<< Пред.           стр. 8 (из 14)           След. >>

Список литературы по разделу

 276
 
 
 при переходе к объективированному времени свои ка­чественные отличительные свойства. По этой причине Бергсон ввел различие между физическим временем и длительностью — понятием, относящимся к экзистенци­альному времени.
 Но на этом история не кончается. Как заметил Дж. Т. Фрезер, «последовавшее разделение на время ощущаемое и время понимаемое является клеймом на­учно-промышленной цивилизации, своего рода коллек­тивной шизофренией»3. Как мы уже отмечали, там, где классическая наука подчеркивала незыблемость и по­стоянство, мы обнаруживаем изменение и эволюцию. При взгляде на небо мы видим не траектории, некогда восхищавшие Канта ничуть не меньше, чем сам пре­бывающий в нем моральный закон, а некие странные объекты: квазары, пульсары, взрывающиеся и разры­вающиеся на части галактики, звезды, коллапсирующие, как нам говорят, в «черные дыры», которые без­возвратно поглощают все, что в них попадает.
 Время проникло не только в биологию, геологию и социальные науки, но и на те два уровня, из которых его традиционно исключали: микроскопический и кос­мический. Не только жизнь, но и Вселенная в целом имеет историю, и это обстоятельство влечет за собой важные следствия.
 Первая теоретическая работа, в которой космологи­ческая модель рассматривалась с точки зрения общей теории относительности, была опубликована Эйнштей­ном в 1917 г. В ней Эйнштейн нарисовал статическую, безвременную картину мира Спинозы, своего рода ми­росозерцание в переводе на язык физики. И тогда слу­чилось неожиданное: сразу же после выхода в свет работы Эйнштейна стало ясно, что, помимо найденных им стационарных решений, эйнштейновские уравнения допускают и другие нестационарные (т. е. зависящие от времени) решения. Этим открытием мы обязаны со­ветскому физику А. А. Фридману и бельгийцу Ж. Леметру. В то же время Хаббл и его сотрудники, занима­ясь изучением движения галактик, показали, что ско­рость дальних галактик пропорциональна расстоянию до них от Земли. В рамках теории расширяющейся Вселенной, основы которой были заложены Фридманом и Леметром, закон Хаббла был очевиден. Тем не менее на протяжении многих лет физики всячески сопротив-
 277
 
 
 лялись принятию «исторического» описания эволюции Вселенной. Сам Эйнштейн относился к нему с боль­шой осторожностью. Леметр часто рассказывал, что, когда он пытался обсуждать с Эйнштейном возмож­ность более точного задания начального состояния Все­ленной в надежде найти объяснение космических лу­чей, Эйнштейн не проявил никакого интереса.
 Ныне мы располагаем новыми сведениями о знаме­нитом реликтовом излучении — «свете», испущенном при взрыве сверхплотного файербола, с которого началась наша Вселенная. По иронии истории, Эйнштейн (в известной мере против собственной воли) стал Дарвином физики. Дарвин учил, что человек составляет неотъемлемую часть биологической эволюции; и Эйн­штейн учил, что человек неразрывными узами связан с эволюцией Вселенной. Идеи Эйнштейна привели его к открытию «нового континента», и это открытие было для него столь же неожиданным, как открытие Амери­ки для Колумба. Подобно многим физикам своего по­коления, Эйнштейн исходил в своей деятельности из глубокого убеждения в существовании в природе фун­даментального простого уровня. Однако ныне этот уро­вень становится все менее доступным эксперименту. Единственные объекты, поведение которых действи­тельно «просто», существуют в нашем мире на макро­скопическом уровне. Классическая наука тщательно выбирала объекты изучения именно на этом промежу­точном уровне. Первые объекты, выделенные Ньюто­ном, действительно были простыми; свободно падаю­щие тела, маятник, движение планет. Однако, как мы знаем теперь, эта простота отнюдь не является отличи­тельной особенностью фундаментального: она не может быть приписана остальному миру.
 Достаточно ли этого? Мы знаем ныне, что устойчи­вость и простота являются скорее исключением, чем правилом. Следует ли просто отбросить претендующие на всеобщность тоталитарные притязания концептуали­зации, применимые в действительности лишь к простым и устойчивым объектам? Нужно ли проявлять столь большую заботу о том, чтобы согласовать дина­мику и термодинамику?
  Не следует забывать слова Уайтхеда, справедли­вость которых непрестанно подтверждается историей науки: столкновение теорий не бедствие, а благо ибо
 278
 
 
 открывает новые перспективы. Различные авторы доволь­но часто высказывали мысль о том, что мы из практических соображений игнорируем те или иные проблемы: по­скольку те основаны на трудно реализуемых идеализациях. В начале XX в. некоторые физики предлагали от­казаться от детерминизма на том основании, что он недостижим в реальном опыте4. Действительно, мы уже говорили о том, что точные положения и скорости мо­лекул в большой системе никогда нельзя считать из­вестными. Поэтому точно предсказать будущую эволю­цию системы невозможно. Впоследствии Бриллюэн по­пытался подорвать детерминизм, апеллируя к истине на уровне здравого смысла. Точное предсказание, рассуждал он, требует точного знания начальных усло­вий, а за это знание нужно платить. За точное предска­зание, необходимое для того, чтобы детерминизм «ра­ботал», необходимо платить бесконечно большую цену.
 Подобные возражения при всей их разумности не оказывают особого влияния на концептуальный мир ди­намики. Не проливают они новый свет и на реальность. Кроме того, усовершенствования в области технологии могут все больше приближать нас к идеализации, тре­буемой классической динамикой.
 В отличие от таких возражений доказательства «не­возможности» имеют фундаментальные значения. Каж­дое из них открывает какую-то неожиданную внутрен­нюю структуру реальности, обрекающую на провал чи­сто умозрительные построения. Такие открытия исклю­чают возможность проведения операции, ранее считав­шейся (по крайней мере в принципе) возможной. «Ни один двигатель не может иметь коэффициент полезно­го действия, который бы превышал единицу», «ни один тепловой двигатель не может производить полезную ра­боту, если он не находится в контакте с двумя источни­ками (нагревателем и холодильником)», — примеры двух утверждений о невозможности, которые привели к глубокой перестройке системы понятий.
 В основе термодинамики, теории относительности и квантовой механики лежат открытия невозможности, установление пределов амбициозных притязаний клас­сической физики. Эти открытия ознаменовали в свое время конец целых направлений в естествознании, до­стигших своих пределов. Ныне они предстают перед на­ми в ином свете — не как конец, а как начало, как но-
 279
 
 
 вая, открывающаяся перспектива. В гл. 9 мы увидим, что второе начало термодинамики выражает «невоз­можность» даже на микроскопическом уровне, но и здесь эта недавно открытая невозможность становится исходным пунктом для возникновения новых понятий.
 2. Конец универсальности
 Научное описание должно соответствовать источникам, доступным наблюдателю, принадлежащему тому миру, который он описывает, а не существу, созерцаю­щему наш мир «извне». Таково одно из фундаментальных требований теории относительности. Она устанав­ливает предел скорости распространения сигнала, ко­торый не может быть превзойден ни одним наблюдате­лем. Скорость света с в вакууме (с=300 000 км/с) — предельная скорость распространения всех сигналов. Эта предельная скорость играет весьма важную роль:
 она ограничивает ту область пространства, которая мо­жет влиять на точку нахождения наблюдателя.
 В ньютоновской физике нет универсальных постоян­ных. Именно поэтому она претендует на универсаль­ность, на применимость независимо от масштаба объ­ектов: движение атомов, планет и небесных светил под­чиняется единому закону.
 Открытие универсальных постоянных произвело ко­ренной переворот в бытующих взглядах. Используя скорость света как эталон для сравнения, физика ус­тановила различие между малыми и большими скоро­стями (последние приближаются к скорости света).
 Аналогичным образом постоянная Планка h позво­лила установить естественную шкалу масс объектов. Атом уже не мог более считаться крохотной планетной системой: электроны принадлежат к иному масштабу масс, чем планеты и все тяжелые медленно движущие­ся макроскопические объекты, включая нас самих.
 Универсальные постоянные не только разрушили однородность Вселенной введением физических масшта­бов, позволяющих устанавливать качественные разли­чия между отдельными типами поведения, но и приве­ли к новой концепции объективности. Ни один наблю­датель не может передавать сигналы со скоростью
 большей, чем скорость света в вакууме. Исходя из
 280
 
 
 этого постулата, Эйнштейн пришел к весьма замеча­тельному выводу: мы не можем более определить аб­солютную одновременность двух пространственно раз­деленных событий; одновременность может быть опре­делена только относительно данной системы отсчета. Подробное изложение теории относительности увело бы нас слишком далеко от основной темы, поэтому мы ог­раничимся лишь одним замечанием. Законы Ньютона отнюдь не предполагают, что наблюдатель — «физиче­ское существо». Объективность описания определяется как отсутствие всякого упоминания об авторе описания. Для «нефизических» разумных существ, способных об­мениваться сигналами, распространяющимися с беско­нечно большой скоростью, теория относительности бы­ла бы неверна. То обстоятельство, что теория относи­тельности основана на ограничении, применимом к фи­зически локализованным наблюдателям, существам, могущим находиться в один момент времени лишь в одном месте, а не всюду сразу, придает физике не­кую «человечность». Это отнюдь не означает, будто физика субъективна, т. е. является результатом наших предпочтений и убеждений. Физика по-прежнему оста­ется во власти внутренних связей, делающих нас частью того физического мира, который мы описываем. Наша физика предполагает, что наблюдатель находится внут­ри наблюдаемого им мира. Наш диалог с природой успешен лишь в том случае, если он ведется внутри природы.
 3. Возникновение квантовой механики
 Теория относительности изменила классическое представление об объективности. Но она оставила не­изменной другую принципиально важную отличитель­ную особенность классической физики — претензию на «полное» описание природы. Хотя после создания спе­циальной теории относительности физики уже не мог­ли апеллировать к демону, наблюдающему всю Все­ленную извне, но еще обращались к всевышнему — ма­тематику, который, по словам Эйнштейна, изощрен, но не злонамерен и не играет в кости. Считалось, что все­ведущий математик владеет «формулой Вселенной», включавшей в себя полное описание природы. В этом
 281
 
 
 смысле теория относительности была продолжением классической физики.
 Первой физической теорией, действительно порвав­шей с прошлым, стала квантовая механика. Она не только поместила нас в природу, но и присвоила нам атрибут «тяжелые», т. е. состоящие из макроскопиче­ски большого числа атомов. Дабы придать большую наглядность физическим следствиям из существования такой универсальной постоянной, как скорость света, Эйнштейн вообразил себя летящим верхом на фотоне. Но, как показала квантовая механика, мы слишком тяжелы для того, чтобы ездить верхом на фотонах или электронах. Мы не можем заменить те эфемерные су­щества, которым дано оседлать фотон, не можем отож­дествить себя с ними и описать, что бы они думали, ес­ли бы были наделены способностью мыслить, и что бы они ощущали, если бы могли чувствовать.
 История квантовой механики, как и история любой концептуальной инновации, сложна и полна неожидан­ных событий. Это история логики, следствия из кото­рой были извлечены после того, как она возникла, вы­званная к жизни настоятельной потребностью экспери­мента, в сложной политической и культурной обстанов­ке5. Не имея возможности сколько-нибудь подробно останавливаться на истории квантовой механики, мы хотим лишь подчеркнуть ту роль, которую она сыграла в наведении моста между бытием и становлением — главной темы книги.
 Своим рождением квантовая механика отчасти обя­зана стремлению физиков преодолеть пропасть, отде­лявшую бытие от становления. Планка интересовало взаимодействие между веществом и излучением. Он намеревался осуществить для взаимодействия вещест­ва со светом такую же программу, какую Больцман осуществил для взаимодействия вещества с веществом, а именно: построить кинетическую модель необратимых процессов, приводящих к равновесию6. К своему удив­лению, Планк обнаружил, что достичь согласия с экс­периментальными результатами в условиях теплового равновесия можно, лишь приняв гипотезу о том, что обмен энергией между веществом и излучением про­исходит только дискретными порциями, пропорциональ­ными новой универсальной постоянной. Эта универсаль­ная постоянная h служит мерой для порций энергии.
 282
 
 
 И в этом случае, как и во многих других, попытка понять природу необратимости способствовала сущест­венному прогрессу физики.
 Открытие дискретности, или квантованности, энер­гии оставалось вне связи с другими физическими явле­ниями до тех пор, пока Эйнштейн не предложил пер­вую общую интерпретацию постоянной Планка. Эйн­штейн понял, к сколь далеки идущим последствиям приводит открытие Планка для природы света, и вы­двинул радикально новое понятие: дуализм волна — ча­стица (для света).
 В начале XIX в. физики наделяли свет волновыми свойствами, проявляющимися в таких явлениях, как дифракция и интерференция. Но в конце XIX в. были открыты новые явления. Самым важным из новых от­крытий по праву считается фотоэлектрический эф­фект — испускание электронов поверхностью металла в результате поглощения света. Объяснить новые экспе­риментальные результаты традиционными волновыми свойствами света было трудно. Эйнштейн разрешил проблему фотоэлектрического эффекта, предположив, что свет может быть и волной, и частицей и что обе «ипостаси» света связаны между собой постоянной Планка. Точный смысл нашего утверждения состоит в следующем. Световая волна характеризуется частотой v и длиной волны l. Постоянная Планка позволяет пе­реходить от частоты и длины волны к таким механиче­ским величинам, как энергия e и импульс р. Соотноше­ния между v и l, а также между e и р очень просты (e=hv, p=h/l), и оба содержат постоянную Планка h, Через двадцать лет после Эйнштейна Луи де Бройль обобщил дуализм волна — частица со света на мате­рию. Это открытие послужило исходным пунктом со­временной формулировки квантовой механики.
 В 1913 г. Нильс Бор установил связь новой кванто­вой физики со строением атомов (а впоследствии и мо­лекул). Исходя из дуализма волна — частица, Бор по­казал, что существует дискретная последовательность орбит электронов. При возбуждении атома электрон прыжком переходит с одной орбиты на другую. В этот самый момент атом испускает или поглощает фотон, частота которого соответствует разности энергии, ха­рактеризующей движение электрона по каждой из двух орбит. Эта разность вычисляется по формуле Эйнштей-
 283
 
 
 на, устанавливающей соотношение между энергией и частотой.
 Наступили решающие 1925—1927 годы — «золотой век» физики7. За этот короткий период Гейзенберг, Борн, Иордан, Шредингер и Дирак превратили кван­товую механику в непротиворечивую новую теорию. Дуализм волна — частица Эйнштейна и де Бройля эта теория органично включила в схему новой обобщенной формы динамики: квантовой механики. Для нас сущест­венна концептуальная новизна квантовой механики.
 Первая и, пожалуй, наиболее существенная особен­ность этой теории состояла в ее новой, неизвестной в классической физике формулировке, которая понадобилась для того, чтобы ввести в теоретический язык кван­тование. Атом (и это весьма существенно!) может на­ходиться лишь на дискретных энергетических уровнях, соответствующих различным орбитам электронов. Это, в частности, означает, что энергия (или гамильтониан) не может быть функцией только координат и импульса, как в классической механике (в противном случае, придавая координатам и импульсам значения, близкие к исходным, мы могли бы непрерывно изменять энер­гию, в то время как эксперимент показывает, что суще­ствуют лишь дискретные энергетические уровни).
 Итак, от традиционного представления о гамильто­ниане как о функции координат и импульса, необходи­мо отказаться и заменить его чем-то новым. Основная идея квантовой механики состоит в том, что гамильто­ниан так же, как и другие величины классической ме­ханики, например координаты q или импульсы р, над­лежит рассматривать как операторы. Переход от чисел к операторам — одна из наиболее дерзких идей в со­временной науке, и нам хотелось бы обсудить ее более подробно.
 Сама по себе эта идея очень проста, хотя на пер­вый взгляд кажется несколько абстрактной: оператор (математическую операцию, производимую над некото­рым объектом) необходимо отличать от объекта, на который он действует, — от функции. Выберем, напри­мер, в качестве математического оператора дифферен­цирование (взятие производной) d/dx. Действуя нашим оператором на какую-нибудь функцию (например, на х2), мы получим новую функцию (в данном случае 2х). Некоторые функции ведут себя при дифференцировании
 284
 
 
 особым образом. Например, производная от e3x равна 3e3x, т. е. отличается от исходной функции только чис­ленным множителем (равным в нашем примере 3). Функции, переходящие под действием оператора (с точ­ностью до численного множителя) в себя, называются собственными функциями данного оператора, а числен­ные множители, на которые они умножаются, — собст­венными значениями оператора.
 Каждому оператору соответствует определенный на­бор собственных значений, который называется спект­ром. Если собственные значения образуют дискретную последовательность, то спектр дискретный. Например, существует оператор, имеющий собственными значе­ниями все целые неотрицательные числа: 0, 1, 2, ... Спектр может быть и непрерывным, например, состоять из всех чисел, заключенных между 0 и 1.
 Основная идея квантовой механики сводится к сле­дующему: всем физическим величинам классической ме­ханики в квантовой механике соответствуют «свои» опе­раторы, а численным значениям, принимаемым данной физической величиной, — собственные значения ее квантовомеханического оператора. Подчеркнем одну важную особенность квантовой механики: различие, проводимое в ней между понятием физической величины (представимой оператором) и принимаемыми этой величиной численными значениями (представимыми собственными значениями оператора). В частности, энергии в кванто­вой механике соответствует оператор гамильтониан, а энергетическим уровням (наблюдаемым значениям энергии) — собственные значения спектра гамильто­ниана.
 Введение операторов распахнуло перед физиками ворота в неожиданно богатый и разнообразный микро­скопический мир, и нам остается лишь сожалеть, что мы не можем уделить больше места такой увлекатель­ной области пауки, как квантовая механика, в которой творческое воображение и экспериментальное наблюде­ние столь успешно сочетаются друг с другом. Подчерк­нем лишь, что микроскопический мир подчиняется за­конам, имеющим качественно новую структуру. Тем самым раз и навсегда кладется конец всем надеждам на создание единой концептуальной схемы, общей для всех уровней описания.
 Новый математический язык, изобретаемый для пре-
 285
 
 
 одоления вполне определенных трудностей, может спо­собствовать открытию новых областей исследования, полных неожиданностей, превосходящих самые смелые ожидания своих создателей. Так было с дифференци­альным исчислением, лежащим в основе классической динамики. Так было и с теорией операторов. Кванто­вая теория, созданная в ответ на насущную потреб­ность объяснения новых, неожиданных эксперименталь­ных открытий, — вскоре превратилась в почти необо­зримую terra incognita — бескрайний простор для ис­следований.
 Ныне, через более чем пятьдесят лет после введения операторов в квантовую механику, их значение по-прежнему остается предметом горячих дискуссий. Исто­рически введение операторов связано с существовани­ем энергетических уровней, но теперь операторы приме­няются даже в классической физике. Их значение на­много превзошло ожидания основателей квантовой ме­ханики. Операторы ныне вступают в игру всякий раз, когда по той или иной причине приходится отказывать­ся от понятия динамической траектории, а вместе с ним и от детерминистического описания траектории.
 4. Соотношения неопределенности Гейзенберга
 Мы видели, что в квантовой механике каждой фи­зической величине соответствует оператор, который дей­ствует на функции. Особенно важную роль играют соб­ственные функции и собственные значения интересую­щего нас оператора. Собственные значения соответст­вуют допустимым численным значениям величины. Рас­смотрим теперь более подробно квантовомеханические операторы, связанные с координатами q и импульса­ми р (как показано в гл. 2, эти величины — канониче­ские переменные).
 В классической механике координаты и импульсы независимы в том смысле, что мы можем приписывать координате любое численное значение совершенно неза­висимо от того, какое значение приписано нами им­пульсу. Но существование постоянной Планка h приво­дит к уменьшению числа независимых переменных. Об этом можно было бы догадаться, исходя из соотноше­ния Эйнштейна—де Бройля l=h/p, связывающего дли­ну волны с импульсом: постоянная Планка есть отно-
 286
 
 
 шение длины волны частицы (тесно связанной с поня­тием координаты) к ее импульсу. Следовательно, коор­динаты и импульс квантовомеханической частицы уже более не являются независимыми переменными, как в классической механике. Операторы, соответствующие координатам и импульсам, как объясняется во всех учебниках квантовой механики, могут быть представле­ны либо только в координатах, либо только в импуль­сах.
 Важно подчеркнуть, что во всех этих случаях в представление оператора входят только однотипные ве­личины (либо только координаты, либо только импуль­сы), но не координаты и импульсы одновременно. В этом смысле можно утверждать, что в квантовой ме­ханике число независимых переменных вдвое меньше, чем в классической.
 Из соотношения между операторами в квантовой механике вытекает одно фундаментальное свойство: два оператора — qоп и роп — не коммутируют, т. е., действуя на одну и ту же функцию операторами qопроп и ропqоп, мы получим различные функции. Некоммутационность операторов координат и импульсов приводит к весьма важным следствиям, так как только коммути­рующие операторы допускают общие собственные функции. Таким образом, невозможно указать функ­цию, которая была бы одновременно собственной функ­цией координаты и импульса. Из определения коорди­наты и импульса в квантовой механике следует, что не существует состояний, в которых эти две физические величины (т. е. координата q и импульс р) имели бы вполне определенное значение. Эту ситуацию, неизвест­ную в классической механике, выражают знаменитые соотношения неопределенности Гейзенберга. Мы можем измерять координату и импульс, но неопределенности в их значениях Dq и Dр связаны между собой неравен­ством Гейзенберга DqDр?h. Если неопределенность Dq в положении частицы сделать сколь угодной малой, то неопределенность Dр в ее импульсе обратится в бесконечность, и наоборот.
 О соотношениях неопределенности Гейзенберга на­писано много, и мы сознательно переупрощаем их из­ложение. Нам хотелось лишь, чтобы читатель мог со­ставить хотя бы общее представление о новых пробле­мах, возникших в связи с использованием операторов.
 287
 
 
 Соотношение неопределенности Гейзенберга с необходи­мостью приводит к пересмотру понятия причинности. Мы можем определить координату с абсолютной точ­ностью, но в тот момент, когда это происходит, импульс принимает совершенно произвольное значение, положи­тельное или отрицательное. Это означает, что объект, положение которого нам удалось измерить абсолютно точно, тотчас же перемещается сколь угодно далеко. Локализация утрачивает смысл: понятия, составляющие самую основу классической механики, при переходе к квантовой механике претерпевают глубокие изменения.
 Столь необычные следствия из квантовой механики были неприемлемы для многих физиков, в том числе и для Эйнштейна. Для доказательства их абсурдности было предложено и поставлено немало экспериментов. Предпринимались также попытки минимизировать кон­цептуальные изменения, вызванные квантовой механи­кой. В частности, высказывалась мысль о том, что ос­нования квантовой механики каким-то образом связаны с возмущениями, вносимыми в процессе наблюдения. Предполагалось, что система обладает внутренне впол­не определенными механическими параметрами — коор­динатами и импульсами, но в процессе измерения не­которые из этих параметров становятся неопределенны­ми, и неравенство Гейзенберга выражает лишь связь между возмущениями, вносимыми в систему при изме­рении. Тем самым классический реализм в основе сво­ей сохранялся бы в неприкосновенности, и мы лишь до­бавляли к нему позитивистское определение. Такая ин­терпретация слишком узка. Не квантовый процесс из­мерения вносит возмущения в значения координат и импульсов. Отнюдь нет! Постоянная Планка вынужда­ет нас к пересмотру традиционных представлений о ко­ординатах и импульсах. Такой вывод подтверждается недавними экспериментами, поставленными для про­верки гипотезы о скрытых переменных, выдвинутой для восстановления позиций классического детерминиз­ма8. Результаты экспериментов подтвердили правиль­ность поразительных следствий из квантовой механики.
 Из того, что квантовая механика вынуждает нас говорить менее определенно о локализации объекта, следует, как часто подчеркивал Нильс Бор, необходи­мость отказа от классической физики. Для Бора по­стоянная Планка определяет взаимодействие между
 288
 
 
 квантовой системой и измерительным устройством как единым целым, включая взаимодействие в процессе из­мерения, в результате которого мы получаем возмож­ность приписывать измеряемым величинам численные значения. Все измерения, по Бору, подразумевают вы­бор измерительного устройства, выбор вопроса, на ко­торый требуется дать ответ. В этом смысле ответ, т. е. результат измерения, не открывает перед нами доступ к данной реальности. Нам приходится решать, какое измерение мы собираемся произвести над системой и какой вопрос наши эксперименты зададут ей. Следо­вательно, существует неустранимая множественность представлений системы, каждое из которых связано с определенным набором операторов.
 В свою очередь это влечет за собой отход квантовой механики от классического понятия объективности, по­скольку с классической точки зрения существует един­ственное объективное описание. Оно является полным описанием системы «такой, как она есть», не завися­щим от выбора способа наблюдения.
 Бор всегда подчеркивал новизну, нетрадиционность позитивного выбора, производимого при квантовомеханическим измерении. Физику необходимо выбрать свой язык, свой макроскопический измерительный прибор. Эту идею Бор сформулировал в виде так называемого принципа дополнительности9, который можно рассмат­ривать как обобщение соотношений неопределенности Гейзенберга. Мы можем измерить либо координаты, либо импульсы, но не координаты и импульсы одновре­менно. Физическое содержание системы не исчерпыва­ется каким-либо одним теоретическим языком, посред­ством которого можно было бы выразить переменные, способные принимать вполне определенные значения. Различные языки и точки зрения на систему могут ока­заться дополнительными. Все они связаны с одной и той же реальностью, но не сводятся к одному-единственному описанию. Неустранимая множественность то­чек зрения на одну и ту же реальность означает не­возможность существования божественной точки зре­ния, с которой открывается «вид» на всю реальность. Однако принцип дополнительности учит нас не только отказу от несбыточных надежд. Бор неоднократно го­ворил, что от размышлений над смыслом квантовой механики голова у него идет кругом, и с ним нельзя
 289
 
 
 не согласиться: у каждого из нас голова пойдет кру­гом, стоит лишь оторваться от привычной рутины здра­вого смысла.
 Реальный урок, который мы можем извлечь из прин­ципа дополнительности (урок, важный и для других областей знания), состоит в констатации богатства и разнообразия реальности, превосходящей изобрази­тельные возможности любого отдельно взятого языка, любой отдельно взятой логической структуры. Каждый язык способен выразить лишь какую-то часть реально­сти. Например, ни одно направление в исполнитель­ском искусстве и музыкальной композиции от Баха до Шёнберга не исчерпывает всей музыки.
 Мы стремились всячески подчеркнуть важность вве­дения операторов, ибо они позволили нам достаточно убедительно показать: реальность, изучаемая физикой, есть не что иное, как конструкция нашего разума, а не только данность. Необходимо проводить различие между абстрактным понятием координаты или импуль­са, представляемых математически операторами, и их численной реализацией, достигаемой посредством экс­перимента. Одна из причин противопоставления «двух культур», по-видимому, кроется в убеждении, что ли­тература соответствует некоторой концептуализации реальности, чему-то вымышленному, в то время как наука выражает объективную реальность. Квантовая механика учит нас, что ситуация не столь проста. Су­щественный элемент концептуализации подразумевает­ся на всех уровнях реальности.
 5. Временная эволюция квантовых систем
 Перейдем теперь к рассмотрению временной эволю­ции квантовых систем. В квантовой механике, как и в классической, основную роль играет гамильтониан. Как мы уже знаем, в квантовой механике гамильтониан-функция заменяется гамильтониан-оператором Hоп. Этот оператор энергии выполняет весьма важную мис­сию: с одной стороны, его собственные значения соот­ветствуют энергетическим уровням, с другой стороны, как и в классической механике, гамильтониан опреде­ляет временную эволюцию системы. В квантовой меха­нике аналогом канонических уравнений классической механики является уравнение Шредингера, которое
 290
 
 
 описывает временную эволюцию функции ?, задающей квантовое состояние системы как результат действия на волновую функцию ? гамильтониана Hоп (сущест­вуют и другие формулировки квантовой механики, но мы не будем приводить их здесь). Термин волновая функция выбран для того, чтобы еще раз подчеркнуть столь важный для всей квантовой физики дуализм вол­на — частица. Напомним, что ? — амплитуда волны, эволюционирующей в соответствии с зависящим от ти­па частицы уравнением, задаваемым гамильтонианом. Как и канонические уравнения классической физики, уравнение Шредингера описывает обратимую и детер­министическую эволюцию. Обратимое изменение волно­вой функции в квантовой механике соответствует обра­тимому движению вдоль траектории. Если волновая функция в данный момент времени известна, то урав­нение Шредингера позволяет вычислить значение, при­нимаемое ею в любой другой момент времени как в прошлом, так и в будущем. С этой точки зрения ситуа­ция в квантовой механике вполне аналогична ситуации в классической механике. Столь тесная аналогия объ­ясняется тем, что время не входит в соотношения неоп­ределенности в квантовой механике. Время в квантовой механике — число, а не оператор, тогда как в соотно­шения неопределенности Гейзенберга могут входить только операторы.
 Квантовая механика использует лишь половину пе­ременных классической механики, поэтому классиче­ский детерминизм становится неприменимым, и в кван­товой физике центральное место занимают статистиче­ские соображения. В соприкосновение с ними мы всту­паем через интенсивность волны | ? |2 (квадрат ампли­туды).
 Стандартная статистическая интерпретация кванто­вой механики сводится к следующему. Рассмотрим соб­ственные функции какого-нибудь оператора (например, оператора энергии Hоп) и соответствующие им собст­венные значения. В общем случае волновая функция ? не является собственной функцией оператора энергии, но представима в вмде суперпозиции собственных функ­ций. Вес («важность»), с которым каждая собственная функция входит в эту суперпозицию, позволяет вычис­лять вероятность появления соответствующего собст­венного значения.
 291
 
 
 Здесь мы снова сталкиваемся с весьма важным от­клонением от классической теории: предсказуемы толь­ко вероятности, а не отдельные события. Второй раз за историю физики вероятности были привлечены для объяснения некоторых фундаментальных свойств при­роды. Впервые вероятности использовал Больцман в своей интерпретации энтропии. Однако предложенная Больцманом интерпретация отнюдь не исключала субъ­ективную точку зрения, согласно которой «только» ог­раниченность наших знаний перед лицом сложности си­стемы служит препятствием на пути к полному описа­нию. (Как мы увидим в дальнейшем, это заблуждение ныне вполне преодолимо.) Как и во времена Больцмана, использование вероятностей в квантовой механике оказалось неприемлемым для многих физиков (в том числе и для Эйнштейна), стремившихся к «полному» детерминистическому описанию. Как и в случае необра­тимости, ссылка на неполноту и ограниченность нашего знания, казалось, позволяла найти выход из создавше­гося затруднения: ответственность за статистический характер квантовомеханического описания так же, как некогда за необратимость, возлагалась на нашу неспо­собность охватить все детали поведения сложной си­стемы.
 И здесь мы снова подошли к проблеме скрытых пе­ременных. Однако, как уже говорилось, из-за отсутст­вия сколько-нибудь убедительного экспериментального подтверждения от идеи введения скрытых переменных пришлось отказаться. Фундаментальная роль вероятно­стей в квантовой механике постепенно получила всеоб­щее признание.
 Существует лишь один случай, когда уравнение Шредингера приводит к детерминистическому предска­занию: так бывает, когда волновая функция ?, представимая, вообще говоря, в виде суперпозиции собствен­ных функций, сводится к одной-единственной функции. В частности, при идеальном процессе измерения систе­ма может быть приготовлена таким образом, чтобы ре­зультат данного измерения был предсказуем. Тогда си­стему будет описывать единственная собственная функ­ция и поведение системы станет достоверно предсказуе­мым: она будет находиться в собственном состоянии, соответствующем результату измерения.
 Процесс измерения в квантовой механике имеет
 292
 
 
 особое значение, и поныне вызывающее значительный интерес. Предположим, что мы начали с волновой функ­ции, которая является в действительности суперпозици­ей собственных функций. В результате процесса изме­рения этот единственный набор систем, представимых одной и той же волновой функцией, заменяется набо­ром волновых функций, соответствующих различным собственным значениям, которые могут быть измерены. На языке квантовой механики это означает, что изме­рение переводит одну волновую функцию («чистое» со­стояние) в смесь («смешанное» состояние).
 Бор и Розенфельд10 неоднократно отмечали, что каждое измерение содержит элемент необратимости, т. о. апеллировали к необратимым явлениям (таким, как химические процессы), соответствующим записи, или регистрации, данных. Запись сопровождается уси­лением, в результате которого микроскопическое явле­ние производит эффект на макроскопическом уровне, т. е. на том самом уровне, на котором мы считываем показания измерительных приборов. Таким образом, измерение предполагает необратимость.
 В определенном смысле это утверждение было спра­ведливо и в классической физике. Но проблема необ­ратимого характера измерения в квантовой механике приобрела большую остроту, поскольку затрагивает вопросы на уровне формулировки квантовой механики.
 Обычный подход к этой проблеме сводится к ут­верждению о том, что у квантовой механики нет иного выбора, как постулировать сосуществование двух пер­вичных и не сводимых друг к другу процессов: обрати­мой и непрерывной эволюции, описываемой уравнением Шредингера, и необратимой и дискретной редукции волновой функции к одной из входящих в нее собствен­ных функций в момент измерения. Возникает парадокс: обратимое уравнение Шредингера может быть провере­но лишь с помощью необратимых измерений, которые это уравнение, по определению, не может описывать. Следовательно, квантовая механика не может быть замкнутой теорией.
 Столкнувшись со столь большими трудностями, не­которые физики в очередной раз попытались искать убежище в субъективизме, утверждая, что мы сами (наше измерение и даже, по мнению некоторых, наш разум) определяем эволюцию системы, нарушающую
 293
 
 
 естественную «объективную» обратимость11. Другие физики пришли к выводу, что уравнение Шредингера «не полно» и в него необходимо ввести новые члены, которые бы учитывали необратимость измерения. Пред­лагались и менее правдоподобные решения проблемы, такие, как гипотеза многих миров Эверетта (см. книгу д'Эспаньи, указанную в прим. 8). Однако для нас со­существование в квантовой механике обратимости и необратимости свидетельствует о том, что классическая идеализация, описывающая мир как замкнутую си­стему, на микроскопическом уровне невозможна. Имен­но это имел в виду Бор, когда заметил, что язык, ис­пользуемый нами для описания квантовой системы, не­отделим от макроскопических понятий, описывающих функционирование наших измерительных приборов. Уравнение Шредингера описывает не какой-то особый уровень реальности. В его основе лежит скорее пред­положение о существовании макроскопического мира, которому принадлежим мы сами.
 Таким образом, проблема измерения в квантовой ме­ханике является аспектом одной из проблем, которым посвящена наша книга, — взаимосвязи между простым миром, описываемым гамильтоновыми траекториями и уравнением Шредингера, и сложным макроскопическим миром необратимых процессов.
 В гл. 9 мы увидим, что необратимость входит в классическую физику, когда идеализация, в основе ко­торой заложено понятие траектории, становится неадек­ватной. Проблема измерения в квантовой механике до­пускает решение того же типа12. Действительно, волно­вая функция представляет максимум того, что нам из­вестно о квантовой системе. Как в классической физи­ке, объект этого максимального знания удовлетворяет обратимому эволюционному уравнению. В обоих случа­ях необратимость возникает, когда идеальный объект, соответствующий максимальному знанию, подлежит за­мене менее идеализированными понятиями. Но когда это происходит? Наступление такого момента зависит от физических механизмов необратимости, к которым мы еще вернемся в гл. 9. Но предварительно нам необ­ходимо резюмировать некоторые другие особенности возрождения современной науки.
 294
 
 
 6. Неравновесная Вселенная
 Две научные революции, описанные в этой главе, начались с попыток включить в общую схему классиче­ской механики универсальные постоянные с и h. Это по­влекло за собой далеко идущие последствия, частично описанные выше. Вместе с том нельзя не отметить, что другие аспекты теории относительности и квантовой ме­ханики свидетельствуют об их принадлежности к миро­воззрению, лежащему в основе ньютоновской механики. В особенности это относится к роли и значению времени. Коль скоро в квантовой механике волновая функ­ция известна в нулевой момент времени, ее значение ? (t) определено в любой момент времени t, как в прошлом, так и в будущем. Аналогичным образом в теории относительности статический, геометрический характер времени часто подчеркивается использовани­ем четырехмерных обозначений (трех пространственных измерений и одного временного). Как точно заметил Минковский в 1908 г., «отныне пространство само по себе и время само по себе должны обратиться в фик­ции и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность»13.
 Но за последние пятьдесят лет ситуация резко из­менилась. Квантовая теория стала основным средством при рассмотрении элементарных частиц и их превраще­ний. Описание фантастического многообразия элемен­тарных частиц, обнаруженных за последние годы, уве­ло бы нас далеко в сторону от нашей основной темы.
 Напомним лишь, что, опираясь на квантовую меха­нику и теорию относительности, Дирак предсказал су­ществование античастиц: каждой частице с массой m и зарядом е соответствует античастица с массой m и зарядом противоположного знака. Предвидение Дирака подтвердилось: к настоящему времени на ускорителях высоких энергий получены позитроны (античастицы электронов), антипротоны. Антиматерия стала обычным предметом исследования в физике элементарных час­тиц. При столкновении частицы и античастицы анни­гилируют с выделением фотонов — безмассовых частиц света. Уравнения квантовой теории симметричны отно­сительно замены частицы — античастицы или, точнее, относительно более слабого требования, известного под названием СРТ-симметрии. Несмотря на СРТ-симмет-
 295
 
 
 рию, между частицами и античастицами в окружающем нас мире существует замечательная дисимметрия. Мы состоим из частиц (электронов, протонов). Что же ка­сается античастиц, то они остаются своего рода лабора­торными «раритетами». Если бы частицы и античасти­цы сосуществовали в равных количествах, то все веще­ство аннигилировало бы. Имеются веские основания полагать, что в нашей Галактике антиматерия не су­ществует, но не исключено, что она существует в дру­гих галактиках. Можно представить себе, что во Все­ленной действует некий механизм, разделяющий части­цы и античастицы и «прячущий» последние где-то да­леко от нас. Однако более вероятно, что мы живем в несимметричной Вселенной, в которой материя преоб­ладает над антиматерией.
 Как такое возможно? Модель, объясняющая наблю­даемую ситуацию, была предложена А. Д. Сахаровым в 1966 г.14 В настоящее время проблема отсутствия симметрии в распределении материи и антиматерии уси­ленно разрабатывается. Существенным элементом со­временного подхода является утверждение о том, что в момент образования материи Вселенная должна была находиться в неравновесных условиях, поскольку в со­стоянии равновесия из закона действия масс, о котором шла речь в гл. 5, следовало бы количественное равен­ство материи и антиматерии.
 В этой связи мы хотели бы подчеркнуть, что нерав­новесность обретает ныне новое, космологическое изме­рение. Без неравновесности и связанных с ней необра­тимых процессов Вселенная имела бы совершенно иную структуру. Материя нигде не встречалась бы в замет­ных количествах. Повсюду наблюдались бы лишь флуктуации, приводящие к локальным избыткам то материи, то антиматерии.
 Из механистической теории, модифицированной с учетом существования универсальной постоянной h, квантовая теория превратилась в теорию взаимопре­вращений элементарных частиц. В ходе предпринятых в последнее время попыток построить единую теорию элементарных частиц высказывалась гипотеза о том, что все элементарные частицы материи, включая про­тон, нестабильны (правда, время жизни протона дости­гает коллосальной величины — 1030 лет). Механика, наука о движении, вместо того чтобы соответствовать
 296
 
 
 фундаментальному уровню описания, низводится до ро­ли приближения, годного лишь вследствие огромного времени жизни таких элементарных частиц, как протоны.
 Аналогичным трансформациям подверглась и тео­рия относительности. Как мы уже упоминали, теория относительности начинала как геометрическая теория, сильно акцентировавшая свой безвременной характер. Ныне теория относительности является основным инст­рументом исследования тепловой истории Вселенной, позволяющим раскрыть те механизмы, которые привели к наблюдаемой ныне структуре Вселенной. Тем самым обрела новое звучание проблема времени, необратимо­сти. Из области инженерии, прикладной химии, где она была сформулирована впервые, проблема необратимо­сти распространилась на всю физику — от теории эле­ментарных частиц до космологии.
 Если к оценке квантовой механики подходить, имея в виду главную тему нашей книги, то основной заслу­гой ее следует считать введение вероятности в физику микромира. Вероятность, о которой идет речь, не следу­ет путать со стохастическими процессами, описываю­щими химические реакции (о них мы рассказали в гл. 5). В квантовой механике волновая функция эво­люционирует во времени детерминистическим образом, за исключением тех моментов, когда над квантовой системой производится измерение.
 Мы видим, что за пятьдесят лет, прошедших со вре­мени создания квантовой механики, исследования не­равновесных процессов показали, что флуктуация, сто­хастические элементы важны даже в микроскопическом масштабе. На страницах нашей книги мы уже неодно­кратно говорили о том, что продолжающееся ныне кон­цептуальное перевооружение физики ведет от детерми­нистических обратимых процессов к процессам стоха­стическим и необратимым. Мы считаем, что в этом процессе квантовая механика занимает своего рода про­межуточную позицию: она вводит вероятность, но не необратимость. Мы ожидаем (и в гл. 9 будут приведе­ны некоторые основания для этого), что следующим шагом будет введение фундаментальной необратимости на микроскопическом уровне. В отличие от попыток восстановить классическую ортодоксальность с по­мощью скрытых переменных мы считаем, что необходи­мо еще дальше отойти от детерминистических описаний и принять статистическое, стохастическое описание.
 
 
 297
 
 
 Глава 8. СТОЛКНОВЕНИЕ ТЕОРИЙ
 1. Вероятность и необратимость
 Мы увидим, что почти всюду фи­зик очистил свою науку от использо­вания одностороннего времени, как бы сознавая, что эта идея привносит антропоморфный элемент, чуждый идеалам физики. Тем не менее в не­скольких важных случаях односто­роннее время и односторонняя при­чинность возникали, словно по вол­шебству, но, как будет показано, всякий раз в поддержку какой-ни­будь ложной теории.
 Г. Н. Льюис1
 Закон монотонного возрастания энтропии — второе начало термоди­намики — занимает, как мне кажется, высшее положение среди законов при­роды. Если кто-нибудь заметит вам, что ваша любимая теория Вселенной не согласуется с уравнениями Мак­свелла, то тем хуже для уравнений Максвелла. Если окажется, что ваша теория противоречит наблюдениям,— ну что же, и экспериментаторам слу­чается ошибаться. Но если окажется, что ваша теория противоречит вто­рому началу термодинамики, то у вас не останется ни малейшей надежды: ваша теория обречена на бесславный конец.
 А. С. Эддингтон2
 Предложенная Клаузиусом формулировка второго начала термодинамики сделала очевидным конфликт между термодинамикой и динамикой. Вряд ли найдется в физике другой такой вопрос, который бы обсуждался чаще и активнее, чем соотношение между термодина­микой и динамикой. Даже теперь, через сто пятьдесят лет после Клаузиуса, этот вопрос продолжает вызывать сильные эмоции. Никто не остается нейтральным в кон-
 298
 
 
 фликте, затрагивающем самый смысл реальности и времени. Следует ли нам отказаться от динамики, ма­тери современного естествознания, в пользу какого-нибудь варианта термодинамики? «Энергетисты», пользовавшиеся большим влиянием к конце XIX в., считали отказ oт динамики необходимым. Нельзя ли как-нибудь «спасти» динамику, сохранить второе нача­ло и вместе с тем не нарушить величественное здание, воздвигнутое Ньютоном и его последователями? Какую роль может играть энтропия в мире, описываемом ди­намикой?
 Мы уже упоминали об ответе на этот вопрос, кото­рый был дан Больцманом. Знаменитое соотношение Больцмана S KlnP связывает энтропию и вероят­ность: энтропия возрастает потому, что возрастает ве­роятность. Сразу же подчеркнем, что в этом плане вто­рое начало имело бы огромное практическое значение, но не было бы столь фундаментальным. В своей пре­восходной книге «Этот правый, левый мир» Мартин Гарднер пишет: «Некоторые явления идут в одну сторо­ну не потому, что не могут идти в другую, а потому, что их протекание в обратом направлении весьма малове­роятно»3. Усовершенствуя наши возможности измерять все менее и менее вероятные события, мы могли бы достичь такого положения, когда второе начало играло бы сколь угодно малую роль. Такой точки зрения при­держиваются некоторые современные физики. Но Макс Планк считал иначе:
 «Нелепо было бы предполагать, что справедливость второго начала каким бы ни было образом зависит от большего или меньшего совершенства физиков и хими­ков в наблюдательном или экспериментальном искусст­ве. Содержанию второго начала нет дела до экспери­ментирования, оно гласит in nuce (в самом главном): «В природе существует величина, которая при всех из­менениях, происходящих в природе, изменяется в од­ном и том же направлении». Выраженная в таком об­щем виде, эта теорема или верна, или не верна; но она остается тем, что она есть, независимо от того, сущест­вуют ли на Земле мыслящие и измеряющие существа и если они существуют, то умеют ли они контролировать подробности физических или химических процессов на один, два или сто десятичных знаков точнее, чем в на­стоящее время. Пределы для этого начала, если только
 299
 
 
 они действительно существуют, необходимо должны на­ходиться в той же области, в которой находится и его содержание, — в наблюдаемой природе, а не в наблю­дающих людях. Обстоятельства нисколько не изме­няются от того, что для вывода начала мы пользуемся
 Рис. 23. Модель урн Эренфестов. N шаров распределены между двумя урнами А и В. Через равные промежутки времени (которые можно принять за единицу) из урны, выбираемой наугад, извлекает­ся шар и кладется в другую урну. В момент времени п в урне А на­ходится k шаров, а в урне В остальные N—k шаров.
 человеческим опытом; для нас это вообще единствен­ный путь для исследования законов природы»4.
 Взгляды Планка не получили особого распростра­нения среди его современников. Как уже отмечалось, большинство физиков склонны были считать второе на­чало следствием приближенного описания, вторжения субъективных взглядов в точный мир физики. Эту точ­ку зрения отражает, например, знаменитое высказыва­ние Борна: «Необратимость есть результат вхождения элемента нашего незнания в основные законы физики»5.
 В настоящей главе мы намереваемся осветить неко-
 300
 
 
 торые основные этапы в развитии интерпретации вто­рого начала. Прежде всего необходимо понять, почему эта проблема оказалась столь трудной. В гл. 9 мы из­ложим новый подход, из которого, как нам хотелось бы надеяться, читателю станут ясны и принципиальная новизна, и объективное значение второго начала. Вы­вод, к которому мы придем, совпадает с точкой зре­ния Планка. Мы покажем, что второе начало, отнюдь
 Рис. 24. Приближение к равновесию (k=N/2) в модели урн Эренфестов (ход кривой изображен схематически).
 не разрушая величественное здание динамики, допол­няет его существенно новым элементом.
 Прежде всего необходимо пояснить установленную Больцманом связь между вероятностью и энтропией. Воспользуемся для этого моделью урн, предложенной П. и Т. Эренфестами6. Рассмотрим N предметов (на­пример, шаров), распределенных между двумя контей­нерами (урнами) А и В. Предположим, что через оди­наковые промежутки времени (например, через секун­ду) мы извлекаем наугад шар либо из урны А, либо из урны В и перекладываем его в другую урну. Пусть че­рез п шагов в урне А находится k шаров, а в урне В — остальные N—k шаров. Тогда на (n+1)-ом шаге в ур­не A может оказаться либо k—1, либо k+1 шаров и вероятность перехода равна k/N для k®k—1 и 1—k/N для k®k+1. Предположим, что мы продолжаем из­влекать шары наугад из урн и перекладывать их в дру­гую урну. Мы ожидаем, что в результате перекладыва­ния шаров установится наиболее вероятное их распре­деление по урнам в смысле Больцмана. Если число ша-
 301
 
 
 ров N достаточно велико, то шары с наибольшей ве­роятностью распределятся между урнами А и В поров­ну: в каждой урне по N/2 шаров. В этом нетрудно убе­диться, проделав соответствующие вычисления или вы­полнив экспериментальную проверку.
 Модель Эренфестов — простой пример марковского процесса (или цепи Маркова), названного так в честь выдающегося русского математика академика А. А. Мар-
 Рис. 25. Временная эволюция H-функции (определенной в тек­сте), соответствующая модели Эренфестов. H монотонно убывает и при t®? стремится к нулю.
 кова, одним из первых исследовавшего такие процессы (Пуанкаре был вторым). Кратко отличительную осо­бенность марковских процессов можно сформулировать следующим образом: вероятности переходов однознач­но определены и не зависят от предыстории системы. Цепи Маркова обладают замечательным свойством: их можно описать с помощью энтропии. Пусть P(k) — вероятность найти k шаров в урне A. Вероятности Р(К) можно сопоставить H-функцию, свойства которой в точ­ности совпадают со свойствами энтропии, рассмотрен­ной нами в гл. 4. На рис. 25 показано, как H-функция изменяется во времени. Мы видим, что она изменяется монотонно, как и энтропия изолированной системы.
 302
 
 
 Правда, H-функция убывает, а энтропия S возрастает, но так происходит «по определению»: H играет роль — S.
 Математический смысл H-функции заслуживает то­го, чтобы рассмотреть его более подробно: H-функция служит мерой отклонения вероятностей в данный мо­мент времени от вероятностей в равновесном состоянии (когда число шаров в каждой урне равно N/2). Рас­суждения, используемые в модели урн Эренфестов, до­пускают обобщение. Рассмотрим разбиение квадрата, т. е. разделим квадрат на некоторое число непересе­кающихся областей. Нас будет интересовать распреде­ление частиц по квадрату. Пусть Р(k, t) — вероятность найти частицу в области k (в момент времени t), а Рравн(k) — вероятность найти частицу в области k в равновесных условиях. Предполагается, что, как и в модели урн, вероятности переходов существуют и одно­значно определены. По определению, H-функция зада­ется выражением
 Заметим, что в правую часть входит отношение P(k,t)/Pравн(k). Предположим, что мы разделили квад­рат на восемь непересекающихся клеток и Рравн(k)=1/8. Пусть в момент времени t все частицы находят­ся в первой клетке. Тогда P(1,t)=1, a во всех осталь­ных клетках вероятности P(k,t) равны нулю. Следова­тельно, H=ln(1/(1/8))=ln8. Со временем частицы распределяются по клеткам равномерно, и P(k,t)=Pравн(k)=1/8. H-функция при этом обращается в нуль. Можно показать, что H-функция убывает моно­тонно, как это изображено на рис. 25. (Доказательство этого утверждения приводится во всех учебниках по теории стохастических процессов.) Именно поэтому H-функция играет роль «негэнтропии» — S. Монотон­ное убывание H-функции имеет очень простой смысл: оно отражает и служит мерой прогрессирующего вы­равнивания неоднородностей в системе. Начальная ин­формация утрачивается, и система эволюционирует от «порядка» к «беспорядку».
 Заметим, что марковский процесс включает в себя флуктуации. Это отчетливо видно на рис. 24. Подож­дав достаточно долго, мы могли бы вернуться в исход-
 303
 
 
 ное состояние. Следует, однако, подчеркнуть, что речь идет о средних: монотонно убывающая Hм-функция может быть выражена через распределения вероятно­стей, а не через отдельные события. Именно распреде­ление вероятностей эволюционирует необратимо (в мо­дели Эренфестов функция распределения равномерно стремится к биномиальному распределению). Сле­довательно, на уровне функций распределения цепи Маркова приводят к однонаправленности во време­ни.
 Стрела времени характеризует различие между це­пями Маркова и временной эволюцией в квантовой ме­ханике, в которой волновая функция (самым непосред­ственным образом связанная с вероятностями) эволю­ционирует во времени обратимо. Это также один из примеров тесной взаимосвязи между стохастическими процессами, например цепями Маркова, и необрати­мостью. Однако возрастание энтропии (или убывание H-функции) основывается не на стреле времени, зало­женной в законах природы, а на нашем решении вос­пользоваться знанием, которым мы располагаем в на­стоящем, для предсказания поведения в будущем (но не в прошлом). Вот что говорит об этом в присущей ему лапидарной манере Гиббс:
 «Но хотя по отношению к математическим построе­ниям различие между предшествующими и последую­щими событиями и может являться несущественным, по отношению к событиям реального мира дело обстоит совершенно иначе. В тех случаях, когда мы использу­ем ансамбли для вычисления вероятностей событий, происходящих в реальном мире, нельзя забывать о том, что если вероятности последующих событий довольно часто можно определить, зная вероятности предшеству­ющих, то лишь в весьма редких случаях удается определить вероятности предшествующих событий, зная ве­роятности последующих, ибо лишь чрезвычайно редко можно обоснованно исключить из рассмотрения апри­орную вероятность предшествующих событий»7.
 Асимметрия между прошлым и будущим — важный вопрос, бывший и продолжающий оставаться предме­том оживленного обсуждения8. Теория вероятностей ориентирована во времени. Предсказание будущего от­лично от восстановления хода событий задним числом. Если бы этим отличием все и ограничилось, то нам не
 304
 
 
 оставалось бы ничего другого, как принять субъектив­ную интерпретацию необратимости, так как различие между прошлым и будущим оказалось бы зависимым только от нас. Иначе говоря, при субъективной интер­претации необратимости (к тому же подкрепляемой сомнительной аналогией с теорией информации) «от­ветственность» за асимметрию во времени, характери­зующую развитие системы, возлагается на наблюдате­ля. А так как наблюдатель не может «одним взглядом» определить положения и скорости всех частиц, образу­ющих сложную систему, ему не известно мгновенное состояние системы, содержащее в себе ее прошлое и бу­дущее; он не в состоянии постичь обратимый закон, ко­торый позволил бы предсказать развитие системы от одного момента времени к следующему. Наблюдатель не может также производить над системой такие мани­пуляции, какие производил максвелловский демон, спо­собный разделять быстро и медленно движущиеся ча­стицы и вынуждать систему к антитермодинамической эволюции от менее к более неоднородному распределе­нию температуры9.
 Термодинамика по-прежнему остается наукой о сложных системах, но с указанной точки зрения един­ственной специфической особенностью сложных систем является то, что наше знание о них ограниченно и не­определенность со временем возрастает. Вместо того чтобы распознать в необратимости связующее звено между природой и наблюдателем, ученый вынужден признать, что природа лишь отражает его собственное незнание. Природа безответна. Необратимость, отнюдь не способствуя укреплению наших позиций в физиче­ском мире, представляет собой не более чем отзвук че­ловеческой деятельности и ее пределов.
 Против подобной точки зрения сразу же можно воз­разить. Приведенные выше интерпретации исходят из того, что термодинамика должна быть столь же уни­версальной, как и наше незнание. Но тогда должны существовать только необратимые процессы. Именно это и является камнем преткновения всех универсаль­ных интерпретаций энтропии, уделяющих основное вни­мание нашему незнанию начальных (или граничных) условий. Необратимость — не универсальное свойство. Чтобы установить связь между динамикой и термоди­намикой, необходим физический критерий, который по-
 305
 
 
 зволил бы нам различать обратимые и необратимые процессы.
 К этому вопросу мы вернемся в гл. 9. А пока обра­тимся снова к истории науки и к пионерским работам Больцмана.
 2. Больцмановский прорыв
 Свои основные результаты Больцман получил в 1872 г., за тридцать лет до того, как были открыты це­пи Маркова. Больцман намеревался дать «механиче­скую» интерпретацию энтропии. Иначе говоря, если в цепях Маркова вероятности перехода заданы извне (как в модели Эренфестов), их в действительности не­обходимо связать с динамическим поведением системы. Эта проблема настолько захватила Больцмана, что он посвятил ей большую часть своей научной жизни. В его «Статьях и речах» есть такие строки:
 «Если вы меня спросите относительно моего глу­бочайшего убеждения, назовут ли нынешний век же­лезным веком или веком пара и электричества, я от­вечу не задумываясь, что наш век будет называться веком... Дарвина»10.
 Идея эволюции неотразимо влекла к себе Больц­мана. Его мечтой было стать Дарвином эволюции ма­терии.
 Первый шаг на пути к механистической интерпрета­ции энтропии состоял во введении в физическое описа­ние некогда отброшенного представления о столкнове­нии атомов и молекул и тем самым в создании базы для статистического описания. Этот шаг был сделан Клаузиусом и Максвеллом. Так как столкновения — явления дискретные, их можно сосчитать и оценить среднюю частоту. Мы можем также классифицировать столкновения, например отнести к одному классу столк­новения, в результате которых рождается частица с заданной скоростью v, а к другому — столкновения, в результате которых частица со скоростью v исчезает, превращаясь в частицы с другими скоростями (т. е. разделить столкновения на прямые и обратные)11.
 Максвелла интересовало, можно ли указать такое состояние газа, в котором столкновения, непрестанно изменяющие скорости молекул, не сказываются более на эволюции распределения скоростей, т. е. на среднем
 306
 
 
 числе молекул, движущихся с любой из скоростей. При каком распределении скоростей последствия различных столкновений в целом по ансамблю взаимно компенси­руются?
 Максвелл показал, что такое особое состояние (со­стояние термодинамического равновесия) наступает, когда распределение скоростей принимает хорошо из­вестную форму колоколообразной, или гауссовой, кри­вой — той самой, которую основатель «социальной фи­зики» Кетле считал подлинным выражением случайности. Теория Максвелла позволяет весьма просто интер­претировать основные законы поведения газов. Повы­шение температуры соответствует увеличению средней скорости молекул и тем самым энергии, связанной с их движением. Эксперименты с высокой точностью под­твердили распределение Максвелла. Оно и поныне слу­жит основой решения многочисленных задач в физиче­ской химии (например, при вычислении числа столкно­вений в реакционной смеси).
 Больцман, однако, вознамерился пойти дальше. Ему хотелось описывать не только состояние равновесия, но и эволюцию к равновесию, т. е. эволюцию к максвелловскому распределению. Он решил выявить молеку­лярный механизм, соответствующий возрастанию энт­ропии, механизм, вынуждающий систему стремиться к переходу из произвольного распределения скоростей к равновесному.
 Характерно, что Больцман подошел к решению про­блемы физической эволюции не на уровне индивидуаль­ных траекторий, а на уровне ансамбля молекул. Ру­ководствуясь интуитивными соображениями, Больцман избрал подход, адекватный замыслу повторить в физике то, что Дарвин свершил в биологии, убедительно до­казав: движущая сила биологической эволюции — есте­ственный отбор — может быть определена не для от­дельной особи, а лишь для популяции. Следовательно, естественный отбор — понятие статистическое.
 Полученный Больцманом результат допускает срав­нительно простое описание. Эволюция функции распре­деления f(v,t) скоростей v в некоторой области прост­ранства в момент времени t представима в виде суммы двух эффектов: число частиц, имеющих в момент вре­мени t скорость v, изменяется в результате как свобод­ного движения частиц, так и столкновений между ни-
 307
 
 
 ми. Изменение числа частиц вследствие свободного движения нетрудно вычислить с помощью классической динамики. Оригинальность метода Больцмана связана с оценкой второго эффекта: изменения числа частиц за счет столкновений. Чтобы избежать трудностей, неиз­бежно возникающих при прослеживании движения (не только свободного, но и при взаимодействии) по траек­ториям, Больцман воспользовался понятиями, аналогич­ными тем, которые были описаны в гл. 5 (при рассмот­рении химических реакций), и занялся вычислением среднего числа столкновений, приводящих к рождению или уничтожению молекулы со скоростью v.
 Здесь снова мы имеем два процесса, действие кото­рых противоположно: прямые и обратные столкновения. В результате прямого столкновения молекул со ско­ростями v' и v" возникает («рождается») молекула со скоростью v. В результате обратного столкновения мо­лекулы со скоростью v с молекулой со скоростью v'" скорость первой изменяется — молекула со скоростью v исчезает («уничтожается»). Как и в случае химиче­ских реакций (см. гл. 5, разд. 1), частота столкновений считается пропорциональной произведению числа моле­кул, участвующих в столкновении. (Разумеется, исто­рически метод Больцмана (1872) предшествовал мето­ду химической кинетики.)
 Результаты, полученные Больцманом, совершенно аналогичны результатам теории цепей Маркова. Мы снова вводим функцию HHH. На этот раз она относится к распределению скоростей f. Она представима в виде H= o flnfdv. Как и в предыдущем случае, H-функция может только убывать со временем до тех пор, пока не будет достигнуто равновесие и распределение скорос­тей не перейдет в распределение Максвелла.
 В последние годы многочисленные проверки моно­тонного убывания H-функции были проведены с по­мощью моделирования на ЭВМ. Все они подтвердили предсказание Больцмана. И поныне кинетическое урав­нение Больцмана играет важную роль в физике газов. Оно позволяет вычислять коэффициенты переноса (на­пример, коэффициенты теплопроводности и диффузии) в хорошем соответствии с экспериментальными данны­ми.
 Но особенно велико достижение Больцмана с кон­цептуальной точки зрения: различие между обратимы-
 308
 
 
 ми и необратимыми процессами, лежащее, как мы ви­дели, в основе второго начала термодинамики, Больц­ман низвел с макроскопического на микроскопический уровень. Изменение распределения скоростей из-за сво­бодного движения молекул соответствует обратимой ча­сти, а вклад, вносимый в изменение распределения столкновениями, — необратимой части. Именно в этом и был, с точки зрения Больцмана, ключ к микроскопи­ческой интерпретации энтропии. Принцип молекулярной эволюции сформулирован! Легко понять, что это от­крытие обладало неотразимой привлекательностью для физиков, разделявших идеи Больцмана, в том числе Планка, Эйнштейна и Шредингера12.
 Больцмановский прорыв стал решающим этапом в формировании нового научного направления — физики процессов. Временную эволюцию в уравнении Больц­мана больше не определяет гамильтониан, зависящий от типа сил. В больцмановском подходе движение по­рождают функции, связанные с процессом, например сечение рассеяния. Можно ли считать, что проблема необратимости решена и что теории Больцмана уда­лось свести энтропию к динамике? Ответ однозначен: нет, желанная цель не достигнута. Впрочем, вопрос этот столь важен, что заслуживает более подробного рассмотрения.
 3. Критика больцмановской интерпретации
 Возражения против теории Больцмана появились сразу же после выхода его основной работы в 1872 г. Действительно ли Больцману удалось «вывести» необ­ратимость из динамики? Каким образом обратимые за­коны движения по траекториям могут порождать не­обратимую эволюцию? Не противоречит ли кинетиче­ское уравнение Больцмана динамике? Нетрудно видеть, что симметрия уравнения Больцмана не согласуется с симметрией классической механики.
 Мы уже видели, что в классической динамике обра­щение скорости (v®—v) приводит к такому же ре­зультату, как и обращение времени (t®—t). Это — основная симметрия классической динамики, и можно было бы надеяться, что кинетическое уравнение Больцмана, описывающее, как изменяется во времени функ­ция распределения, обладает такой же симметрией. Но
 309
 
 
 в действительности все обстоит иначе: вычисленный Больцманом столкновительный член инвариантен отно­сительно обращения скорости. Эта несколько неожи­данная инвариантность имеет простой физический смысл: в больцмановской картине нет никакого раз­личия между столкновением, обращенным в будущее, и столкновением, обращенным в прошлое. Именно на этой идее основано возражение Пуанкаре против вывода уравнения Больцмана, предложенного самим Больцма­ном. Правильные вычисления не могут приводить к за­ключениям, противоречащим исходным допущени­ям13, 14. Но, как мы видели, симметрия кинетического уравнения, выведенного Больцманом для функции рас­пределения, противоречит симметрии классической ди­намики. Следовательно, заключает Пуанкаре, Больцман не сумел «вывести» энтропию из динамики. Где-то в своих рассуждениях он ввел нечто новое, чуждое ди­намике. Следовательно, выведенное Больцманом урав­нение в лучшем случае может рассматриваться лишь как феноменологическая модель, полезная, но не име­ющая прямого отношения к динамике. Таково было также возражение Цермело (1896), выдвинутое против теории Больцмана.
 С другой стороны, возражение Лошмидта (1876) позволило установить границы применимости кинетиче­ской модели Больцмана. Лошмидт заметил, что модель Больцмана перестает выполняться после обращения скоростей, соответствующего преобразованию v®—v.
 Поясним суть возражения Лошмидта с помощью мысленного эксперимента. Предположим, что газ на­ходится сначала в неравновесном состоянии и эволю­ционирует до момента времени t0. В момент времени t0 обратим все скорости. Тогда система вернется в началь­ное состояние. Следовательно, больцмановская энтро­пия при t=0 и t=2t0 должна быть одинакова.
 Число таких мысленных экспериментов легко мож­но было бы приумножить. Предположим, что при t=0 у нас имеется смесь водорода и кислорода. Через ка­кое-то время образуется вода. Если обратить все ско­рости, то смесь вернется в исходное состояние: вода ис­чезнет, останутся только водород и кислород.
 Интересно, что в лаборатории или в численном мо­делировании обращение скоростей — вполне выполни­мая операция. Например, на рис. 26 и 27 H-функция
 310
 
 
 Больцмана вычислена для двухмерных твердых сфер (дисков). В начальный момент времени диски располагаются в узлах квадратной решетки с изотропным рас­пределением cкоростей. Результаты вычислений совпа­дают с предсказаниями Больцмана.
 Рис. 26. Эволюция H со временем для N «твердых шаров» (численное моделирование): a) N=100, b) N=484, с) N=1225.
 Если через пятьдесят или сто столкновений (в раз­реженном газе это соответствует 10-6с) обратить ско­рости, то получается новый ансамбль15. После обраще­ния скоростей H-функция Больцмана уже не убывает, а возрастает.
 Аналогичная ситуация возникает при определенных условиях в реальных экспериментах со спиновым эхом и эхом в плазме: на ограниченных интервалах времени наблюдается «антитермодинамическое», в смысле Больцмана, поведение системы.
 Важно отметить, что эксперимент по обращению скоростей тем труднее, чем позже происходит обраще­ние скоростей (т. е. чем больше время t0).
 Восстановить свое прошлое газ может лишь в том случае, если он «помнит» все, что с ним произошло в интервале времени от t=0 до t=t0. Для этого необхо­димо какое-то «хранилище» информации. В роли тако-
 311
 
 
 го хранилища, или памяти, выступают корреляции меж­ду частицами. К вопросу о корреляциях мы вернемся в гл. 9. Пока же заметим, что именно это соотношение между корреляциями и столкновениями было недоста­ющим звеном в рассуждениях Больцмана. Когда Лошмидт в полемике с Больцманом указал на это обстоя­
 Рис. 27. Эволюция H при обращении скоростей после 50 и 100 соударений. Численное моделирование для 100 «твердых шаров».
 тельство, Больцман вынужден был признать правоту своего оппонента: обратные столкновения «ликвидиру­ют последствия» прямых столкновений и система долж­на возвращаться в начальное состояние. Следователь­но, H-функция должна возрастать от конечного значе­ния к начальному. Таким образом, обращение скоро­стей требует проведения различия между ситуациями, к которым рассуждения Больцмана применимы, и си­туациями, в которых те же рассуждения неверны.
 После того как эта проблема была поставлена (1894), выяснить природу ограничения оказалось. совсем не трудно16,17. Применимость статистического подхода Больцмана зависит от предположения о том, что перед столкновением молекулы ведут себя незави-
 312
 
 
 симо друг от друга. Это предположение относительно начального состояния газа известно под названием ги­потезы молекулярного хаоса. Начальное состояние, воз­никающее в результате обращения скоростей, не удов­летворяет гипотезе молекулярного хаоса. Если систему заставить эволюционировать «вспять во времени», то создается новая ситуация, аномальная в том смысле, что некоторым молекулам, сколь бы далеко друг от друга они ни находились в момент обращения скорос­тей, предопределено встретиться в заранее установлен­ный момент времени и подвергнуться заранее установ­ленному преобразованию скоростей.
 Обращение скоростей порождает высокоорганизо­ванную систему, и гипотеза молекулярного хаоса пере­стает выполняться. Различные столкновения, как бы под влиянием предустановленной гармонии, порождают поведение газа, которое внешне вполне «целенаправ­ленно».
 Но это еще не все. Что означает переход от поряд­ка к хаосу? В предложенной Эренфестами модели урн ответ ясен: система эволюционирует до тех пор, пока распределение шаров не становится равномерным. В других случаях ситуация не столь проста. Мы можем воспользоваться численным моделированием и начать со случайного распределения взаимодействующих час­тиц. Со временем (на какое-то мгновение) может обра­зоваться правильная решетка. Происходит ли в этом случае переход от порядка к хаосу? Ответ на этот во­прос далеко не очевиден. Для того чтобы понять поря­док и хаос, нам необходимо прежде всего определить те объекты, к которым мы применяем эти понятия. Пе­реход от динамики к термодинамике, как показал Больцман, совершается особенно легко в разреженных газах. Но в плотных системах, где молекулы взаимо­действуют между собой, переход этот не столь очевиден.
 Именно из-за трудностей, возникающих при рас­смотрении плотных систем с взаимодействующими час­тицами, яркая пионерская теория Больцмана осталась незавершенной.
 
 4. Динамика и термодинамика — два различных мира
 Мы уже упоминали о том, что траектории несовме­стимы с понятием необратимости. Но поведение траек­торий — отнюдь не единственный язык, на котором мы
 313
 
 
 можем сформулировать динамику. В качестве альтерна­тивы сошлемся на теорию ансамблей, развитую Гиббсом и Эйнштейном7,18 и представляющую особый ин­терес при изучении систем, состоящих из большого чис­ла молекул. Существенно новым элементом в теории ансамблей Гиббса—Эйнштейна явилась возможность сформулировать динамическую теорию независимо от точного задания каких бы то ни было начальных усло­вий.
 В теории ансамблей физические системы рассматри­ваются в фазовом пространстве. Динамическое состоя­ние точечной частицы (материальной точки) определя­ется ее положением (вектором с тремя компонентами) и импульсом (тоже вектором с тремя компонентами). Такое состояние можно представить двумя точками (каждая из которых принадлежит «своему» трехмер­ному пространству) или одной точкой в шестимерном пространстве координат и импульсов. Это и есть фазо­вое пространство. Геометрическое представление дина­мических состояний одной точечной частицы обобщает­ся на случай произвольной системы п частиц. Для того чтобы задать состояние такой системы, необходимо ука­зать nr6 чисел, или точку в 6n-мерном фазовом про­странстве. Эволюции во времени системы п частиц бу­дет соответствовать траектория в фазовом простран­стве.
 Мы уже говорили о том, что точные начальные ус­ловия макроскопической системы никогда не известны. Однако ничто не мешает нам представить систему ан­самблем точек, т. е. «облаком» точек, соответствующих различным динамическим состояниям, совместимым с той информацией о системе, которой мы располагаем. Каждая область фазового пространства может содер­жать бесконечно много представляющих точек. Их плотность служит мерой вероятности найти рассматри­ваемую систему в данной области. Вместо того чтобы рассматривать бесконечно много дискретных точек, удобнее ввести непрерывное распределение представля­ющих точек в фазовом пространстве. Пусть r(q1, ..., q3n, p1, ..., p3n) — плотность распределения представляющих точек в фазовом пространстве, где q1, ..., q3n — коорди­наты п точек, a p1, ..., p3n — импульсы тех же точек (каждая точка имеет три координаты и три импульса). Плотность r есть плотность вероятности найти динами-
 314
 
 
 ческую систему в окрестности точки q1, ..., q3n, p1, ..., p3n фазового пространства.
 При таком подходе плотность r может показаться идеализацией, искусственной конструкцией, а траекто­рия точки в фазовом пространстве «непосредственно» соответствующей описанию «естественного» поведения системы. Но в действительности идеализацией являет­ся точка, а не плотность. Дело в том, что начальное состояние никогда не бывает известно с бесконечной степенью точности, позволяющей стянуть область в фа­зовом пространстве в отдельную точку. Мы можем лишь определить ансамбль траекторий, выходящих из ан­самбля представляющих точек, соответствующих тому, что нам известно относительно начального состояния системы. Функция плотности r отражает уровень на­ших знаний о системе: чем точнее знания, тем меньше область в фазовом пространстве, на которой плотность отлична от нуля, т. е. та область, где может находить­ся система. Если бы плотность была равномерно рас­пределена по всему фазовому пространству, то утверж­дать что-либо относительно состояния системы было бы невозможно. Она могла бы находиться в любом из состояний, совместимых с ее динамической структурой.
 При таком подходе точка соответствует максимуму знания, которым мы можем располагать о системе. Та­кой максимум есть результат предельного перехода, все возрастающей точности нашего знания. Как мы уви­дим в гл. 9, фундаментальная проблема состоит в том, чтобы выяснить, какой предельный переход реально осуществим. Непрестанное повышение точности означа­ет, что от одной области в фазовом пространстве, где плотность r отлична от нуля, мы переходим к другой, меньшей, которая содержится в первой. Такое стягива­ние мы можем продолжать до тех пор, пока область, содержащая систему, не станет сколь угодно малой. Но при этом, как мы увидим в дальнейшем, необходимо соблюдать осторожность: «сколь угодно малая» не оз­начает «нулевая», и априори ниоткуда не следует, что наш предельный переход непременно приведет к непро­тиворечивому предсказанию отдельной однозначно оп­ределенной траектории.
 Теория ансамблей Гиббса—Эйнштейна — естест­венное продолжение теории Больцмана. Функцию плот­ности r в фазовом пространстве можно рассматривать
 315
 
 
 как аналог функции распределения скоростей f, кото­рую использовал Больцман. Но по своему физическо­му содержанию PPP «богаче», чем f. Функция плотности r так же, как и f, определяет распределение скоростей, но, помимо этого, r содержит и другую информацию, в частности вероятность найти две частицы на опреде­ленном расстоянии друг от друга. В функцию плотно­сти PPP входит и все необходимое для определения кор­реляций между частицами, о которых шла речь в пре­дыдущем разделе. Более того, r содержит полную ин­формацию о всех статистических свойствах системы п тел.
 Опишем теперь эволюцию функции плотности в фа­зовом пространстве. На первый взгляд это еще более дерзкая задача, чем та, которую поставил перед собой Больцман: описание временной эволюции функции рас­пределения скоростей. Но это не так. Канонические уравнения Гамильтона, о которых шла речь в гл. 2, по­зволяют нам получить точное эволюционное уравнение для r без дальнейших приближений. Это так называе­мое уравнение Лиувилля, к которому мы еще вернемся в гл. 9. Пока же отметим лишь одно важное следствие из гамильтоновой динамики: плотность r эволюциони­рует в фазовом пространстве как несжимаемая жид­кость (если представляющие точки в какой-то момент времени занимают в фазовом пространстве область объ­емом V, то объем области остается постоянным во вре­мени). Форма области может изменяться произвольно, но объем ее при всех деформациях сохраняется.
 Таким образом, теория ансамблей Гиббса открыва­ет возможность строгого сочетания статистического под­хода (исследования «популяции», описываемой плот­ностью r) и законов динамики. Она допускает также более точное представление состояния термодинамиче­ского равновесия. Например, в случае изолированной системы ансамбль представляющих точек соответству­ет системам с одной и той же энергией Е. Плотность r отлична от нуля только на микроканонической поверх­ности в фазовом пространстве, отвечающей заданному значению энергии. Первоначально плотность r может быть распределена по микроканонической поверхности произвольно. В состоянии равновесия плотность r пе­рестает изменяться во времени и не должна зависеть от выбора начального состояния. Следовательно, при-

<< Пред.           стр. 8 (из 14)           След. >>

Список литературы по разделу