<< Пред.           стр. 6 (из 14)           След. >>

Список литературы по разделу

 Будучи предоставленной самой себе, система, в кото­рой происходят химические реакции, стремится к состоя­нию химического равновесия. Именно поэтому химиче­ское равновесие можно считать типичным примером со­стояния-аттрактора. Каков бы ни был ее начальный со­став, система самопроизвольно достигает этой конечной стадии, в которой прямые и обратные реакции статисти­чески компенсируют друг друга, и поэтому дальнейшее суммарное изменение концентрации любого реагента прекращается (dX/dt=0). В нашем примере из полной компенсации прямой и обратной реакций следует, что равновесные концентрации удовлетворяют соотношению AX/YB=k'/k=K. Оно известно под названием «закона действия масс», или закона Гульдберга—Вааге (К — константа равновесия). Определяемое законом действия масс соотношение концентраций соответствует химиче­скому равновесию так же, как равномерность темпера­туры (в случае изолированной системы) соответствует тепловому равновесию. Соответствующее производство энтропии равно нулю.
 Прежде чем перейти к термодинамическому описанию химических реакций, рассмотрим кратко один дополни­тельный аспект кинетического описания. Скорость хими-
 186
 
 
 ческой реакции зависит не только от концентраций ре­агирующих молекул и термодинамических параметров (например, от давления и температуры). Сказывается на ней и присутствие в системе химических веществ, влияющих на реакцию, но остающихся в итоге неизмен­ными. Такого рода вещества называются катализатора­ми. Катализаторы могут, например, изменить значения констант реакций k или k' и даже заставить систему пойти по другому пути реакции. В биологии роль катализа­торов играют специфические протеины — ферменты. Эти макромолекулы обладают пространственной конфигура­цией, позволяющей им изменять скорость реакции. Фер­менты часто бывают высокоспецифичными и влияют лишь на одну реакцию. Возможный механизм каталити­ческого действия ферментов состоит в следующем. В мо­лекуле ферментов имеются места, обладающие повышен­ной «реакционной способностью». Молекулы других ве­ществ, участвующих в реакции, стремятся присоединить­ся к активным участкам молекулы фермента. Тем самым повышается вероятность их столкновения, а следователь­но, и инициации химической реакции.
 Весьма важным типом каталитических процессов (особенно в биологии) являются так называемые автока­талитические реакции, в которых для синтеза некоторо­го вещества требуется присутствие этого же вещества. Иначе говоря, чтобы получить в результате реакции ве­щество X, мы должны начать с системы, содержащей Х с самого начала. Например, очень часто молекула Х ак­тивирует фермент: присоединяясь к молекуле фермента, Х стабилизирует такую конфигурацию, которая делает легкодоступными активные участки. Автокаталитическим процессам соответствуют схемы реакций типа А+2Х->3Х (в присутствии молекул Х одна молекула А пре­вращается в одну молекулу X). Иначе говоря, нам необходимо иметь X, чтобы произвести еще X. Графически автокаталитическне реакции принято изображать с по­мощью реакционной петли:
 
 
 Важная особенность систем с такими реакционными петлями состоит в том, что кинетические уравнения, ко-
 187
 
 
 Рис. 3. На этом графике представлены пути реакций для «брюсселятора» (более подробно «брюсселятор» описан в тексте).
 торые описывают происходящие в них изменения, явля­ются нелинейными дифференциальными уравнениями.
 Если мы применим тот же метод, то для реакции A+2X®ЗX получим кинетическое уравнение dX/dt=КАХ2, т. е. скорость изменения концентрации вещест­ва Х окажется пропорциональной квадрату его концен­трации.
 Другой весьма важный класс каталитических реак­ций в биологии — так называемый кросс-катализ — пред­ставлен для системы 2X+Y®3X, B+X®Y+D на рис. 3.
 В данном случае мы действительно имеем дело с кросс-катализом (т. е. «перекрестным катализом»), по­скольку из Y получается X, а из Х одновременно полу­чается Y. Катализ не обязательно увеличивает скорость реакции. Он может и замедлять, или ингибировать, ее. Графически это также изображается с помощью соот­ветствующих петель обратной связи.
 Характерные математические особенности нелиней­ных дифференциальных уравнений, описывающих хими­ческие реакции с каталитическими стадиями, как мы убе­димся в дальнейшем, имеют жизненно важное значение для термодинамики сильно неравновесных химических процессов. Кроме того, как мы уже упоминали, биолога­ми установлено, что петли обратной связи играют весь­ма существенную роль в метаболических функциях. На­пример, взаимосвязь между нуклеиновыми кислотами и протеинами может быть описана как кросс-катализ: нуклеиновые кислоты являются носителями информа­ции, необходимой для синтеза протеинов, а протеины в свою очередь синтезируют нуклеиновые кислоты.
 Помимо скоростей химических реакций, необходимо также учитывать скорости других необратимых процес-
 188
 
 
 сов, таких, как перенос тепла и диффузия вещества. Ско­рости необратимых процессов называются также пото­ками и обозначаются буквой J. Общей теории, которая давала бы скорости, или потоки, не существует. В хи­мических реакциях скорость зависит от молекулярного механизма, в чем нетрудно убедиться на уже приведен­ных примерах. Термодинамика необратимых процессов вводит величины еще одного типа: помимо скоростей или потоков J, она использует обобщенные силы X, т. е. «причины», вызывающие потоки. Простейшим примером может служить теплопроводность. Закон Фурье утверж­дает, что поток тепла J пропорционален градиенту тем­пературы. Следовательно, градиент температуры есть та «сила», которая создает поток тепла. По определению, и поток и силы в состоянии теплового равновесия равны нулю. Как мы увидим в дальнейшем, производство эн­тропии P=diS/dt может быть вычислено по потоку и силам.
 Рассмотрим определение обобщенной силы в случае химической реакции. Для простоты обратимся снова к реакции A+X®Y+B. Как мы уже знаем, в случае рав­новесия соотношение концентраций определяется зако­ном действия масс. Теофил де Донде показал, что в ка­честве «химической силы» можно ввести сродство A, определяющее направление протекания химической ре­акции так же, как градиент температуры определяет на­правление теплового потока. В рассматриваемом нами случае сродство пропорционально lnKBY/AX, где К — константа равновесия. Непосредственно видно, что срод­ство A обращается в нуль при достижении равновесия, где по закону действия масс AX/BY=K. Если мы станем выводить систему из равновесия, то сродство (по абсо­лютной величине) возрастет. В этом нетрудно убедить­ся, если исключить из системы некоторую долю моле­кул В по мере их образования в ходе реакции. Можно сказать, что сродство служит мерой расстояния между фактическим состоянием системы и ее равновесным со­стоянием. Кроме того, как мы упоминали, знак сродст­ва определяет направление химической реакции. Если сродство A положительно, то молекул В и Y «слишком много» и суммарная реакция идет в направлении B+Y®A+X. И, наоборот, если сродство A отрицательно, то молекул В и Y «слишком мало» и суммарная реак­ция идет в обратном направлении.
 189
 
 
 Сродство в том смысле, в каком мы его определили, является уточненным вариантом старинного сродства, о которой писали еще алхимики, стремившиеся разо­браться в способности химических веществ вступать в одни и не вступать в другие реакции, т. е. в «симпати­ях» и «антипатиях» молекул. Идея о том, что химическая активность не сводима к механическим траекториям, к невозмутимому господству динамических законов, под­черкивалась с самого начала. Мы уже приводили обшир­ную выдержку из Дидро. Позднее Ницше по другому поводу заметил, что смешно говорить о «химических за­конах», как будто химические вещества подчиняются за­конам, аналогичным законам морали. В химии, утверж­дал Ницше, не существует ограничений и каждое ве­щество вольно поступать как ему «вздумается». Речь идет не об «уважении», питаемом одним веществом к другому, а о силовой борьбе, о непрестанном подчинении слабого сильному2. Химическое равновесие с обращаю­щимся в нуль сродством соответствует разрешению это­го конфликта. С этой точки зрения специфичность тер­модинамического сродства перефразирует на современ­ном языке старую проблему3 — проблему различия между скованным жесткими нормами безразличным миром динамических законов и миром спонтанной про­дуктивной активности, которому принадлежат химиче­ские реакции.
 Нельзя не отметить принципиальное концептуальное различие между физикой и химией. В классической фи­зике мы можем по крайней мере представлять себе об­ратимые процессы, такие, как движение маятника без трения. Пренебрежение необратимыми процессами в ди­намике всегда соответствует идеализации, но по край­ней мере в некоторых случаях эта идеализация разумна. В химии все обстоит совершенно иначе. Процессы, изу­чением которых она занимается (химические превраще­ния, характеризуемые скоростями реакций), необрати­мы. По этой причине химию невозможно свести к лежа­щей в основе классической или квантовой механики идеализации, в которой прошлое и будущее играют эк­вивалентные роли.
 Как и следовало ожидать, все необратимые процес­сы сопровождаются производством энтропии. Каждый из них входит в diS в виде произведения скорости, или по­тока J и соответствующей силы X. Полное производство
 190
 
 
 энтропии в единицу времени P=diS/dt равно сумме всех таких вкладов, каждый из которых имеет вид произве­дения JX.
 Термодинамику можно разделить на три большие области, изучение которых соответствует трем последо­вательным этапам в развитии термодинамики. В равно­весной области производство энтропии, потоки и силы равны нулю. В слабо неравновесной области, где термо­динамические силы «слабы», потоки Jk линейно зависят от сил. Наконец, третья область называется сильно не­равновесной, или нелинейной, потому, что в ней потоки являются, вообще говоря, более сложными функциями сил. Охарактеризуем сначала некоторые общие особен­ности линейной термодинамики, характерные для слабо неравновесных систем.
 2. Линейная термодинамика
 В 1931 г. Ларс Онсагер открыл первые общие соотно­шения неравновесной термодинамики в линейной, слабо неравновесной области. Это были знаменитые «соотно­шения взаимности». Суть их чисто качественно сводится к следующему: если сила «один» (например, градиент температуры) для слабо неравновесных ситуаций воз­действует на поток «два» (например, на диффузию), то сила «два» (градиент концентрации) воздействует на поток «один» (поток тепла). Соотношения взаимности неоднократно подвергались экспериментальной провер­ке. Например, всякий раз, когда градиент температуры индуцирует диффузию вещества, мы обнаруживаем, что градиент концентрации вызывает поток тепла через си­стему.
 Следует особо подчеркнуть, что соотношения Онсагера носят общий характер. Несущественно, например, про­исходят ли необратимые процессы в газообразной, жид­кой или твердой среде. Соотношения взаимности выпол­няются независимо от допущений относительно агрегат­ного состояния вещества.
 Соотношения взаимности Онсагера были первым зна­чительным результатом в термодинамике необратимых процессов. Они показали, что предмет этой новой нау­ки не некая плохо определенная «ничейная» земля, а за­служивает внимания ничуть не меньше, чем предмет тра-
 191
 
 
 диционной равновесной термодинамики, не уступая по­следнему в плодотворности. Если равновесная термоди­намика была достижением XIX в., то неравновесная тер­модинамика возникла и развивалась в XX в. Вывод со­отношений взаимности Онсагера ознаменовал сдвиг ин­тересов от равновесных явлений к неравновесным.
 Нельзя не упомянуть и о втором общем результате линейной неравновесной термодинамики. Нам уже при­ходилось говорить о термодинамических потенциалах, экстремумы которых соответствуют состояниям равнове­сия, к которому необратимо стремится термодинамиче­ская эволюция. Для изолированной системы потенциа­лом является энтропия S, для замкнутой системы с за­данной температурой — свободная энергия F. Термоди­намика слабо неравновесных систем также вводит свой термодинамический потенциал. Весьма интересно, что та­ким потенциалом является само производство энтро­пии Р. Действительно, теорема о минимуме производст­ва энтропии утверждает, что в области применимости соотношений Онсагера, т. е. в линейной области, система эволюционирует к стационарному состоянию, характери­зуемому минимальным производством энтропии, совмес­тимым с наложенными на систему связями. Эти связи определяются граничными условиями. Например, может возникнуть необходимость поддерживать две точки си­стемы при заданных различных температурах или орга­низовать поток, который бы непрерывно подводил в ре­акционную зону исходные вещества и удалял продукты реакции.
 Стационарное состояние, к которому эволюциониру­ет система, заведомо является неравновесным состояни­ем, в котором диссипативные процессы происходят с не­нулевыми скоростями. Но поскольку это состояние ста­ционарно, все величины, описывающие систему (такие, как температура, концентрации), перестают в нем зави­сеть от времени. Не зависит от времени в стационарном состоянии и энтропия системы. Но тогда изменение эн­тропии во времени становится равным нулю: dS=0. Как мы уже знаем, полное приращение энтропии состоит из двух членов: потока энтропии deS и положительного про­изводства энтропии diS; поэтому из равенства dS==0 следует, что deS=—diS<0. Поступающий из окружаю­щей среды поток тепла или вещества определяет отрица­тельный поток энтропии deS, который компенсируется
 192
 
 
 производством энтропии diS из-за наобратимых процес­сов внутри системы. Отрицательный поток энтропии deS означает, что система поставляет энтропию внешне­му миру. Следовательно, в стационарном состоянии ак­тивность системы непрерывно увеличивает энтропию ок­ружающей среды. Все сказанное верно для любых ста­ционарных состояний. Но теорема о минимуме производ­ства энтропии утверждает нечто большее: то выделенное стационарное состояние, к которому стремится система, отличается тем, что в нем перенос энтропии в окружаю­щую среду настолько мал, насколько это позволяют на­ложенные на систему граничные условия. В этом смысле равновесное состояние соответствует тому частному слу­чаю, когда граничные условия допускают исчезающе ма­лое производство энтропии. Иначе говоря, теорема о ми­нимуме производства энтропии выражает своеобразную «инерцию» системы: когда граничные условия мешают системе перейти в состояние равновесия, она делает лучшее из того, что ей остается, — переходит в состояние энтропии, т. е. в состояние, которое настолько близко к состоянию равновесия, насколько это позволяют обстоя­тельства.
 Таким образом, линейная термодинамика описывает стабильное, предсказуемое поведение систем, стремящих­ся к минимальному уровню активности, совместимому с питающими их потоками. Из того, что линейная нерав­новесная термодинамика так же, как и равновесная тер­модинамика, допускает описание с помощью потенциала, а именно производства энтропии, следует, что и при эво­люции к равновесию, и при эволюции к стационарному состоянию система «забывает» начальные условия. Ка­ковы бы ни были начальные условия, система рано или поздно перейдет в состояние, определяемое граничными условиями. В результате реакция такой системы на лю­бое изменение граничных условий становится предска­зуемой.
 Мы видим, что в линейной области ситуация остает­ся, по существу, такой же, как и в равновесной. Хотя производство энтропии не обращается в нуль, оно тем не менее не мешает необратимому изменению отождест­вляться с эволюцией к состоянию, полностью выводимо­му из общих законов. Такое «становление» неизбежно приводит к уничтожению любого различия, любой спе­цифичности. Карно или Дарвин? Парадокс, на который
 193
 
 
 мы обратили внимание в гл. 4, остается в силе. Между появлением естественных организованных форм, с одной стороны, и тенденцией к «забыванию» начальных усло­вий наряду с возникающей при этом дезорганизацией — с другой, все еще существует зияющая брешь.
 3. Вдали от равновесия
 У истоков нелинейной термодинамики лежит нечто совершенно удивительное, факт, который на первый взгляд легко принять за неудачу: несмотря на все по­пытки, обобщение теоремы о минимуме производства энтропии для систем, в которых потоки уже не являются более линейными функциями сил, оказалось невозмож­ным. Вдали от равновесия система по-прежнему может эволюционировать к некоторому стационарному состоя­нию, но это состояние, вообще говоря, уже не опреде­ляется с помощью надлежаще выбранного потенциала (аналогичного производству энтропии для слабо нерав­новесных состояний).
 Отсутствие потенциальной функции ставит перед на­ми вопрос: что можно сказать относительно устойчиво­сти состояний, к которым эволюционирует система? Действительно, до тех пор пока состояние-аттрактор оп­ределяется минимумом потенциала (например, производ­ство энтропии), его устойчивость гарантирована. Прав­да, флуктуация может вывести системы из этого мини­мума. Но тогда второе начало термодинамики вынудит систему вернуться в исходный минимум. Таким образом, существование термодинамического потенциала делает систему «невосприимчивой» к флуктуациям. Располагая потенциалом, мы описываем «стабильный мир», в кото­ром системы, эволюционируя, переходят в статичное со­стояние, установленное для них раз и навсегда.
 Но когда термодинамические силы, действуя на си­стему, становятся достаточно «большими» и вынуждают ее покинуть линейную область, гарантировать устойчи­вость стационарного состояния или его независимость от флуктуации было бы опрометчиво. За пределами линей­ной области устойчивость уже не является следствием общих законов физики. Необходимо специально изучать, каким образом стационарное состояние реагирует на раз­личные типы флуктуации, создаваемых системой или окружающей средой. В некоторых случаях анализ при-
 194
 
 
 водит к выводу, что состояние неустойчиво. В таких со­стояниях определенные флуктуации вместо того, чтобы затухать, усиливаются и завладевают всей системой, вынуждая ее эволюционировать к новому режиму, кото­рый может быть качественно отличным от стационарных состояний, соответствующих минимуму производства энтропии.
 Термодинамика позволяет высказать исходное общее заключение относительно систем, в поведении которых могут обнаружиться отклонения от того типа порядка, который диктуется равновесным состоянием. Такие си­стемы должны быть сильно неравновесными. В тех слу­чаях, когда возможна неустойчивость, необходимо ука­зать порог, расстояние от равновесия, за которым флук­туации могут приводить к новому режиму, отличному от «нормального» устойчивого поведения, характерного для равновесных или слабо неравновесных систем.
 Чем такой вывод интересен?
 Такого рода явления хорошо известны в гидродина­мике — теории течений. Например, давно известно, что при определенной скорости ламинарное течение может смениться турбулентным. По свидетельству Мишеля Серра4, древние атомисты уделяли турбулентному тече­нию столь большое внимание, что турбулентность с пол­ным основанием можно считать основным источником вдохновения физики Лукреция. Иногда, писал Лукреций, в самое неопределенное время и в самых неожиданных местах вечное и всеобщее падение атомов испытывает слабое отклонение — «клинамен». Возникающий вихрь дает начало миру, всем вещам в природе. «Клинамен», спонтанное непредсказуемое отклонение, нередко под­вергали критике как одно из наиболее уязвимых мест в физике Лукреция, как нечто, введенное ad hoc. В действительности же верно обратное: «клинамен» представляет собой попытку объяснить такие явления, как потеря устойчивости ламинарным течением и его спонтанный переход в турбулентное течение. Современ­ные специалисты по гидродинамике проверяют устойчи­вость течения жидкости, вводя возмущение, выражаю­щее влияние молекулярного хаоса, который накладыва­ется на среднее течение. Не так уж далеко мы ушли от «клинамена» Лукреция!
 Долгое время турбулентность отождествлялась с хао­сом или шумом. Сегодня мы знаем, что это не так. Хотя
 195
 
 
 в макроскопическом масштабе турбулентное течение ка­жется совершенно беспорядочным, или хаотическим, в микроскопическом масштабе оно высокоорганизованно. Множество пространственных и временных масштабов, на которых разыгрывается турбулентность, соответствует когерентному поведению миллионов и миллионов моле­кул. С этой точки зрения переход от ламинарного тече­ния к турбулентности является процессом самоорганиза­ции. Часть энергии системы, которая в ламинарном те­чении находилась в тепловом движении молекул, перехо­дит в макроскопическое организованное движение.
 Еще одним поразительным примером неустойчивости стационарного состояния, приводящей к явлению спон­танной самоорганизации, может служить так называе­мая неустойчивость Бенара. Она возникает в горизон­тальном слое жидкости с вертикальным градиентом тем­пературы. Нижняя поверхность слоя жидкости нагрева­ется до заданной температуры, более высокой, чем тем­пература верхней поверхности. При таких граничных ус­ловиях в слое жидкости устанавливается стационарный поток тепла, идущий снизу вверх. Когда приложенный градиент температуры достигает некоторого порогового значения, состояние покоя жидкости (стационарное со­стояние, в котором перенос тепла осуществляется толь­ко с помощью теплопроводности, без конвекции) стано­вится неустойчивым. Возникает конвекция, соответст­вующая когерентному, т. е. согласованному, движению ансамблей молекул; при этом перенос тепла увеличива­ется. Следовательно, при заданных связях (величине градиента температуры) производство энтропии в систе­ме возрастает, что противоречит теореме о минимуме производства энтропии. Неустойчивость Бенара — явле­ние весьма впечатляющее. Конвективное движение жид­кости порождает сложную пространственную организа­цию системы. Миллионы молекул движутся согласован­но, образуя конвективные ячейки в форме правильных шестиугольников некоторого характерного размера.
 В гл. 4 мы ввели принцип порядка Больцмана, уста­навливающий связь энтропии с вероятностью (числом комплексов Р). Применимо ли это соотношение в дан­ном случае? Каждому распределению скоростей молекул соответствует некоторое число комплексов. Оно показы­вает, сколькими способами мы можем реализовать тре­буемое распределение скоростей, придавая каждой мо-
 196
 
 
 лекуле некоторую скорость. Все рассуждения аналогич­ны приведенным в гл. 4 при подсчете числа комплексов как функции от распределения молекул между двумя отделениями ящика. В случае неустойчивости Бенара число комплексов также велико в случае хаоса, т. е. значительного разброса скоростей. Наоборот, когерент­ное движение означает, что многие молекулы движутся почти с одинаковыми скоростями (разброс скоростей мал). Такому распределению соответствует столь малое число комплексов Р, что вероятность возникновения са­моорганизации почти равна пулю. И все же самооргани­зация происходит! Мы видим, таким образом, что под­счет числа комплексов, исходящий из гипотезы об апри­орном равнораспределении вероятностей молекулярных состояний, приводит к неверным выводам. То, что он не соответствует истинному положению вещей, становится особенно заметным, если мы обратимся к происхожде­нию нового режима. В случае неустойчивости Бенара это — флуктуация, микроскопическое конвективное тече­ние, которое, если верить принципу порядка Больцмана, обречено на вырождение, но вопреки ему усиливается и завладевает всей системой. Таким образом, за критиче­ским значением приложенного градиента спонтанно ус­танавливается новый молекулярный порядок. Он соот­ветствует гигантской флуктуации, стабилизируемой об­меном энергией с внешним миром.
 В сильно неравновесных условиях понятие вероятно­сти, лежащее в основе больцмановского принципа по­рядка, становится неприменимым: наблюдаемые струк­туры не соответствуют максимуму комплексов. Не соот­ветствует максимум комплексов и минимуму свободной энергии F=E—TS. Тенденция к выравниванию и «забы­ванию» начальных условий перестает быть общей тен­денцией. В этом смысле старая проблема происхожде­ния жизни предстает в ином свете. Заведомо ясно, что жизнь несовместима с принципом порядка Больцмана, но не противоречит тому типу поведения, который уста­навливается в сильно неравновесных условиях.
 Классическая термодинамика приводит к понятию равновесной структуры, примером которой может слу­жить любой кристалл. Ячейки Бенара также представ­ляют собой структуры, но совершенно иной природы. Именно поэтому мы ввели новое понятие — диссипативная структура, чтобы подчеркнуть тесную и на первый
 197
 
 
 взгляд парадоксальную взаимосвязь, существующую в таких ситуациях, с одной стороны, между структурой и порядком, а с другой — между диссипацией, или потеря­ми. В гл. 4 мы видели, что в классической термодинами­ке тепловой поток считался источником потерь. В ячей­ке Бенара тепловой поток становится источником по­рядка.
 Таким образом, взаимодействие системы с внешним миром, ее погружение в неравновесные условия может стать исходным пунктом в формировании новых динами­ческих состояний — диссипативных структур. Диссипативная структура отвечает некоторой форме супермоле­кулярной организации. Хотя параметры, описывающие кристаллические структуры, могут быть выведены из свойств образующих их молекул, и в частности из радиу­са действия сил взаимного притяжения и отталкивания, ячейки Бенара, как и все диссипативные структуры, по существу, отражают глобальную ситуацию в порождаю­щей их неравновесной системе. Описывающие их пара­метры макроскопические — порядка не 10-8см (как рас­стояния между молекулами в кристалле), а нескольких сантиметров. Временные масштабы также другие: они соответствуют не молекулярным масштабам (напри­мер, периодам колебаний отдельных молекул, т. е. по­рядка 10-15с), а макроскопическим, т. е. секундам, ми­нутам или часам.
 Но вернемся к химическим реакциям. Они обладают некоторыми весьма важными отличиями от проблемы Бенара. В ячейке Бенара неустойчивость имеет простое механическое происхождение. Когда мы нагреваем жид­кость снизу, нижний слой жидкости становится менее плотным и центр тяжести перемещается вверх. Неудиви­тельно поэтому, что за критической точкой система «оп­рокидывается» и возникает конвекция.
 Химические системы не обладают такого рода меха­ническими свойствами. Можно ли ожидать явления са­моорганизации в химических системах? Мысленно мы представляем себе химические реакции так: во всех на­правлениях в пространстве несутся молекулы веществ и случайным образом сталкиваются. В такой картине не остается места для самоорганизации, и, быть может, в этом заключается одна из причин, по которым химиче­ские неустойчивости лишь недавно начали привлекать внимание исследователей. Имеется и еще одно отличие.
 198
 
 
 Рис. 4. Каталитические петли соответствуют нелинейным чле­нам. В задаче с одной независимой переменной нелинейность озна­чает, что имеется по крайней мере один член, содержащий незави­симую переменную в степени выше 1. В этом простейшем случае нетрудно проследить за тем, какая связь существует между нелиней­ными членами и потенциальной неустойчивостью стационарных со­стояний.
 Предположим, что для независимой переменной Х выполняется эволюционное уравнение dX/dt=f(X). Функцию f(X) всегда можно разложить в разность двух функций: f+(X), соответствующую при­были («наработке» вещества), и f-(X), соответствующую убытку (расходу вещества), каждая из которых положительна или равна 0, т. е. представить в виде f(X)=f+(X)—f-(X). Стационарные состоя­ния dX/dt=0 соответствуют значениям X, при которых f+(X)=f-(X).
 Равенство f+(X)=f-(X) означает, что стационарные состояния можно найти, построив точки пересечения графиков функций f+ и f-. Если f+ и f- линейны, то их графики могут пересекаться только в одной точке. В противном случае характер пересечения позволяет сделать выводы об устойчивости соответствующего стационарного состояния.
 Возможны следующие четыре случая:
 SI. Стационарное состояние устойчиво относительно отрицатель­ных флуктуации и неустойчиво относительно положительных флук­туации. Если систему слегка отклонить влево от SI, то положитель­ная разность между f+ и f- вынудит систему вернуться в SI. Если же систему отклонить вправо от SI, то отклонение будет нарастать.
 SS. Стационарное состояние устойчиво как относительно поло­жительных, так и относительно отрицательных флуктуации.
 IS. Стационарное состояние устойчиво только относительно по­ложительных флуктуаций.
 II. Стационарное состояние неустойчиво как относительно поло­жительных, так и относительно отрицательных флуктуаций.
 199
 
 
 Все течения достаточно далеко от равновесия становят­ся турбулентными (порог измеряется в безразмерных числах, например в числах Рейнольдса). Химические реакции ведут себя иначе. Для них большая удален­ность от состояния равновесия — условие необходимое, но не достаточное. Во многих химических системах, ка­кие бы связи на них ни накладывались и как бы ни из­менялись скорости реакций, стационарное состояние ос­тается устойчивым и произвольные флуктуации затуха­ют, как в слабо неравновесной области. В частности, так обстоит дело в системах, в которых наблюдается цепь последовательных превращений типа A®B®C®D®..., описываемая линейными дифференциальными уравне­ниями.
 Судьба флуктуаций, возмущающих химическую си­стему, а также новые ситуации, к которым она может эволюционировать, зависят от детального механизма хи­мических реакций. В отличие от систем в слабо неравно­весной области поведение сильно неравновесных систем весьма специфично. В сильно неравновесной области не существует универсального закона, из которого можно было бы вывести заключение относительно поведения всех без исключения систем. Каждая сильно неравновес­ная система требует особого рассмотрения. Каждую си­стему химических реакций необходимо исследовать осо­бо — поведение ее может быть качественно отличным от поведения других систем.
 Тем не менее один общий результат все же был полу­чен, а именно: выведено необходимое условие химиче­ской неустойчивости. В цепи химических реакций, про­исходящих в системе, устойчивости стационарного со­стояния могут угрожать только стадии, содержащие ав­токаталитические петли, т. е. такие стадии, в которых продукт реакции участвует в синтезе самого себя. Этот вывод интересен тем, что вплотную подводит нас к фун­даментальным достижениям молекулярной биологии (рис. 4).
 4. За порогом химической неустойчивости
 Изучение химических неустойчивостей в наши дни стало довольно обычным делом. И теоретические, и экс­периментальные исследования ведутся во многих инсти­тутах и лабораториях. Как мы увидим, эти исследования
 200
 
 
 представляют интерес для широкого круга ученых — не только для математиков, физиков, химиков и биологов, но и для экономистов и социологов.
 В сильно неравновесных условиях за порогом хими­ческой неустойчивости происходят различные новые яв­ления. Для того чтобы описать их подробно, полезно на­чать с упрощенной теоретической модели, разработан­ной в последнее десятилетие в Брюсселе. Американские ученые назвали эту модель «брюсселятором», и это на­звание так и прижилось в научной литературе. (Геогра­фические ассоциации, по-видимому, стали правилом в этой области: помимо «брюсселятора», существует «оре-гонатор» и даже самый юный «палоальтонатор»!) Опи­шем кратко «брюсселятор». Ранее мы уже отмечали те стадии реакции, которые ответственны за неустойчи­вость (см. рис. 3). Вещество Х образуется из вещества А и превращается в вещество Е. Оно является «партне­ром» по кросс-катализу вещества Y: Х образуется из Y в результате тримолекулярной стадии, а Y образуется в результате реакции между Х и веществом В.
 В этой модели концентрации веществ A, В, D и Е за­даны (и являются так называемыми управляющими па­раметрами). Поведение системы исследуется при возрас­тающих значениях В. Концентрация А поддерживается постоянной. Стационарное состояние, к которому с наи­большей вероятностью эволюционирует такая система (состояние с dX/dt=dY/dt=0), соответствует концентра­циям Х0=А и Y0=B/A. В этом нетрудно убедиться, если выписать кинетические уравнения и найти стационарное состояние. Но как только концентрация В переходит критический порог (при прочих равных параметрах), это стационарное состояние становится неустойчивым. При переходе через критический порог оно становится неус­тойчивым фокусом, и система, выходя из этого фокуса, выходит, или «наматывается», на предельный цикл. Вместо того чтобы оставаться стационарными, концент­рации Х и Y начинают колебаться с отчетливо выражен­ной периодичностью. Период колебаний зависит от кине­тических постоянных, характеризующих скорость реак­ции, и граничных условий, наложенных на всю систему (температуры, концентрации веществ A, B и т. д.).
 За критическим порогом система под действием флук­туаций спонтанно покидает стационарное состояние Х0=A, Y0=В/A. При любых начальных условиях она стре-
 201
 
 
 Рис. 5. Зависимость концентрации компоненты Х от концентра­ции компоненты Y. Фокус внутри цикла (точка S) — стационарное состояние, неустойчивое при B>(1+A2). Все траектории (пять из которых представлены на графике) при любом начальном состоянии стремятся к одному и тому же предельному циклу.
 мится выйти на предельный цикл, периодическое движе­ние по которому устойчиво. В результате мы получаем периодический химический процесс — химические часы. Остановимся на мгновение, чтобы подчеркнуть, сколь не­ожиданно такое явление. Предположим, что у нас име­ются молекулы двух сортов: «красные» и «синие». Из-за хаотического движения молекул можно было бы ожи­дать, что в какой-то момент в левой части сосуда ока­жется больше красных молекул, в следующий момент больше станет синих молекул и т. д. Цвет реакционной смеси с трудом поддается описанию: фиолетовый с бес­порядочными переходами в синий и красный. Иную кар­тину мы увидим, разглядывая химические часы: вся реакционная смесь будет иметь синий цвет, затем ее цвет резко изменится на красный, потом снова на синий
 202
 
 
 и т. д. Поскольку смена окраски происходит через пра­вильные интервалы времени, мы имеем дело с когерент­ным процессом.
 Столь высокая упорядоченность, основанная на со­гласованном поведении миллиардов молекул, кажется неправдоподобной, и, если бы химические часы нельзя было бы наблюдать «во плоти», вряд ли кто-нибудь по­верил, что такой процесс возможен. Для того чтобы одновременно изменить свой цвет, молекулы должны «каким-то образом» поддерживать связь между собой. Система должна вести себя как единое целое. К ключе­вому слову «связь», обозначающему весьма важное для многих областей человеческой деятельности (от хи­мии до нейрофизиологии) понятие, мы будем еще воз­вращаться неоднократно. Возможно, что именно диссипативные структуры представляют собой один из про­стейших физических механизмов связи (communication).
 Между простейшим механическим осциллятором — пружиной — и химическими часами имеется важное различие. Химические часы обладают вполне определенной периодичностью, соответствующей тому предельному циклу, на который наматывается их траектория. Что же касается пружины, то частота ее колебаний зависит от амплитуды. С этой точки зрения химические часы как хранители времени отличаются большей надежностью, чем пружина.
 Но химические часы — отнюдь не единственный тип самоорганизации. До сих пор мы пренебрегали диффу­зией. В своих рассуждениях мы неизменно предполагали, что все вещества равномерно распределены по всему реакционному пространству. Разумеется, такое допуще­ние не более чем идеализация: небольшие флуктуации всегда создают неоднородности в распределении кон­центраций и, следовательно, способствуют возникнове­нию диффузии. Следовательно, в уравнениях, описываю­щих химические реакции, необходимо учитывать диффу­зию. Уравнения типа «реакция с диффузией» для «брюсселятора» обладают необычайно богатым запасом реше­ний, отвечающих качественно различным типам поведе­ния системы. Если в равновесном и в слабо неравновес­ном состояниях система остается пространственно одно­родной, то в сильно неравновесной области появление новых типов неустойчивости, в том числе усиление флук­туаций, нарушает начальную пространственную симмет-
 203
 
 
 рию. Таким образом, колебания во времени (химические часы) перестают быть единственным типом диссипативных структур, которые могут возникать в системе; в сильно неравновесной области могут появиться, напри­мер, колебания не только временные, но и пространст­венно-временные. Они соответствуют волнам концентра­ций химических веществ Х и Y, периодически проходя­щим по системе. Кроме того, в системе, особенно в тех случаях, когда коэффициенты диффузии веществ Х и Y сильно отличаются друг от друга, могут устанавливать­ся стационарные, не зависящие от времени режимы и возникать устойчивые пространственные структуры.
 Здесь нам необходимо еще раз остановиться: на этот раз для того, чтобы подчеркнуть, как сильно спонтанное образование пространственных структур противоречит законам равновесной физики и принципу порядка Больцмана. И в этом случае число комплексов, соответствую­щих таким структурам, чрезвычайно мало по сравнению с числом комплексов, отвечающих равномерному рас­пределению. Но неравновесные процессы могут приво­дить к ситуациям, кажущимся немыслимыми с класси­ческой точки зрения.
 При переходе от одномерных задач к двухмерным или трехмерным число качественно различных диссипативных структур, совместимых с заданным набором гранич­ных условий, возрастает еще больше. Например, в двух­мерной области, ограниченной окружностью, может воз­никнуть пространственно неоднородное стационарное со­стояние с выделенной осью. Перед нами новый, необы­чайно интересный процесс нарушения симметрии, особен­но если мы вспомним, что одна из первых стадий в морфогенезе зародыша — образование градиента в системе. Такого рода проблемы мы еще рассмотрим и в этой гла­ве, и в гл. 6.
 До сих пор мы предполагали, что концентрации А, В, D и Е (наши управляющие параметры) равномерно распределены по всей реакционной системе. Стоит лишь нам отказаться от этого упрощения, как возникают но­вые явления. Например, система принимает «естествен­ные размеры», зависящие от определяющих параметров. Тем самым система определяет свой внутренний мас­штаб, т. е. размеры области, занятой пространственными структурами, или часть пространства, в пределах кото­рой проходят периодические волны концентраций.
 204
 
 
 Рис. 6. Химические полны, смоделированные на ЭВМ. Последо­вательные стадии эволюции пространственного распределения кон­центрации компоненты X в тримолекулярной модели «брюсселятор». При t=3,435 восстановилось такое же распределение концентраций, как при t=0. Концентрации компонент А и В равны соответствен­но 2 и 5,45 (В>[1+А2]). Коэффициенты диффузии для Х и Y соот­ветственно равны 8?10-3 и 4?10-3.
 205
 
 
 Рис. 7. Стационарное состояние с выделенной осью (результат численного моделирования). Концентрация X есть функция геомет­рических координат р, q в горизонтальной плоскости. Стрелкой ука­зано место, где было возмущено неустойчивое однородное решение (X0, Y0).
 Все перечисленные выше режимы дают весьма непол­ную картину необычайного многообразия явлений, воз­никающих в сильно неравновесной области. Упомянем хотя бы о множественности стационарных состояний. При заданных граничных условиях в сильно нелинейной си­стеме могут существовать не одно, а несколько стационар­ных состояний, например одно состояние с богатым со­держанием вещества X, а другое — с бедным содержани­ем того же вещества. Переход из одного состояния в другое играет важную роль в механизмах управления, встречающихся в биологических системах.
 Начиная с классических работ Ляпунова и Пуанкаре, некоторые характерные точки и линии, а именно фокусы и предельные циклы, известны математикам как аттрак­торы устойчивых систем. Новым является то, что эти понятия качественной теории дифференциальных урав-
 206
 
 
 Рис. 8. а) Концентрация иона бромида в реакции Белоусова— Жаботинского в моменты времени t1 и t1+T (см.: Simoyi R. Н., Wolf A., Swinney Н. L. Phys. Rev. Letters, 1982, 49, p. 245; Hirsch J., Condensed Matter Physics и по данным численных расчетов из Physics Today, 1983, May, p. 44—52).
 6) Траектории аттрактора, вычисленные Хао Байлинем для «брюсселятора» при периодическом подводе извне компоненты Х (личное сообщение).
 
 нений применимы к химическим системам. В этой связи заслуживает быть особо отмеченным тот факт, что пер­вая работа по математической теории неустойчивостей в системе реакций с диффузией была опубликована Тьюрингом в 1952 г. Сравнительно недавно были обна­ружены новые типы аттракторов. Они появляются толь­ко при большем числе независимых переменных (в «брюсселяторе» число независимых переменных равно двум: это переменные концентрации Х и Y). В частности, в трехмерных системах появляются так на­зываемые странные аттракторы, которым уже не соот­ветствует периодическое движение.
  На рис. 8 представлены результаты численных расче­тов Хао Байлиня, дающие общее представление об очень
 207
 
 
  Рис. 9. Схема химического реактора, используемого при иссле­довании колебаний в реакции Белоусова—Жаботинского (однород­ность реакционной смеси обеспечивает перемешивающее устройство). В реакции участвуют более тридцати продуктов и промежуточных соединений. Эволюция различных путей реакции зависит (помимо других факторов) от концентраций исходных веществ, регулируемых насосами на входе в реактор.
 сложной структуре такого странного аттрактора для мо­дели, обобщающей «брюсселятор» на случай периодиче­ского подвода извне вещества X. Замечательно, что большинство описанных нами типов поведения реально наблюдалось в неорганической химии и в некоторых био­логических системах.
 В неорганической химии наиболее известным приме­ром колебательной системы является реакция Белоусова—Жаботинского, открытая в начале 50-х гг. нашего века. Соответствующая схема реакций, получившая на­звание орегонатор, была предложена Нойесом и сотруд­никами. По существу, она аналогична «брюсселятору», но отличается большей сложностью. Реакция Белоусова—Жаботинского состоит в окислении органической (малоновой) кислоты броматом калия в присутствии со­ответствующего катализатора — церия, марганца или ферроина.
 В различных экспериментальных условиях у одной и той же системы могут наблюдаться различные формы самоорганизации — химические часы, устойчивая прост­ранственная дифференциация или образование волн хи­мической активности на макроскопических расстояни­ях5.
 Обратимся теперь к самому интересному вопросу: что дают все эти результаты для понимания функциониро­вания живых систем?
 208
 
 
 5. Первое знакомство с молекулярной биологией
 Ранее в этой главе мы уже показали, что в сильно неравновесных условиях протекают процессы самоорга­низации различных типов. Одни из них приводят к уста­новлению химических колебаний, другие — к появлению пространственных структур. Мы видели, что основным условием возникновения явлений самоорганизации явля­ется существование каталитических эффектов.
 В то время как в неорганическом мире обратная связь между «следствиями» (конечными продуктами) нелинейных реакций и породившими их «причинами» встречается сравнительно редко, в живых системах об­ратная связь (как установлено молекулярной биологи­ей), напротив, является скорее правилом, чем исключе­нием. Автокатализ (присутствие вещества Х ускоряет процесс образования его в результате реакции), автоингибиция (присутствие вещества Х блокирует катализ, необходимый для производства X) и кросс-катализ (каждое из двух веществ, принадлежащих различным цепям реакций, является катализатором для синтеза другого) лежат в основе классического механизма регу­ляции, обеспечивающего согласованность метаболиче­ской функции.
 Нам бы хотелось подчеркнуть одно любопытное раз­личие. В примерах самоорганизации, известных из не­органической химии, молекулы, участвующие в реак­циях, просты, тогда как механизмы реакций сложны (например, в реакции Белоусова—Жаботинского уда­лось установить около тридцати различных промежуточ­ных соединений). С другой стороны, во многих примерах самоорганизации, известных из биологии, схема реакции проста, тогда как молекулы, участвующие в реакции веществ (протеинов нуклеиновых кислот и т. д.), весьма сложны и специфичны. Отмеченное нами различие вряд ли носит случайный характер. В нем проявляется некий первичный элемент, присущий различию между физикой и биологией. У биологических систем есть прошлое. Об­разующие их молекулы — итог предшествующей эволю­ции; они были отобраны для участия в автокаталитиче­ских механизмах, призванных породить весьма специ­фические формы процессов организации.
 Описание сложной сети метаболической активности
 209
 
 
 и торможения является существенным шагом в понима­нии функциональной логики биологических систем. К последней мы относим включение в нужный момент синтеза необходимых веществ и блокирование тех хими­ческих реакций, неиспользованные продукты которых могли бы угрожать клетке переполнением.
 Основной механизм, с помощью которого молекуляр­ная биология объясняет передачу и переработку генети­ческой информации, по существу, является петлей об­ратной связи, т. е. нелинейным механизмом. Дезоксирибонуклеиновая кислота (ДНК), содержащая в линейно упорядоченном виде всю информацию, необходимую для синтеза различных основных протеинов (без которых невозможно строительство и функционирование клетки), участвует в последовательности реакций, в ходе кото­рых вся информация кодируется в виде определенной последовательности различных протеинов. Некоторые ферменты осуществляют обратную связь среди синтези­рованных протеинов, активируя и регулируя не только различные стадии превращений, но и автокаталитиче­ский механизм репликации ДНК, позволяющий копиро­вать генетическую информацию с такой же скоростью, с какой размножаются клетки.
 Молекулярная биология — один из наиболее ярких примеров конвергенции двух наук. Понимание процес­сов, происходящих на молекулярном уровне в биологи­ческих системах, требует взаимно дополняющего разви­тия физики и биологии, первой — в направлении слож­ного, второй — простого.
 Фактически уже сейчас физика имеет дело с иссле­дованием сложных ситуаций, далеких от идеализации, описываемых равновесной термодинамикой, а молеку­лярная биология добилась больших успехов в установ­лении связи живых структур с относительно небольшим числом основных биомолекул. Исследуя множество са­мых различных химических механизмов, молекулярная биология установила мельчайшие детали цепей метабо­лических реакций, выяснила тонкую, сложную логику регулирования, ингибирования и активации каталитиче­ской функции ферментов, связанных с критическими стадиями каждой из метаболических цепей. Тем самым молекулярная биология установила на микроскопиче­ском уровне основы тех неустойчивостей, которые могут происходить в сильно неравновесных условиях.
 210
 
 
 В некотором смысле живые системы можно сравнить с хорошо налаженным фабричным производством: с од­ной стороны, они являются вместилищем многочислен­ных химических превращений, с другой — демонстри­руют великолепную пространственно-временную органи­зацию с весьма неравномерным распределением биохи­мического материала. Ныне перед нами открывается возможность связать воедино функцию и структуру. Рассмотрим кратко два примера, интенсивно исследо­вавшиеся в последние годы.
 Начнем с гликолиза: цепи метаболических реакций, приводящих к расщеплению глюкозы и синтезу аденозинтрифосфата (АТФ) — универсального аккумулятора энергии, общего для всех живых клеток. При расщепле­нии каждой молекулы глюкозы две молекулы АДФ (аденозиндифосфата) превращаются в две молекулы АТФ. Гликолиз может служить наглядным примером взаимной дополнительности аналитического подхода биологии и физического исследования устойчивости в сильно неравновесной области6.
 В ходе биохимических экспериментов были обнару­жены колебания во времени концентраций, связанных с гликолитическим циклом7. Было показано, что эти ко­лебания определяются ключевой стадией в цепи реак­ций — стадией, активируемой АДФ и ингибируемой АТФ. Это — типично нелинейное явление, хорошо при­способленное к регулированию метаболизма. Всякий раз, когда клетка черпает энергию из своих энергети­ческих резервов, она использует фосфатные связи, и АТФ превращается в АДФ. Таким образом, накопление АДФ внутри клетки свидетельствует об интенсивном потреблении энергии и необходимости пополнить энер­гетические запасы, в то время как накопление АТФ оз­начает, что расщепление глюкозы может происходить в более медленном темпе.
 Теоретическое исследование гликолиза показало, что предложенный механизм действительно может порож­дать концентрационные колебания, т. е. обеспечивать работу химических часов. Вычисленные из теоретических соображений значения концентраций, необходимые для возникновения колебаний, и величина периода цикла согласуются с экспериментальными данными. Гликолитические колебания вызывают модуляцию всех энерге­тических процессов в клетке, зависящих от концентра-
 211
 
 
 ции АТФ, и, следовательно, косвенно влияют на другие метаболические цепи.
 Можно пойти еще дальше и показать, что в гликолитическом цикле ход реакций регулируется некоторыми ключевыми ферментами, причем сами реакции проте­кают в сильно неравновесных условиях. Такие расчеты были выполнены Бенно Хессом8, а полученные резуль­таты обобщены и на другие системы. При обычных условиях; гликолитический цикл соответствует химиче­ским часам, но изменение этих условий может привести к образованию пространственных структур в полном соответствии с предсказаниями на основе существующих теоретических моделей.
 С точки зрения термодинамики живая система отли­чается необычайной сложностью. Одни реакции проте­кают в слабо неравновесных условиях, другие — в силь­но неравновесных условиях. Не все в живой системе «живо». Проходящий через живую систему поток энер­гии несколько напоминает течение реки — то спокойной и плавной, то низвергающейся водопадом и высвобож­дающей часть накопленной в ней энергии.
 Рассмотрим еще один биологический процесс, также исследованный «на устойчивость»: образование колоний у коллективных амеб Dictyostelium discoideum. Этот процесс9А интересен как пример явления, пограничного между одноклеточной и многоклеточной биологией.
 Образование колоний у коллективных амеб — один из наиболее ярких примеров явления самоорганизации в биологической системе, в которой важную роль играют химические часы (см. рис. А).
 Выйдя из спор, амебы растут и размножаются как одноклеточ­ные организмы. Так продолжается до тех пор, пока пищи (главным образом, бактерий) достаточно. Как только пищевой ресурс исто­щается, амебы перестают репродуцироваться и вступают в промежу­точную фазу, которая длится около восьми часов. К концу этого периода амебы начинают сползаться к отдельным клеткам, выпол­няющим функции центров агрегации. Образование многоклеточных колоний, ведущих себя как единый организм, происходит в ответ на хемотаксические сигналы, испускаемые центрами. Сформировавшаяся колония мигрирует до тех пор, пока не обнаружит участок среды с условиями, пригодными для образования плодового тела. Тогда масса клеток начинает дифференцироваться, образуя стебель, несу­щий на конце мириады спор.
 У Dictyostelium. discoideum сползание одноклеточных амеб в многоклеточную колонию происходит не монотонно, а периодически. Как показывает киносъемка процесса образования колоний, сущест­вуют концентрические волны амеб, сходящиеся к центру с периодом
 212
 
 
 в несколько минут. Природа хемотаксического фактора известна. Это циклическая АМФ (цАМФ) — вещество, встречающееся во многих биохимических процессах, например в процессах гормональной регу­ляции. Центры скопления амеб периодически испускают сигналы — порции цАМФ, на которые другие клетки реагируют, перемещаясь к центру и в свою очередь испуская аналогичные сигналы к перифе­рии территории, занимаемой колонией. Существование такого меха­низма передачи хемотаксических сигналов позволяет каждому центру контролировать колонию, состоящую примерно из 105 амеб.
 Как показывает анализ модели образования многоклеточной колонии, существуют два типа бифуркаций: во-первых, агрегация сама по себе представляет нарушение пространственной симметрии; во-вторых, происходит нарушение временной симметрии.
 Первоначально амебы распределены равномерно. Когда неко­торые из них начинают испускать хемотаксические сигналы, возника­ют локальные флуктуации в концентрации цАМФ. При достижении критического значения некоторого параметра системы (коэффициента диффузии цАМФ, подвижности амеб и т.д.) флуктуации усилива­ются: однородное распределение становится неустойчивым и амебы эволюционируют к неоднородному распределению в пространстве. Это новое распределение соответствует скоплению амеб вокруг цен­тров.
 Для того чтобы понять происхождение периодичности в сполза­нии D. discoideum к центрам, необходимо изучить механизм синтеза хемотаксического сигнала. На основе экспериментальных данных этот механизм можно изобразить в виде следующей схемы (рис. В).
 На поверхности клетки рецепторы (Р) захватывают молекулы
 
 
 цАМФ. Рецептор обращен во внеклеточную среду и функционально связан с ферментом аденилатциклазой (Ц), преобразующим внутри­клеточную АТФ в цАМФ (на рис. цАМФ не обозначена). Синтези­рованная цАМФ транспортируется через мембрану во внеклеточную среду, где расщепляется фосфодиэстеразой — ферментом, выде­ляемым амебами. Эксперименты показывают, что захват внемолеку-
 214
 
 
 лярной цАМФ мембранным рецептором активирует аденилатциклазу (положительная обратная связь обозначена знаком +).
 Анализ модели синтеза цАМФ на основе такой автокаталитической регуляции позволил унифицировать различные типы поведения, наблюдаемые при образовании колонии коллективных амеб9В.
 Двумя ключевыми параметрами модели являются концентрации аденилатциклазы (s) и фосфодиэстеразы (k). На рис. С, заимствован­ном из работы Goldbeter A., Segel L.. Differentiation, 1980, 17, p. 127—135, показано поведение модельной системы в пространстве параметров s и k.
 В зависимости от значений s и k все пространство этих парамет­ров подразделяется на три области. Область А соответствует устойчи­вому, невозбудимому стационарному состоянию, область В — устойчивому, но возбудимому стационарному состоянию и область С — режиму незатухающих колебаний вокруг неустойчивого стаци­онарного состояния.
 Стрелка указывает возможный «путь развития», соответствую­щий повышению концентрации фосфодиэстеразы (k) и аденилатциклазы (s), наблюдаемому после начала голодания. Переход из об­ласти А в области В и С соответствует наблюдаемым изменениям в поведении: клетки сначала неспособны реагировать на сигналы — внеклеточную цАМФ, затем начинают передавать сигналы дальше и, наконец, обретают способность автономно синтезировать цАМФ в периодическом режиме. Центры колоний являются клетками, для которых параметры k и s быстрее достигают точки внутри области С после начала голодания.
 Когда запас питательных веществ в той среде, в ко­торой живут и размножаются коллективные амебы, ис­сякает, происходит удивительная перестройка (рис. А): отдельные клетки начинают соединяться в колонию, на­считывающую несколько десятков тысяч клеток. Обра­зовавшийся «псевдоплазмодий» претерпевает дифферен­циацию, причем очертания его непрерывно изменяются. Образуется «ножка», состоящая примерно из трети всех клеток, с избыточным содержанием целлюлозы. Эта «ножка» несет на себе круглую «головку», напол­ненную спорами, которые отделяются и распространя­ются. Как только споры приходят в соприкосновение с достаточно питательной средой, они начинают размно­жаться и образуют новую колонию коллективных амеб. Перед нами наглядный пример приспособления к окру­жающей среде. Популяция обитает в некоторой области до тех пор, пока не исчерпывает имеющиеся там ресур­сы. Затем она претерпевает метаморфозу, в результате которой обретает способность передвигаться и осваивать другие области.
 Исследование первой стадии образования колонии показало, что она начинается с волн перемещения от-
 215
 
 
 дельных амеб, распространяющихся по их популяции к спонтанно возникающему «центру притяжения». Экспе­риментальные исследования и анализ теоретических моделей установили, что миграция является откликом клеток на существование в среде градиента концентра­ции ключевого вещества — циклической АМФ, периоди­чески испускаемого сначала амебой, ставшей центром притяжения, а затем — после срабатывания механизма задержки — и другими амебами. И в этом случае мы видим, какую важную роль играют химические часы. Как уже неоднократно подчеркивалось, они, по сущест­ву, являются новым средством связи. В случае коллек­тивных амеб механизм самоорганизации приводит к установлению связи между клетками.
 Мы хотели бы подчеркнуть еще один аспект. Образование колоний коллективных амеб — типичный пример того, что можно было бы назвать «порядком через флуктуации»: возникновение «центра притяжения», ис­пускающего циклическую АМФ, сигнализирует о потере устойчивости нормальной питательной среды, т. е. об исчерпании запаса питательных веществ. То, что при нехватке пищевого ресурса любая амеба может начать испускание химических сигналов — циклической АМФ — и, таким образом, стать «центром притяжения» для ос­тальных амеб, соответствует случайному характеру флуктуации. В данном случае флуктуация усиливается и организует среду.
 6. Бифуркации и нарушение симметрии
 Рассмотрим теперь более подробно, как возникает самоорганизация и какие процессы начинают происхо­дить, когда ее порог оказывается превзойденным. В рав­новесном или слабо неравновесном состоянии сущест­вует только одно стационарное состояние, зависящее от значений управляющих параметров. Обозначим управ­ляющий параметр через ППП (им может быть, например, концентрация вещества В в «брюсселяторе», описание которого приведено в разд. «За порогом химической неустойчивости»). Проследим за тем, как изменяется состояние системы с возрастанием значения В. Увеличи­вая концентрацию В, мы как бы уводим систему все дальше и дальше от равновесия. При некотором значе­нии В мы достигаем порога устойчивости термодинами-
 216
 
 
 ческой ветви. Обычно это критическое значение называ­ется точкой бифуркации. [На особую роль этих точек обратил внимание Максвелл, размышляя над отноше­нием между детерминизмом и свободой выбора (см. гл. 2 разд. «Язык динамики»).]
 Рис. 10. Бифуркационная диаграмма. Стационарные значения переменной Х представлены на диаграмме как функции параметра бифуркации l.. Сплошные линии соответствуют устойчивым, штри­ховые — неустойчивым стационарным состояниям. Чтобы достичь ветви D, необходимо выбрать начальную концентрацию Х0 выше зна­чений X, соответствующую ветви Е.
 Рассмотрим некоторые типичные бифуркационные диаграммы. В точке бифуркации В термодинамическая ветвь становится неустойчивой относительно флуктуации (см. рис. 10). При критическом значении lс управляю­щего параметра l система может находиться в трех различных стационарных состояниях: С, Е и D. Два из них устойчивы, третье неустойчиво. Очень важно под­черкнуть, что поведение таких систем зависит от их предыстории. Начав с малых значений управляющего параметра l и медленно увеличивая их, мы с большой вероятностью опишем траекторию АВС. Наоборот, на­чав с больших значений концентрации Х и поддерживая постоянным значение управляющего параметра l, мы с высокой вероятностью придем в точку D. Таким обра-
 217
 
 
 зом, конечное состояние зависит от предыстории систе­мы. До сих пор история использовалась при интерпрета­ции биологических и социальных явлений. Совершенно неожиданно выяснилось, что предыстория может играть роль и в простых химических процессах.
 Рис. 11. Симметричная бифуркационная диаграмма. Х как функция параметра бифуркации l. При llс сущест­вуют два стационарных состояния при любом значении l (прежнее устойчивое стационарное состояние теряет устойчивость).
 Рассмотрим бифуркационную диаграмму, изображен­ную на рис. 11. От предыдущей диаграммы она отлича­ется тем, что в точке бифуркации появляются два устой­чивых решения. В связи с этим, естественно, возникает вопрос: по какому пути пойдет дальнейшее развитие системы после того, как мы достигнем точки бифурка­ции? У системы имеется «выбор»: она может отдать предпочтение одной из двух возможностей, соответст­вующих двум неравномерным распределениям концент­рации Х в пространстве (рис. 12, 13).
 Каждое из этих распределений зеркально симметрич­но другому: на рис. 12 концентрация Х больше справа, на рис. 13 — слева. Каким образом система выбирает между правым и левым? В этом выборе неизбежно при­сутствует элемент случайности: макроскопическое урав­нение не в состоянии предсказать, по какой траектории
 218
 
 
 Рис. 12, 13. Два возможных пространственных распределения концентрации компоненты X, соответствующие двум ветвям на би­фуркационной диаграмме (рис. 11). Рис. 12 отвечает «правой» струк­туре: концентрация Х в правой части выше, чем в левой. Рис. 13 отвечает «левой» структуре.
 пойдет эволюция системы. Не помогает и обращение к микроскопическому описанию. Не существует также различия между правым и левым. Перед нами — случай­ные явления, аналогичные исходу бросания игральной кости.
 Можно было бы ожидать, что при многократном повторении эксперимента при переходе через точку бифуркации система в среднем и половине случаев ока­жется в состоянии с максимумом концентрации справа, а в половине случаев — в состоянии с максимумом кон­центрации слева. Возникает другой интересный вопрос. В окружающем нас мире некоторые простые фундамен-
 219
 
 
 тальные симметрии нарушены10. Кто не замечал, на­пример, что большинство раковин закручено преимуще­ственно в одну сторону? Пастер пошел дальше и усмо­трел в дисимметрии, т. е. в нарушении симметрии, ха­рактерную особенность жизни. Как теперь известно, молекула самой важной нуклеиновой кислоты ДНК имеет форму винтовой линии, закрученной влево. Как возникает такая дисимметрия? Один из распространен­ных ответов на этот вопрос гласит: дисимметрия обус­ловлена единичным событием, случайным образом от­давшим предпочтение одному из двух возможных исхо­дов. После того как выбор произведен, в дело вступает автокаталитический процесс и левосторонняя структура порождает новые левосторонние структуры. Другой от­вет предполагает «войну» между лево- и правосторон­ними структурами, в результате которой одни структуры уничтожают другие. Удовлетворительным ответом на этот вопрос мы пока не располагаем. Говорить о еди­ничных событиях вряд ли уместно. Необходимо более «систематическое» объяснение.
 Недавно был открыт еще один пример принципиаль­но новых свойств, приобретаемых системами в сильно неравновесных условиях: системы начинают «восприни­мать» внешние поля, например гравитационное поле, в результате чего появляется возможность отбора конфи­гураций.
 Каким образом внешнее (например, гравитационное) поле сказалось бы на равновесной ситуации? Ответ на этот вопрос дает принцип порядка Больцмана: все за­висит от величины отношения — потенциальная энер­гия/тепловая энергия. Для гравитационного поля Земли эта величина мала. Чтобы достичь сколько-нибудь за­метного изменения давления или химического состава атмосферы, нам понадобилось бы взобраться на доста­точно высокую гору. Но вспомним ячейку Бенара. С точ­ки зрения механики ее неустойчивость обусловлена по­вышением центра тяжести вследствие теплового расши­рения. Иначе говоря, в эффекте Бенара гравитация играет существенную роль и приводит к новой структу­ре, несмотря на то что толщина самой ячейки Бенара может достигать лишь нескольких миллиметров. Дейст­вие гравитации на столь тонкий слой жидкости было бы пренебрежимо малым в равновесной ситуации, но в не­равновесной ситуации, вызванной градиентом темпера-
 220
 
 
 тур, приводит даже в таком тонком слое к наблюдае­мым макроскопическим эффектам. Неравновесность уси­ливает действие гравитации11.
  В уравнении реакции с диффузией включение гравитации скажется на диффузионном потоке. Как показы­
 Рис. 14. «Вынужденная» бифуркация, индуцированная внешним полем. На диаграмме концентрация Х представлена как функция параметра l. В отсутствие внешнего поля произошла бы симметрич­ная бифуркации, показанная пунктирной линией. Критическое значе­ние параметра бифуркации обозначено lс. Устойчивая ветвь b) на­ходится на конечном расстоянии от ветви a).
 вают подробные вычисления, влияние гравитации ста­новится особенно ощутимым вблизи точки бифуркации невозмущенной системы. Это позволяет нам, в частно­сти, утверждать, что очень слабые гравитационные поля могут приводить к отбору структур.
 221
 
 
 Рассмотрим снова систему с бифуркационной диаг­раммой, изображенной на рис. 11. Предположим, что в отсутствие гравитации, т. е. при g=0, мы имеем, как на рис. 12 и 13, асимметричную конфигурацию «снизу вверх» и ее зеркальное отражение — конфигурацию «сверху вниз». Оба распределения равновероятны, но если включить g, то бифуркационные уравнения изме­нятся, так как поток диффузии будет содержать член, пропорциональный g. В результате мы получим диаграм­му, изображенную на рис. 14. Исходная бифуркацион­ная диаграмма исчезнет, сколь бы малым ни было включенное гравитационное поле. Одна структура а) на новой диаграмме возникает при увеличении параметра бифуркации непрерывно, другая b) достижима лишь при конечном возмущении. Следуя по ветви а), мы ожидаем, что и система будет изменяться непрерывно. Наши ожидания оправдаются при условии, если расстояние S между двумя ветвями велико по сравнению с амплиту­дой тепловых флуктуации концентрации X. Происходит то, что мы называем «вынужденной» бифуркацией. Как и прежде, вблизи критического значения lс управляю­щего параметра может произойти самоорганизация. Но теперь одна из двух возможных структур предпочти­тельнее другой и подлежит отбору.
 Важно отметить, что в зависимости от химического процесса, ответственного за бифуркацию, описанный выше механизм может обладать необычайной чувстви­тельностью. Как уже упоминалось, вещество обретает способность воспринимать» различия, неощутимые в равновесных условиях. Столь высокая чувствительность наводит на мысль о простейших организмах, например о бактериях, способных, как известно, реагировать на электрические или магнитные поля. В более общем пла­не это означает, что в сильно неравновесной химии воз­можна «адаптация» химических процессов к внешним условиям. Этим сильно неравновесная область разитель­но отличается от равновесной, где для перехода от одной структуры к другой требуются сильные возмущения или изменения граничных условий.
 Еще одним примером спонтанной «адаптивной орга­низации» системы, ее «подстройки» к окружающей сре­де может служить чувствительность сильно неравновес­ных состояний к внешним флуктуациям. Приведем один пример12 самоорганизации как функции флуктуирую-
 222
 
 
 щих внешних условий. Простейшей из всех мыслимых химических реакций является реакция изомеризации АDВ. В нашей модели вещество А может участвовать и в другой реакции: А+свет®A*®A+тепло (молеку­ла А, поглощая свет, переходит в возбужденное состоя­ние A*, из которого возвращается в основное состояние, испуская при этом тепло). Мы предполагаем, что обе ре­акции происходят в замкнутой системе, способной об­мениваться с внешним миром только светом и теплом. В системе имеется нелинейность, так как превращение молекулы В в молекулу А сопровождается поглощением тепла: чем выше температура, тем быстрее образует­ся А. Кроме того, чем выше концентрация А, чем силь­нее А поглощает свет и преобразует его в тепло, тем выше температура вещества А. Таким образом, А ката­лизирует образование самого себя.
 Можно ожидать, что концентрация А, соответствую­щая стационарному состоянию, возрастет с увеличением интенсивности света, и действительно так и происходит. Но, начиная с некоторой критической точки, мы сталки­ваемся с одним из типичных сильно неравновесных явле­ний: сосуществованием множественных стационарных состояний. При одних и тех же условиях (например, интенсивности света и температуре) система может на­ходиться в двух различных устойчивых стационарных состояниях, отвечающих двум различным концентра­циям А. Третье (неустойчивое) стационарное состояние соответствует порогу между двумя устойчивыми стацио­нарными состояниями. Сосуществование стационарных состояний порождает такое хорошо известное явление, как гистерезис. Но это еще не все. Если интенсивность света вместо того, чтобы быть постоянной, начнет слу­чайным образом флуктуировать, то наблюдаемая нами картина резко изменится. Зона сосуществования двух стационарных состояний расширится, и при некоторых значениях параметров станет возможным сосущество­вание трех стационарных устойчивых состояний.
 В таких положениях случайная флуктуация во внеш­нем потоке, часто называемая шумом, — отнюдь не до­садная помеха: она порождает качественно новые типы режимов, для осуществления которых при детермини­стических потоках потребовались бы несравненно более сложные схемы реакций. Важно помнить и о том, что случайный шум неизбежно присутствует в потоках в
 223
 
 
 любой «естественной системе». Например, в биологиче­ских или экологических системах параметры, опреде­ляющие взаимодействие с окружающей средой, как пра­вило, недопустимо считать постоянными. И клетка, и экологическая ниша черпают все необходимое для себя из окружающей их среды; влага, рН, концентрация со­
 Рис. 15. Явление «гистерезиса», возникающее, если значение параметра бифуркации b сначала возрастает, а затем убывает. Если система первоначально находится в стационарном состоянии, при­надлежащем нижней ветви, то при возрастании b она продолжает оставаться на нижней ветви. При b=b2 происходит перескок: систе­ма скачком переходит из состояния Q в состояние Q', принадлежа­щее верхней ветви. И наоборот, если система первоначально нахо­дится в состоянии, принадлежащем верхней ветви, то при уменьше­нии b она продолжает оставаться на верхней ветви до b=b1, после чего скачком переходит из состояния Р в состояние Р'. Бистабильные режимы такого типа встречаются во многих областях науки и техни­ки, например в лазерах, химических реакциях и биологических мем­бранах.
 лей, свет и концентрация питательных веществ образуют непрестанно флуктуирующую среду. Чувствительность неравновесных состояний не только к флуктуациям, обусловленным их внутренней активностью, но и к флук­туациям, поступающим из окружающей среды, откры­вает перед биологическими исследованиями новые пер­спективы.
 
 7. Каскады бифуркаций и переходы к хаосу
 В предыдущем разделе мы занимались рассмотре­нием только первой, или, как предпочитают говорить математики, первичной, бифуркации, которая возникает,
 224
 
 
 когда мы вынуждаем систему перейти порог устойчиво­сти. Далеко не исчерпывая новые решения, которые при этом могут появиться, первичная бифуркация приводит к появлению лишь одного характерного времени (пе­риода предельного цикла) или одной характерной дли­ны. Для того чтобы получить всю картину пространст­венно-временной активности, наблюдаемой в химических или биологических системах, необходимо продвинуться по бифуркационной диаграмме дальше.
 Мы уже упоминали о явлениях, возникающих в ре­зультате сложного взаимодействия огромного числа час­тот в гидродинамических или химических системах. Рассмотрим хотя бы ячейки Бенара, возникающие на определенном расстоянии от равновесия. При дальней­шем удалении от теплового равновесия конвективный поток начинает колебаться во времени. Чем дальше мы уходим от равновесия, тем больше частот появляется в колебаниях, пока наконец не произойдет переход в турбулентный режим13. Взаимодействие колебаний с различными частотами создает предпосылки для воз­никновения больших флуктуаций. Область на бифур­кационной диаграмме, определяемая значениями пара­метров, при которых возможны сильные флуктуации, обычно принято называть хаотической. Иногда порядок, или когерентность, чередуется с тепловым хаосом и не­равновесным турбулентным хаосом. Так происходит, на­пример, в случае неустойчивости Бенара: если увеличи­вать градиент температуры, то конфигурация конвективных потоков усложнится, появятся колебания, а при дальнейшем увеличение градиента упорядоченная структура исчезнет, уступив место хаосу. Не следует смешивать, однако, равновесный тепловой хаос с нерав­новесным турбулентным хаосом. В тепловом хаосе, воз­никающем в равновесных условиях, все характерные пространственные и временные масштабы микроскопи­ческого порядка. В турбулентном хаосе число макроско­пических пространственных и временных масштабов столь велико, что поведение системы кажется хаотиче­ским. В химии порядок и хаос связаны между собой сложными отношениями: упорядоченные (колебатель­ные) режимы чередуются с хаотическими. Такая пере­межаемость, например, наблюдалась в реакции Белоусова—Жаботинского как функция скорости потока.
 Во многих случаях довольно трудно провести четкую
 225
 
 
 границу между такими понятиями, как «хаос» и «поря­док». К каким системам следует отнести, например, тропический лес: к упорядоченным или хаотическим? История любого вида животных может показаться слу­чайной, зависящей от других видов и флуктуаций окру­жающей среды. Тем не менее трудно отделаться от впе­чатления, что общая структура тропического леса, на­пример все многообразие встречающихся в нем видов животных и растений, соответствует некоторому архе­типу порядка. Какой бы конкретный смысл мы ни вкла­дывали в термины «порядок» и «хаос», ясно, что в некоторых случаях последовательность бифуркации приво­дит к необратимой эволюции и детерминированность характеристических частот порождает все большую слу­чайность, обусловленную огромным числом частот, уча­ствующих в процессе.
  Сравнительно недавно внимание ученых привлек необычайно простой путь к хаосу, получивший название последовательность Фейгенбаума. Обнаруженная Фейгенбаумом закономерность относится к любой системе, поведение которой характеризуется весьма общим свой­ством, а именно: в определенной области значений пара­метров система действует в периодическом режиме с периодом Т; при переходе через порог период удваива­ется и становится равным 2Т, при переходе через сле­дующий порог период в очередной раз удваивается и становится равным 4Т и т. д. Таким образом, система характеризуется последовательностью бифуркаций удвоения периода. Последовательность Фейгенбаума — один из типичных маршрутов, ведущих от простого пе­риодического режима к сложному апериодическому, на­ступающему в пределе при бесконечном удвоении пе­риода. Фейгенбаум открыл, что этот маршрут характе­ризуется универсальными постоянными, значения кото­рых не зависят от конкретных особенностей механизма, коль скоро система обладает качественным свойством удвоения периода. «Большинство поддающихся измерению свойств любой такой системы в этом апериодиче­ском пределе может быть определено, по существу, без учета каких-либо специфических особенностей уравне­ния, описывающего каждую конкретную систему...»14
 В других случаях (например, в таком, который пред­ставлен на рис. 16) эволюция системы содержит как де­терминистические, так и стохастические элементы.
 226
 
 
 Рис. 16. Временны'е колебания концентрации иона Вг- в реак­ции Белоусова—Жаботинского. На диаграмме схематически изобра­жена последовательность режимов, соответствующая качественным различиям. Все режимы изображены упрощенно. Экспериментальные данные свидетельствуют о существовании гораздо более сложных по­следовательностей режимов.
 На рис. 17 мы видим, что при значении управляю­щего параметра порядка l6 система может находиться в большом числе устойчивых и неустойчивых режимов. «Историческая» траектория, по которой эволюционирует система при увеличении управляющего параметра, ха-
 227
 
 
 рактеризуется чередованием устойчивых областей, где доминируют детерминистические законы, и неустойчи­вых областей вблизи точек бифуркации, где перед систе­
 Рис. 17. Бифуркационная диаграмма: стационарные решения как функции параметра бифуркации l. Если l  Состояния, принадлежащие ветви b), неустойчивы, но стано­вятся устойчивыми при l=l2, в то время как состояния, принадле­жащие ветви a), становятся неустойчивыми. При l=l3 ветвь b') снова становится неустойчивой и возникают две другие устойчивые ветви.
 При l=l4 неустойчивая ветвь достигает новой точки бифурка­ции, при переходе через которую возникают две новые ветви, оста­ющиеся неустойчивыми до l=l5 и l=l6.
 мой открывается возможность выбора одного из не­скольких вариантов будущего. И детерминистический характер кинетических уравнений, позволяющих вычис­лить заранее набор возможных состояний и определить их относительную устойчивость, и случайные флуктуа­ции, «выбирающие» одно из нескольких возможных со­стояний вблизи точки бифуркации, теснейшим образом взаимосвязаны. Эта смесь необходимости и случайности и составляет «историю» системы.
 228
 
 
 8. От Евклида к Аристотелю

<< Пред.           стр. 6 (из 14)           След. >>

Список литературы по разделу