<< Пред.           стр. 12 (из 29)           След. >>

Список литературы по разделу

  Зеленый
  Ацетилен
  Белая
  Ацетилен
  Красный
  Красный
  Водород
  Темно-зеленая
  Водород
  .Красный
  Красный
  Воздух
  Черная
  Сжатый воздух
  Белый
  Белый
  Гелий
  Коричневая
  Гелий
  Белый
  Белый
  Кислород
  Голубая
  Кислород
  Черный
  Черный
  Диоксид углерода
  Черная
  Диоксид углерода
  Желтый
  Желтый
 
  Для горючих и негорючих газов, не обозначенных в ПБ10--115--96 (Правила устройства и безопасной эксплуатации сосудов, работающих под давлением), предусмотрена следующая гамма цветов:
 
 Газы
  Окраска баллонов Надпись
  Цвет надписи
  Цвет полосы
  Все другие горючие газы
  Красная
  Наименование газа
  Белый
  Белый
  Все другие негорючие газы
  Черная
  Наименование газа
  Желтый
  Желтый
 
  Сигнальная окраска баллонов и цистерн позволяет исключить образование смеси "горючее - окислитель" вследствие заполнения емкостей рабочим телом, для которого они не предназначены.
  Для предотвращения проникновения в опорожненный баллон посторонних газов, а также для определения (в необходимых случаях), какой газ находится в баллоне, или герметичности баллона и его арматуры заводы-наполнители принимают опорожненные баллоны с остаточным давлением не менее 0,05 МПа, а баллоны для растворенного ацетилена -не менее 0,05 и не более 0,1 МПа.
  Взрыв ацетиленовых баллонов может быть вызван старением пористой массы (активированного угля в ацетоне), в которой растворяется ацетилен. Образование смеси горючее - окислитель в кислородных баллонах чаще всего связано с попаданием в его вентиль масел; в водородных-с загрязнением их кислородом, а также с появлением в них окалины.
  Действующие в настоящее время Правила устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ-115-96), распространяются на:
  - сосуды, работающие под давлением воды с температурой выше 115 °С или другой жидкости с температурой, превышающей температуру кипения при давлении 0,07 МПа, без учета гидростатического давления;
  - сосуды, работающие под давлением пара или газа свыше 0,07 МПа;
  - баллоны, предназначенные для транспортирования и хранения сжатых, сжиженных и растворенных газов под давлением свыше 0,07 МПа;
  - цистерны и бочки для транспортирования и хранения сжиженных газов, давление паров которых при температуре до 50 °С превышает давление 0,07 МПа;
  - цистерны и сосуды для транспортирования или хранения сжатых, сжиженных газов, жидкостей и сыпучих тел, в которых давление выше 0,07 МПа создается периодически для их опорожнения;
  - барокамеры.
  Правила не распространяют своего действия на:
  - сосуды, изготавливаемые в соответствии с "Правилами устройства и безопасной эксплуатации оборудования и трубопроводов атомных энергетических установок", утвержденными Госатомэнергонадзором России, а также сосуды, работающие с радиоактивной средой;
  - сосуды вместимостью не более 0,025 м3 независимо от давления, используемые для научно-экспериментальных целей;
  - сосуды и баллоны вместимостью не более 0,025 м3, у которых произведение давления в МПа на вместимость в м3 не превышает 0,02;
  - сосуды, работающие под давлением, создающимся при взрыве внутри их в соответствии с технологическим процессом;
  - сосуды, работающие под вакуумом;
  - сосуды, состоящие из труб с внутренним диаметром не более 150 мм без коллекторов, а также с коллекторами; выполненными из труб с внутренним диаметром не более 150 мм, а также ряд других типов сосудов (сосуды, устанавливаемые на морских и речных судах, самолетах и других летательных аппаратах; воздушные резервуары тормозного оборудования подвижного состава железнодорожного транспорта, автомобилей и других средств передвижения; сосуды специального назначения военного ведомства и т. д.);
  - сосуды, на которые распространяется действие "Правил устройства и безопасной эксплуатации сосудов, работающих под давлением", до пуска их в эксплуатацию должны быть зарегистрированы в органах Госгортехнадзора России. Исключение составляют:
  - сосуды 1-й группы, работающие при температуре стенки не выше 200° С, у которых произведение давления в МПа на вместимость в м3 не превышает 0,05, а также сосуды 2-й, 3-й, 4-й групп, работающие при указанной выше температуре, у которых произведение давления в МПа на вместимость в м3 не превышает 0,1 (к первой группе относятся сосуды, содержащие взрывоопасные и пожароопасные среды, или вещества 1-го и 2-го классов опасности по ГОСТ 12.1.007 независимо от температуры стенки и расчетного давления (выше 0,07 МПа). 2-я, 3-я, 4-я группы сосудов определяются расчетным давлением и температурой стенки, при условии, что сосуд не содержит среду, указанную для группы 1);
  - аппараты воздухоразделительных установок и разделения газов, расположенные внутри теплоизоляционного кожуха;
  - резервуары воздушных электрических переключателей;
  - бочки для перевозки сжиженных газов, баллоны вместимостью до 100 л включительно, установленные стационарно, а также предназначенные для транспортировки и (или) хранения сжатых, сжиженных и растворенных газов;
  - генераторы (реакторы) для получения водорода, используемые гидрометеорологической службой;
  - сосуды, включенные в закрытую систему добычи нефти и газа (от скважин до магистрального трубопровода);
  - сосуды для хранения или транспортировки сжиженных газов, жидкостей и сыпучих тел, находящиеся под давлением периодически при их опорожнении;
  - сосуды со сжатым и сжиженными газами, предназначенные для обеспечения топливом двигателей транспортных средств, на которых они установлены;
 - сосуды, установленные в подземных горных выработках.
  Для обеспечения безопасной и безаварийной эксплуатации сосуды и аппараты, работающие под давлением, должны подвергаться техническому освидетельствованию после монтажа и пуска в эксплуатацию, периодически в процессе эксплуатации, а в необходимых случаях и внеочередному освидетельствованию.
  Объемы, методы и периодичность технического освидетельствования оговариваются изготовителем и указываются в инструкциях по монтажу и эксплуатации. В случае отсутствия таких указаний техническое освидетельствование проводится по указанию "Правил" ПБ10- 115-96. Так, для сосудов, не подлежащих регистрации в органах Госгортехнадзора России, установлена следующая периодичность: гидравлические испытания пробным давлением один раз в восемь лет, наружный и внутренний осмотр один раз в два года при работе со средой, вызывающей разрушение и физико-химическое превращение материала (коррозия и т. п.) со скоростью не более 0,1 мм в год и 12 месяцев при скорости более 0,1 мм в год.
  Сроки и объемы освидетельствований других типов сосудов и баллонов, зарегистрированных и не зарегистрированных в органах Госгортехнадзора России, также устанавливаются в зависимости от условий эксплуатации (скорость физико-химических превращений) и типа сосуда.
  При гидравлических испытаниях испытываемую емкость заполняют водой, после чего давление воды плавно повышают до значений пробного давления, указанного в табл. 5.1.
 
 Таблица 51 Давление при гидравлических испытаниях
 Тип сосуда
  Пробное давление, МПа
  Примечание
  Кроме литых
 Литые
 Из не металлических материалов
 Из не металлических материалов
 Криогенные сосуды
 Металлопластиковые
  Рпр = 1,25 К*Ррас
 Рпр = 1,50К Ррас
 Рпр = 1,30 К Ррас
 
 Рпр = 1,60 К Ррас
 
 Рпр = 1,25 Ррас - 0,1 МПа
 Рпр = (1,25Км + ?(1- Км)Ррас К Ударная вязкость материала более 20 Дж / см Ударная вязкость материала менее 20 Дж /см
 Наличие вакуума в изо< ляционном пространстве
 
 
 
  К= ?го,?t -допустимое напряжение для материала сосуда или его элемента соответственно при 20 °С и расчетной температуре, МПа, Км - отношение массы металлоконструкции к общей массе сосуда; а = 1,3 -для неметаллических материалов с ударной вязкостью более 20 Дж/см2. а = 1,6 -для неметаллических материалов с ударной вязкостью 20 Дж/см2 и менее
 
  Применяемая вода должна иметь температуру не ниже 5 и не выше 40 °С, если иное не оговорено в паспорте на сосуд. Разность температур стенки сосуда и окружающего воздуха во время испытаний не должна вызывать конденсации влаги на поверхности стенок сосуда. Использование сжатого воздуха или другого газа для подъема давления не допускается.
  Давление в испытываемом сосуде контролируется двумя манометрами одного типа, предела измерения, одинаковых классов точности, цены деления. Время выдержки пробного давления устанавливается разработчиком и обычно определяется толщиной стенки сосуда. Так, при толщине стенки до 50 мм оно составляет 10 мин, при 50-100 мм - 20 мин, свыше 100 мм - 30 мин. Для литых неметаллических и многослойных сосудов независимо от толщины стенки время выдержки составляет 60 мин.
  После выдержки под пробным давлением давление снижается до расчетного, при котором производят осмотр наружной поверхности сосуда, всех его разъемных и сварных соединений. Сосуд считается выдержавшим гидравлическое испытание, если не обнаружено:
  - течи, трещин, слезок, потения в сварных соединениях и на основном металле;
  -течи в разъемных соединениях;
  - видимых остаточных деформаций, падения давления по манометру.
  Гидравлическое испытание допускается заменять пневматическим при условии контроля этого испытания методом акустической эмиссии или другим, согласованным с Госгортехнадзором России.
  Техническое освидетельствование установок, работающих под давлением, зарегистрированных в органах Госгортехнадзора, производит технический инспектор, а установки, не зарегистрированные в этих органах,-лицо, на которое приказом по предприятию возложен надзор за безопасностью эксплуатации установок, работающих под давлением.
  Сжиженные газы хранят и перевозят в стационарных и транспортных сосудах -цистернах (сосуды для сжиженных газов), которые в случае хранения криогенных жидкостей снабжены высокоэффективной тепловой изоляцией.
  Криогенные сосуды номинальным объемом 6,3...40 л изготовляют в соответствии с ТУ 26-04-622-87.
  Стационарные резервуары изготовляют объемом до 500 тыс. л и более. В зависимости от конструкции они бывают цилиндрической (горизонтальные и вертикальные) и шарообразной формы. Основные параметры и размеры внутренних резервуаров для сжиженных газов регламентированы ТУ 26-04-622-87.
  Транспортные сосуды (цистерны) обычно имеют объем до 35 тыс. л. Принципиальная схема такого резервуара представлена на рис. 5.3. Низкие температуры, при которых эксплуатируются внутренние сосуды криогенных резервуаров и цистерн, накладывают ограничения на материалы, используемые при их изготовлении.
  В промышленности в настоящее время используют газгольдеры низкого и высокого давления. Газгольдеры низкого давления-это сосуды переменного объема, давление газа в которых практически всегда остается постоянным. Из газгольдеров высокого давления расходуемый газ подается сначала на редуктор, а затем к потребителю. Газгольдеры высокого давления обычно собирают из баллонов большого объема, изготовляемых на рабочее давление меньше 25 МПа по ГОСТ 9731-79* и на 32 и 40 МПа по ГОСТ 12247-80*.
  Для управления работой и обеспечения безопасных условий эксплуатации сосуды в зависимости от назначения должны быть оснащены:
  - запорной или запорно-регулирующей арматурой;
  - приборами для измерения давления;
  - приборами для измерения температуры;
  - предохранительными устройствами;
  - указателями уровня жидкости.
  Арматура должна иметь следующую маркировку:
  - наименование или товарный знак изготовителя;
  - условный проход;
  - условное давление, МПа (допускается указывать рабочее давление и допустимую температуру);
  - направление потока среды;
  - марку материала корпуса.
  На маховике запорной арматуры должно быть указано направление его вращения при открывании или закрывании арматуры. Арматура с условным проходом более 20 мм, изготовленная из легированной стали или цветных металлов, должна иметь паспорт установленной формы, в котором должны быть указаны данные по химсоставу, механическим свойствам, режимам термообработки и результатам контроля качества изготовления неразрушающими методами.
  Каждый сосуд и самостоятельные полости с разными давлениями должны быть снабжены манометрами прямого действия. Манометр устанавливается на штуцере сосуда или трубопроводе между сосудом и запорной арматурой. Манометры должны иметь класс точности не ниже 2,5-при рабочем давлении сосуда до 2,5 МПа, 1,5-при рабочем давлении сосуда свыше 2,5 МПа. Манометр должен выбираться с такой шкалой, чтобы предел измерения рабочего давления находился во второй трети шкалы. На шкале манометра владельцем сосуда должна быть нанесена красная черта, указывающая рабочее давление в сосуде. Манометр должен быть установлен так, чтобы его показания были отчетливо видны обслуживающему персоналу. Номинальный диаметр корпуса манометров, устанавливаемых на высоте до 2 м от уровня площадки наблюдения за ним, должен быть не менее 100 мм, на высоте от 2 до 3 м -не менее 160 мм. Установка манометров на высоте более 3 м от уровня площадки не разрешается.
  Между манометром и сосудом должен быть установлен трехходовый кран или заменяющее устройство, позволяющее проводить периодическую проверку манометра с помощью контрольного.
  Проверка манометров с их опломдированием и клеймением должна производится не реже одного раза в 12 месяцев. Кроме того, не реже одного раза в 6 месяцев владельцем сосуда должна производиться дополнительная проверка рабочих манометров контрольными с записью результатов в журнал контрольных проверок.
  Манометр не допускается к применению в случаях, когда:
  - отсутствует пломба или клеймо с отметкой о проведении проверки;
  - просрочен срок проверки;
  - стрелка при его отключении не возвращается в нулевое положение на величину, превышающую половину допускаемой погрешности для данного прибора;
  - разбито стекло или имеются повреждения, которые могут отразиться на правильности его показаний.
  Сосуды, работающие при изменяющейся температуре стенок, должны быть снабжены приборами для контроля скорости и равномерности прогрева по длине и высоте сосуда и реперами для контроля тепловых перемещений.
  Необходимость оснащения сосудов указанными приборами и реперами, а также допустимая скорость прогрева и охлаждения сосудов определяются разработчиком проекта и указываются изготовителем в паспортах сосудов или инструкциях по монтажу и эксплуатации.
  Каждый сосуд должен быть снабжен предохранительными устройствами от повышения давления выше допустимого значения.
  В качестве предохранительных устройств применяются:
  - пружинные предохранительные клапаны;
  - рычажно-грузовые предохранительные клапаны;
 
 
 
 
 
  - импульсные предохранительные устройства, состоящие из главного предохранительного клапана и управляющего импульсного клапана прямого действия;
  - предохранительные устройства с разрушающимися мембранами (предохранительные мембраны);
  - другие устройства, применение которых согласовано с Госгортехнадзором России.
  Распространенным средством защиты технологического оборудования от разрушения при взрывах являются предохранительные мембраны (разрывные, ломающиеся, срезные, хлопающие, специальные) и взрывные клапаны (рис. 5.4, 5.5).
  Достоинством предохранительных мембран является предельная простота их конструкции, что характеризует их как самые надежные из всех существующих средств взрывозащиты. Кроме того, мембраны практически не имеют ограничений по пропускной способности. Существенным недостатком предохранительных мембран является то, что после срабатывания защищаемое оборудование остается открытым, это, как правило, приводит к остановке технологического процесса и к выбросу в атмосферу всего содержимого аппарата. При разгерметизации технологического оборудования нельзя исключить возможность вторичных взрывов, которые бывают обусловлены подсосом атмосферного воздуха внутрь аппарата через открытое отверстие мембраны.
  Использование на технологическом оборудовании взрывных клапанов дает возможность устранить эти негативные последствия, так как после срабатывания и сброса отверстие вновь закрывается и таким образом не вызывает необходимости немедленной остановки оборудования и проведения восстановительных работ. К недостаткам взрывных клапанов следует отнести их большую инерционность по сравнению с мембранами, сложность конструкции, а также недостаточную герметичность, ограничивающую область их применения (они могут использоваться для взрывозащиты оборудования, работающего при нормальном давлении).
  Широко используются разрывные мембраны, изготовляемые из тонколистового металлического проката. Конструктивное оформление узла зажима мембраны может быть различным (шип - паз, конический или линзовый зажим, см. рис. 5.4).
  При нагружении рабочим давлением мембрана испытывает большие пластические деформации и приобретает ярко выраженный купол, по форме очень близкий к сферическому сегменту. Чаще всего куполообразную форму мембране придают заранее при изготовлении, подвергая ее нагружению давлением, составляющим около 90 % разрывного. При этом фактически исчерпывается почти весь запас пластических деформаций материала, поэтому еще больше увеличивается быстродействие мембраны.
  Разрывное давление Рс, такой оболочки (давление срабатывания мембраны)
 
  Pc=2?o?BPR
 где До -толщина материала мембраны; ?вр -временное сопротивление материала при растяжении (предел прочности); R - радиус купола.
  Минимальный (на пределе разрыва мембраны) радиус купола, где ? - относительное удлинение при разрыве.
  Для определения времени полного раскрытия сбросного отверстия мембран можно использовать соотношение:
 
 
 
  где а = [(?Dp?o)/Pc]1/2; D и ?о -соответственно рабочий диаметр мембраны и толщина металлопроката, из которого изготовлена мембрана;
  р - плотность материала мембраны, кг/м . Наиболее распространенным средством защиты технологического оборудования от взрыва являются предохранительные клапаны (см. рис. 5.5). Однако и они имеют ряд существенных недостатков, в основном определяющихся большой инерционностью подвижных деталей клапанов.
  Расчет и подбор предохранительного клапана заключается в определении количества газа (жидкости), вышедшего из сосуда, аппарата, или площади проходного сечения предохранительно устройства, а также расчете времени истечения при заданном конечном давлении. Давление Рmах в защищаемой емкости не должно превышать значений, указанных ниже:
 PP1 МПа
  Рт
  Pmaх, МПа
  <0,3
  <
  Рр + 0,05
  <6,0
  <
  1,15Л>
  >6.0
  <
  1,1/р
 
  Согласно ГОСТ 12.2.085-82 при расчете массового расхода M газа через предохранительное устройство необходимо использовать выражения M=AF ; для жидкости M-AF^IlXi (Л- Р'), где А и F-коэффициент расхода и площадь сечения устья сбросного отверстия, м2; Xi-плотность рабочей среды в сосуде или аппарате, кг/м3; Р' и Л - абсолютные давления, Па, соответственно в устье сбросного отверстия и сосуде или аппарате; комплекс
 
 показатель адиабаты; ?* - критическое отношение давления, равное
 
  Для подбора предохранительного клапана или мембраны необходимо по заданному массовому расходу, который определяется как максимальный аварийный расход среды, определить площадь проходного сечения клапана.
  Важной характеристикой предохранительного устройства является время истечения. При истечении газа из сосуда или аппарата ограниченной постоянной емкости через сбросное отверстие постоянного сечения реализуется звуковой режим истечения, если давление Pi ? Р"/?*, где Р" -давление в среде, в которую происходит истечение. В этом случае время истечения
 
  Здесь нулевым индексом отмечены параметры в начальный момент времени.
  Если истечение происходит в дозвуковой области, то время истечения
 
  Здесь нулевым индексом отмечены параметры в начальный момент времени.
  Значение коэффициента расхода предохранительного устройства зависит от конструктивных особенностей предохранительного устройства и указывается в паспорте на него. Если таковые данные отсутствуют, то обычно полагают А=? где ?-коэффициент сопротивления предохранительного клапана.
  Мембранные предохранительные устройства могут устанавливаться:
  - вместо рычажно-грузовых и пружинных предохранительных клапанов, когда эти клапаны в рабочих условиях конкретной среды не могут быть применены вследствие их инерционности или других причин;
  - перед предохранительными клапанами в случаях, когда предохранительные клапаны не могут надежно работать вследствие вредного воздействия рабочей среды (коррозия, эрозия, полимеризация, кристаллизация, прикипание, примерзание) или возможных утечек через закрытый клапан взрыво- и пожароопасных, токсичных, экологически вредных веществ и т. п.;
  - параллельно с предохранительными клапанами для увеличения пропускной способности систем сброса давления;
  - на выходной стороне предохранительных клапанов для предотвращения вредного воздействия рабочих сред со стороны сбросной системы и для исключения влияния колебаний противодавления со стороны этой системы на точность срабатывания предохранительных клапанов.
  Предохранительные мембраны должны быть маркированы, при этом маркировка не должна оказывать влияния на точность срабатывания мембраны.
  Содержание маркировки:
  - наименование или товарный знак изготовителя;
  - номер партии мембран;
  - тип мембран;
  - условный диаметр;
  - рабочий диаметр;
  - материал;
  - минимальное и максимальное давление срабатывания мембран в партии при заданной температуре и при температуре 20 °С.
  Порядок и сроки проверки исправности действия предохранительных устройств в зависимости от условий технологического процесса должны быть указаны в инструкции по эксплуатации предохранительных устройств, утвержденных владельцем сосуда в установленном порядке.
 
 5.2. ЗАЩИТА ОТ МЕХАНИЧЕСКОГО ТРАВМИРОВАНИЯ
 
  К средствам защиты от механического травмирования относятся предохранительные тормозные, оградительные устройства, средства автоматического контроля и сигнализации, знаки безопасности, системы дистанционного управления. Системы дистанционного управления и автоматические сигнализаторы на опасную концентрацию паров, газов, пылей применяют чаще всего во взрывоопасных производствах и производствах с выделением в воздух рабочей зоны токсичных веществ.
  Предохранительные защитные средства предназначены для автоматического отключения агрегатов и машин при отклонении какого-либо параметра, характеризующего режим работы оборудования, за пределы допустимых значений. Таким образом, при аварийных режимах (увеличении давления, температуры, рабочих скоростей, силы тока, крутящих моментов и т. п.) исключается возможность взрывов, поломок, воспламенений. В соответствии с ГОСТ 12.4.125-83 предохранительные устройства по характеру действия бывают блокировочными и ограничительными.
  Блокировочные устройства по принципу действия подразделяют на механические, электронные, электрические, электромагнитные, пневматические, гидравлические, оптические, магнитные и комбинированные.
  Ограничительные устройства по конструктивному исполнению подразделяют на муфты, штифты, клапаны, шпонки, мембраны, пружины, сильфоны и шайбы.
  Блокировочные устройства препятствуют проникновению человека в опасную зону либо во время пребывания его в этой зоне устраняют опасный фактор.
  Особенно большое значение этим видам средств защиты придается на рабочих местах агрегатов и машин, не имеющих ограждений, а также там, где работа может вестись при снятом или открытом ограждении.
  Механическая блокировка представляет собой систему, обеспечивающую связь между ограждением и тормозным (пусковым) устройством. При снятом ограждении агрегат невозможно растормозить, а следовательно, и пустить его в ход (рис.5.6).
  Электрическую блокировку применяют на электроустановках с напряжением от 500 В и выше, а также на различных видах технологического оборудования с электроприводом. Она обеспечивает включение оборудования только при наличии ограждения. Электромагнитную (радиочастотную) блокировку применяют для предотвращения попадания человека в опасную зону. Если это происходит, высокочастотный генератор подает импульс тока к электромагнитному усилителю и поляризованному реле. Контакты электромагнитного реле обесточивают схему магнитного пускателя, что обеспечивает электромагнитное торможение привода за десятые доли секунды. Аналогично работает магнитная блокировка, использующая постоянное магнитное поле.
 
  Оптическая блокировка находит применение в кузнечно-прессовых и механических цехах машиностроительных заводов. Световой луч, попадающий на фотоэлемент, обеспечивает постоянное протекание тока в обмотке блокировочного электромагнита. Если в момент нажатия педали в рабочей (опасной) зоне штампа окажется рука рабочего, падение светового тока на фотоэлемент прекращается, обмотки блокировочного магнита обесточиваются, его якорь под действием пружины выдвигается и включение пресса педалью становится невозможным.
  Электронную (радиационную) блокировку применяют для защиты опасных зон на прессах, гильотинных ножницах и других видах технологического оборудования, применяемого в машиностроении (рис. 5.7).
  Излучение, направленное от источника 5, улавливается трубками Гейгера 1. Они воздействуют на тиратронную лампу 2, от которой приводится в действие контрольное реле 3. Контакты реле либо включают, либо разрывают цепь управления, либо воздействуют на пусковое устройство. Контрольное реле 4 работает при нарушении системы блокировки, когда трубки Гейгера не работают в течение 20 с. Преимуществом блокировки с радиационными датчиками является то, что они позволяют производить бесконтактный контроль, так как не связаны с контролируемой средой. В ряде случаев при работе с агрессивными или взрывоопасными средами в оборудовании, находящемся под большим давлением или имеющем высокую температуру, блокировка с применением радиационных датчиков является единственным средством для обеспечения требуемых условий безопасности.
  Пневматическая схема блокировки широко применяется в агрегатах, где рабочие тела находятся под повышенным давлением: турбинах, компрессорах, воздуходувках и т. д. Ее основным преимуществом является малая инерционность. На рис. 5.8 приведена принципиальная схема пневматической блокировки. Аналогична по принципу действия гидравлическая блокировка.
  Примерами ограничительных устройств являются элементы механизмов и машин, рассчитанные на разрушение (или несрабатывание) при перегрузках. К слабым звеньям таких устройств относятся: срезные штифты и шпонки, соединяющие вал с маховиком, шестерней или шкивом; фрикционные муфты, не передающие движения при больших крутящих моментах; плавкие предохранители в электроустановках; разрывные мембраны в установках с повышенным давлением и т. п. Слабые звенья делятся на две основные группы: звенья с автоматическим восстановлением кинематической цепи после того, как контролируемый параметр пришел в норму (например, муфты трения), и звенья с восстановлением кинематической цепи путем замены слабого звена (например, штифты и шпонки). Срабатывание слабого звена приводит к останову машины на аварийных режимах.
  Тормозные устройства подразделяют: по конструктивному исполнению -на колодочные, дисковые, конические и клиновые; по способу срабатывания - на ручные, автоматические и полуавтоматические; по принципу действия -на механические, электромагнитные, пневматические, гидравлические и комбинированные; по назначению -на рабочие, резервные, стояночные и экстренного торможения.
  Оградительные устройства - класс средств защиты, препятствующих попаданию человека в опасную зону. Оградительные устройства применяют для изоляции систем привода машин и агрегатов, зоны
 Рис 59 Конструкции стационарных ограждений станков:
 а-полное ограждение; б-частичное ограждение режущего инструмента; в-частичное ограждение зоны резания; 1-поворотная ось экрана; 2-рамка, 3-прозрачный экран
 
  обработки заготовок на станках, прессах, штампах, оголенных токове-дущих частей, зон интенсивных излучений (тепловых, электромагнитных, ионизирующих), зон выделения вредных веществ, загрязняющих воздушную среду и т. п. Ограждают также рабочие зоны, расположенные на высоте (леса и т. п.).
  Конструктивные решения оградительных устройств весьма разнообразны. Они зависят от вида оборудования, расположения человека в рабочей зоне, специфики опасных и вредных факторов, сопровождающих технологический процесс. В соответствии с ГОСТ 12.4.125-83, классифицирующим средства защиты от механического травмирования, оградительные устройства подразделяют: по конструктивному исполнению -на кожухи, дверцы, щиты, козырьки, планки, барьеры и экраны; по способу изготовления-на сплошные, несплошные (перфорированные, сетчатые, решетчатые) и комбинированные; по способу установки-на стационарные и передвижные. Примерами полного стационарного ограждения служат ограждения распределительных устройств электрооборудования, кожуха галтовочных барабанов, корпуса электродвигателей, насосов и т. п.; частичного- ограждения фрез или рабочей зоны станка (рис. 5.9).
  Возможно применение подвижного (съемного) ограждения. Оно представляет собой устройство, сблокированное с рабочими органами механизма или машины, вследствие чего закрывает доступ в рабочую зону при наступлении опасного момента. Особенно широкое распространение получили такие ограничительные устройства в станкостроении (например, в станках с ЧПУ ОФЗ-36).
  Переносные ограждения являются временными. Их используют при ремонтных и наладочных работах для защиты от случайных прикосновений к токоведущим частям, а также от механических травм и ожогов. Кроме того, их применяют на постоянных рабочих местах сварщиков для защиты окружающих от воздействия электрической дуги и ультрафиолетовых излучений (сварочные посты). Выполняются они чаще всего в виде щитов высотой 1,7 м.
  Конструкция и материал ограждающих устройств определяются особенностями оборудования и технологического процесса в целом. Ограждения выполняют в виде сварных и литых кожухов, решеток, сеток на жестком каркасе, а также в виде жестких сплошных щитов (щитков, экранов). Размеры ячеек в сетчатом и решетчатом ограждении определятся в соответствии с ГОСТ 12.2.062-81*. В качестве материала ограждений используют металлы, пластмассы, дерево. При необходимости наблюдения за рабочей зоной кроме сеток и решеток применяют сплошные оградительные устройства из прозрачных материалов (оргстекла, триплекса и т. д.).
  Чтобы выдерживать нагрузки от отлетающих при обработке частиц и случайные воздействия обслуживающего персонала, ограждения должны быть достаточно прочными и хорошо крепиться к фундаменту или частям машины. При расчете на прочность ограждений машин и агрегатов для обработки металлов и дерева необходимо учитывать возможность вылета и удара об ограждение обрабатываемых заготовок.
  Расчет ограждений ведется по специальным методикам [5.2].
 
 5.3. СРЕДСТВА АВТОМАТИЧЕСКОГО КОНТРОЛЯ И СИГНАЛИЗАЦИИ
 
  Наличие контрольно-измерительных приборов - одно из условий безопасной и надежной работы оборудования. Это приборы для измерения давления, температур, статических и динамических нагрузок, концентраций паров и газов и др. Эффективность их использования повышается при объединении их с системами сигнализации, как это имеет место в газосигнализаторах, срабатывающих при определенных уровнях концентрации паров, газов, пыли в воздухе.
  Устройства автоматического контроля и сигнализации подразделяют: по назначению - на информационные, предупреждающие, аварийные и ответные; по способу срабатывания - на автоматические и полуавтоматические; по характеру сигнала - на звуковые, световые, цветовые, знаковые и комбинированные; по характеру подачи сигнала - на постоянные и пульсирующие.
  Информативную сигнализацию используют для согласования действий работающих, в частности крановщиков и стропальщиков. Такую же сигнализацию применяют в шумных производствах, где нарушена речевая связь. Подвидом информативной сигнализации являются всякого рода схемы, указатели, надписи. Как правило, надписи делают непосредственно на оборудовании либо в зоне его обслуживания на специальных табло.
  Устройства предупредительной сигнализации предназначены для предупреждения об опасности. Чаще всего в них используют световые и звуковые сигналы, поступающие от различных приборов, регистрирующих ход технологического процесса, в том числе уровень опасных и вредных факторов. Большое применение находит предупредительная сигнализация, опережающая включение оборудования или подачу высокого напряжения. К предупредительной сигнализации относятся указатели и плакаты: "Не включать -работают люди", "Не входить", "Не открывать - высокое напряжение" и др.
  Указатели желательно выполнять в виде световых табло с переменной по времени (мигающей) подсветкой.
  Подвидом предупредительной сигнализации является сигнальная окраска. Травмоопасные элементы оборудования выделяют чередующимися (под углом 45° к горизонтали) полосами желтого и черного цвета. На станках в красный цвет окрашивают обратные стороны дверец, ниш для электрооборудования, а также поверхности схода стружки.
  Знаки безопасности установлены ГОСТ 12.4.026-76*. Они могут быть запрещающими, предупреждающими, предписывающими и указательными и отличаются друг от друга формой и цветом. В производственном оборудовании и в цехах применяют предупредительные знаки, представляющие собой желтый треугольник с черной полосой по периметру, внутри которого располагается какой-либо символ (черного цвета). Например, при электрической опасности -это молния, при опасности травмирования перемещаемым грузом - груз, при опасности скольжения - падающий человек, при прочих опасностях - восклицательный знак.
  Запрещающий знак - круг красного цвета с белой каймой по периметру и черным изображением внутри. Предписывающие знаки представляют собой синий круг с белой каймой по периметру и белым изображением в центре, указательные -синий прямоугольник.
  Предупреждающий знак радиационной опасности имеет символ и кайму красного цвета. Указательные знаки средств пожаротушения имеют символ красного цвета на белом фоне, остальные черного.
 
 5.4. ЗАЩИТА ОТ ОПАСНОСТЕЙ АВТОМАТИЗИРОВАННОГО И РОБОТИЗИРОВАННОГО ПРОИЗВОДСТВА
  Она обеспечивается прежде всего технологией проведения работ. Для периодической смены инструмента, регулировки и подналадки станков с ЧПУ и автоматов, их смазывания и чистки, а также для мелкого ремонта в цикле работы автоматической линии должно быть предусмотрено специальное время. Все перечисленные работы должны выполняться на обесточенном оборудовании. Требования безопасности к промышленным работам и робототехническим комплексам установлены ГОСТ 12.2.072-82.
  Контроль за обеспечением оборудования средствами защиты от механического травмирования и за их исправностью возложен на службу главного механика предприятий и на механиков подразделений.
 
 
 
 
 5.5. СРЕДСТВА ЭЛЕКТРОБЕЗОПАСНОСТИ
 
  Повышение электробезопасности в установках достигается применением систем защитного заземления, зануления, защитного отключения и других средств и методов защиты, в том числе знаков безопасности и предупредительных плакатов и надписей. В системах местного освещения, в ручном электрофицированном инструменте и в некоторых других случаях применяют пониженное напряжение.
  Требования к устройству защитного заземления и зануления электрооборудования определены ПУЭ*, в соответствии с которыми они должны устраиваться при номинальном напряжении 380 В и выше переменного и 440 В и выше постоянного тока. В условиях работ в помещениях с повышенной опасностью и особо опасных они должны выполняться в установках с напряжением питания > 42 В переменного и > 110 В постоянного тока. Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека, которые могут оказаться под напряжением в результате повреждения изоляции.
  Защитное заземление представляет собой преднамеренное электрическое соединение металлических частей электроустановок с землей или ее эквивалентом (водопроводными трубами и т п ). Схема защитного заземления представлена на рис. 5.10.
  При пробое изоляции токоведущих частей на корпус, изолированный от земли, он оказывается под фазовым напряжением Uф. В этом случае ток, проходящий через человека,
 
  I4=Ucp/(R4+Rсиз)
 
 где R4 - сопротивление тела человека; Rсиз - сопротивление средств индивидуальной защиты; при их отсутствии Rсиз = 0.
  При наличии заземления вследствие отекания тока на землю напряжение прикосновения уменьшается и, следовательно, ток, проходящий через человека, оказывается меньше, чем в незаземленной установке. Чтобы напряжение на заземленном корпусе оборудования было минимальным, ограничивают сопротивление заземления. В установках 380/220 В она должна быть не более 4 Ом, в установках 220/127 В-не более 8 Ом. Если мощность источника питания не превышает 100 кВА, сопротивление заземления может быть в пределах 10 Oм.
  В качестве заземляющих устройств электроустановок в первую очередь должны быть использованы естественные заземлители Возможно применение железобетонных фундаментов промышленных зданий и сооружений При отсутствии естественных заземлителей допускается применение переносных заземлителей, например, ввинчиваемых в землю стальных труб, стержней, уголков. После заглубления в землю они должны иметь концы длиной 100...200 мм над поверхностью земли, к которым привариваются соединительные проводники. Категорически запрещается использовать в качестве заземлителей трубопроводы с горючими жидкостями и газами
  Зануление состоит в преднамеренном соединении металлических нетоковедущих частей оборудования, которые могут оказаться под напряжением вследствие пробоя изоляции, с нулевым защитным проводником (рис. 5.11). При замыкании любой фазы на корпус образуется контур короткого замыкания, характеризуемый силой тока весьма большой величины, достаточной для "выбивания" предохранителей в фазных питающих проводах. Таким образом электроустановка обесточивается. Предусматривается повторное заземление нулевого проводника на случай обрыва нулевого провода на участке, близком к нейтрали. По этому заземлению ток стекает на землю, откуда попадает в заземление нейтрали, по нему во все фазные провода, включая имеющий пробитую изоляцию, далее на корпус. Таким образом образуется контур короткого замыкания.
  Защитное отключение электроустановок обеспечивается путем введения устройства, автоматически отключающего оборудование - потребитель тока при возникновении опасности поражения током. Схемы отключающих автоматических устройств весьма разнообразны. Во всех случаях система срабатывает на превышение какого-либо параметра в электрических цепях технологического оборудования (силы тока, напряжения, сопротивления изоляции). На рис. 5.12 представлена схема защитного отключения с использованием реле максимального тока.
  Повышение электробезопасности достигается также путем применения изолирующих, ограждающих, предохранительных и сигнализирующих средств защиты.
  Изолирующие электрозащитные средства делятся на основные и дополнительные. Основные изолирующие электрозащитные средства способны длительное время выдерживать рабочее напряжение электроустановки, и поэтому ими разрешается касаться токоведущих частей, находящихся под напряжением, и работать на этих частях. К таким средствам относятся: в электроустановках напряжением до 1000 В - диэлектрические резиновые перчатки, инструмент с изолирующими рукоятками и указатели напряжения до 1000 В (ранее назывались токоискателями); в электроустановках напряжением выше 1000 В - изолирующие штанги, изолирующие и электроизмерительные клещи, а также указатели напряжения выше 1000 В.
  Дополнительные изолирующие электрозащитные средства обладают недостаточной электрической прочностью и поэтому не могут самостоятельно защищать человека от поражения током. Их назначение - усилить защитное действие основных изолирующих средств, вместе с которыми они должны применяться. К дополнительным изолирующим средствам относятся: в электроустановках напряжением до 1000 В -диэлектрические галоши, коврики и изолирующие подставки; в электроустановках напряжением выше 1000 В -диэлектрические перчатки, боты, коврики, изолирующие подставки.
  Ограждающие средства защиты предназначены для временного ограждения токоведущих частей (временные переносные ограждения, щиты, ограждения-клетки, изолирующие накладки, изолирующие колпаки).
  Сигнализирующие средства включают запрещающие и предупреждающие знаки безопасности, а также плакаты: запрещающие, предостерегающие, разрешающие, напоминающие. Чаще всего используется предупреждающий знак "Проход запрещен".
  Предохранительные средства защиты предназначены для индивидуальной защиты работающего от световых, тепловых и механических воздействий. К ним относят: защитные очки, противогазы, специальные рукавицы и т. п.
 
 5.6. СРЕДСТВА ЗАЩИТЫ ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА
 
  Величина потенциалов зарядов искусственного статического электричества на ременных передачах и лентах конвейеров может достигать 40 кВ, при механической обработке пластмасс и дерева до 30 кВ, при распылении красок до 12 кВ. При соответствующих условиях происходит пробой воздушной прослойки, сопровождающийся искровым разрядом (пробивное сопротивление абсолютно сухого воздуха составляет 3000 кВ/м), что может инициировать взрыв или пожар.
  Основные мероприятия, применяемые для защиты от статического электричества производственного происхождения, включают методы, исключающие или уменьшающие интенсивность генерации зарядов, и методы, устраняющие образующиеся заряды. Интенсивность генерации зарядов можно уменьшить соответствующим подбором пар трения или смешиванием материалов таким образом, что в результате трения один из смешанных материалов наводит заряд одного знака, а другой -другого. В настоящее время создан комбинированный материал из найлона и дакрона, обеспечивающий защиту от статического электричества по этому принципу.
  Изменением технологического режима обработки материалов также можно добиться снижения количества генерируемых зарядов (уменьшение скоростей обработки, скоростей транспортирования и слива диэлектрических жидкостей, уменьшение сил трения).
  При заполнении сыпучими веществами или жидкостями диэлектриками резервуаров на входе в них применяют релаксационные емкости, чаще всего в виде заземленного участка трубопровода увеличенного диаметра, обеспечивающего стекание всего заряда статического электричества на землю.
  Образующиеся заряды статического электричества устраняют чаще всего путем заземления электропроводных частей производственного оборудования. Сопротивление такого заземления должно быть не более 100 Ом. При невозможности устройства заземления практикуется повышение относительной влажности воздуха в помещении. Возможно увеличить объемную проводимость диэлектрика, для чего в него вносят графит, ацетиленовую сажу, алюминиевую пудру, а в жидкие диэлектрики - специальные добавки. Для ряда машин и агрегатов нашли применение нейтрализаторы статического электричества (коронного разряда, радиоизотопные, аэродинамические и комбинированные). Во всех типах этих устройств путем ионизации воздуха вблизи элемента конструкции, накапливающего заряд статического электричества, образуются ионы, в том числе со знаком, противоположным знаку заряда, что и вызывает его нейтрализацию.
  К средствам индивидуальной защиты от статического электричества относятся электростатические халаты и специальная обувь, подошва которой выполнена из кожи либо электропроводной резины, а также антистатические браслеты.
  Значительно большую опасность представляет атмосферное статическое электричество, эффективным средством защиты от которого является молниезащита. Она включает комплекс мероприятий и устройств, предназначенных для обеспечения безопасности людей, предохранения зданий, сооружений, оборудования и материалов от взрывов, загораний и разрушений, возможных при воздействии молний.
  Для всех зданий и сооружений, не связанных с производством и хранением взрывчатых веществ, а также для линий электропередач и контактных сетей проектирование и изготовление молниезащиты должно выполняться согласно "Инструкции по устройству молниезащиты зданий и сооружений" РД 34.21.122-87.
  По степени защиты зданий и сооружений от воздействия атмосферного электричества молниезащита подразделяется на три категории. Категория молниезащиты определяется назначением зданий и сооружений среднегодовой продолжительностью гроз, а также ожидаемым числом поражений здания или сооружения молнией в год.
  Ожидаемое годовое число поражений молнией прямоугольных зданий и сооружений
  N= (S+ 6hзд)(L-6hзд)-7,7h2здn10-6,
  для сосредоточенных зданий и сооружений (башен, вышек, дымовых труб и т. д.)
  N= 9?h2здn10-6,
 
  где S, L-ширина и длина зданий, м (для зданий и сооружений сложной конфигурации в плане при расчете N в качестве S и L принимают ширину и длину наименьшего описанного прямоугольника); h^ -наибольшая высота здания или сооружения, м; п -среднегодовое число ударов молний в 1 км2 земной поверхности (удельная плотность ударов молний в землю) в месте расположения зданий или сооружений.
 
 
 

<< Пред.           стр. 12 (из 29)           След. >>

Список литературы по разделу