К эконометрике качества относятся многие публикации научно-технического журнал "Заводская лаборатория (диагностика материалов)". Этот журнал посвящен аналитической химии, физическим, математическим и механическим методам исследования, а также сертификации материалов. Он создан в 1932 г. и адресован специалистам черной и цветной металлургии, химической промышленности и др. Кроме сотрудников центральных заводских лабораторий, служб качества, надежности и других заводских подразделений, он ориентирован в основном на работников прикладных научно-исследовательских организаций. Сейчас журнал базируется в Институте металлургии им.А.А.Байкова Российской академии наук. С 60-х годов в нем действует секция редколлегии "Математические методы исследования", отвечающая за публикацию статей по статистическим методам в промышленности, в частности, в метрологии, диагностике материалов, стандартизации, управлении качеством и сертификации. Технические и экономические вопросы обычно рассматриваются в неразрывном единстве. С рассматриваемой тематикой должен быть знаком каждый специалист по эконометрике, а также по экономике и организации производства.
Ввиду важности статистических методов в стандартизации и управления качеством в СССР с начала 70-х годов разрабатывались государственные стандарты по статистическим методам в рассматриваемой области. По мнению ряда специалистов, из-за неграмотности разработчиков государственные стандарты содержали многочисленные ошибки. Для анализа ситуации в 1985 г. была организована т.н. Рабочая группа по упорядочению системы стандартов по прикладной статистике и другим статистическим методам. В этот научный коллектив входили 66 научных работников и специалистов из различных отраслей народного хозяйства и вузов, в том числе более 20 докторов наук. Оказалось, что существенная часть стандартов по статистическим методам действительно содержала грубые ошибки. Основная часть ошибочных стандартов была отменена, некоторые действуют до сих пор. Затем с целью исправления положения был организован Всесоюзный центр по статистическим методам и информатике (ныне - Институт высоких статистических технологий и эконометрики МГТУ им. Н.Э. Баумана), который разработал около 30 компьютерных систем по современным статистическим методам управления качеством. Наибольшее распространение получила система НАДИС (НАДежность и ИСпытания), созданная под руководством проф. О.И.Тескина (МГТУ им. Н.Э.Баумана). Итоги описанного направления работ подведены в журнале "Заводская лаборатория" в статье [8].
Работы по эконометрическим моделям статистического контроля постоянно публикуются в "Заводской лаборатории". Эти модели мы рассмотрим в главе 13. Рассмотрим здесь только одну конкретную рекомендацию, основанную на сравнении по экономическим показателям различных схем организации контроля и технического обслуживания. Этот подход приводит к принципиальному изменению технико-экономической политики при контроле качества. Он позволяет "снять" парадокс классической теории статистического контроля - чем выше достигнутый уровень качества, тем больше необходимый объем контроля. Предлагаемый выход состоит в переходе к расширению возможностей менеджера при выборе технической политики на основе учета экономических рисков. "Перекладывание" контроля на потребителя может быть экономически выгодно, если производитель организовал защиту от риска методом пополнения партий (путем включение запасных изделий) или путем развития технического обслуживания, позволяющего быстро заменять дефектное изделие.
Другой важный раздел эконометрики - теория и практика экспертных оценок. Экспертные оценки используют для решения ряда экономических задач, например, выбора оптимального направления инвестиций, или наилучшего образца определенного вида продукции для организации массового выпуска, или при прогнозировании развития экономической ситуации, или при распределении финансирования... Следовательно, используемые в теории экспертных оценок модели [ являются эконометрическими. Они рассматриваются в главе 12.
Менее полезными практически (с точки зрения достигаемого экономического эффекта), но более известными в теоретических и учебных публикациях являются различные эконометрические модели, предназначенные для прогнозирования макроэкономических показателей. Это обычно модели весьма частного вида, имеющие целью прогнозирование многомерного временного ряда. Они представляют собой систему линейных зависимостей между прошлыми и настоящими значениями переменных. В таких задачах оценивают как структуру модели, т.е. вид зависимости между значениями известных координат вектора в прежние моменты времени и их значениями в прогнозируемый момент (т.е. проводят т.н. идентификацию модели), так и коэффициенты, входящие в эту зависимость. Структура такой модели - объект нечисловой природы, что и объясняет сложность соответствующей теории.
Каждой области экономических исследований, связанной с анализом эмпирических данных, как правило, соответствуют свои эконометрические модели. Например, для моделирования процессов налогообложения с целью оценки результатов применения управляющих воздействий (например, изменения ставок налогов) на процессы налогообложения должен быть разработан комплекс соответствующих эконометрических моделей. Кроме системы уравнений, описывающей динамику системы налогообложения под влиянием общей экономической ситуации, управляющих воздействий и случайных отклонений, необходим блок экспертных оценок. Полезен блок статистического контроля, включающий как методы выборочного контроля правильности уплаты налогов (налогового аудита), так и блок выявления резких отклонений параметров, описывающих работу налоговых служб. Подходам к проблеме математического моделирования процессов налогообложения посвящена монография [13], содержащая также информацию о современных статистических (эконометрических) методах и экономико-математических моделях, в том числе имитационных.
С помощью эконометрических методов следует оценивать различные величины и зависимости, используемые при построении имитационных моделей процессов налогообложения, в частности, функции распределения предприятий по различным параметрам налоговой базы. При анализе потоков платежей необходимо использовать эконометрические модели инфляционных процессов, поскольку без оценки индекса инфляции невозможно вычислить дисконт-функцию, а потому нельзя установить реальное соотношение авансовых и "итоговых" платежей. Прогнозирование сбора налогов может осуществляться с помощью системы временных рядов - на первом этапе по каждому одномерному параметру отдельно, а затем - с помощью некоторой линейной эконометрической системы уравнений, дающей возможность прогнозировать векторный параметр с учетом связей между координатами и лагов, т.е. влияния значений переменных в определенные прошлые моменты времени. Возможно, более полезными окажутся имитационные модели более общего вида, основанные на интенсивном использовании современной вычислительной техники.
1.12. Применения эконометрических методов
<< Пред. стр. 1 (из 17) След. >>