<< Пред.           стр. 3 (из 4)           След. >>

Список литературы по разделу

 Сами стволовые клетки (НСК) покоятся на базальном слое эпителиальных клеток, распластанных монослоем вдоль базальной мембраны. В некоторых ямках сосредоточены скопления (колонии) НСК округлой формы. Клетки вокруг ямки экспрессировали мРНК для FGF-8. В отличие от более вытянутых пргениторных клеток, стволовые клетки не экспрессировали мРНК гена Mash-1. Однако клетки маркировались антителами к нестину. НСК также маркировались антителами к рецептору для EGF.
 У мышей весь путь от переднего рога богового желудочка до обонятельной луковицы был представлен слоями мигрирующих незрелых нейронов между слоями астроглии. Плотность нейронов примерно в 4 раза превышала плотность глии. Прогениторные клетки мозжечка зародышей 11-12-й нед развития лишены "навигационной информации" . N- кадхерин-минус прогениторные клетки теряли способность к направленной миграции.
 
 
 
 4. Стволовое пространство эпендимы
 
  У зародышей млекопитающих нейрональная трубка ( позднее -выстилка желудочков и субэпендимальный слой) являются главным поставщиком новых нейронов и глии. Долгое время считалось, что эти зоны прдуцируют новые клетки только в развивающемся мозге. Однако следы эмбриональной ткани и эмбриональных процессов найдены у взрослых особей. Для идентификации S- прогениторных клеток в околожелудочковых пространствах вводили бромдезоксиуридин ( БУДР- аналог тимидина), который встраивается в синтезир ных моноклональных антител. При длительном мечении исследовали миграцию уемую ДНК. Визуализацию БУДР+ клеток проводили с помощью фруоресцентно мече БУДР-меченых клеток в мозге. Этим метчиком удалось обнаружить сотни новобразованных клеток в субэпендимальном пространстве, в гиппокампе. В субвентрикулярной зоне появлялся один новый нейрон на 2000 клеток в сутки (нейроны возникали в 2 раза чаще, чем глия). С помощью БДУР установили главные потоки миграции клеток в обонятельную луковицу, гиппокамп, gyrus dentatus. В случае повреждения головного или спинного мозга число регенерирующих предшественников в субэпендимальной зоне желудочков резко возрастало.
 На первом этапе пришлось исключать возможность миграции "пришлых" СК через циркуляцию и pia mater. Если хирургически убрать агрегаты СК из субэпендимальных пространств, в самой эпендиме увеличивалось количество нестин-положительных клеток и быстро восстанавливались агрегаты нестин + клеток. Клетки по периферии агрегатов СК постепенно теряли нестин. Если клетки клонов были мечены DIL ( либо геном бета-галактозидазы), то спустя 10-15 дней меченые клетки выявлялись в луковице обнятельного эпителия. Лишь большие концентрации метки давали надежные результаты .
 Покоящиеся стволовые клетки, встроенные в монослой эпендимы, не имели рецептора к FGF-2. Делящиеся клоны экспрессировали рецептор для FGF-2. Внутрижелудочковое введение FGF-2 эмбрионам 16-18 дня гестации приводило к бурной пролиферации нестин+ клеток в перивентрикулярной области, которое завершалось появлением новых порций клеток в коре больших полушарий, обонятельной луковице и гиппокампе. При введении тех же доз FGF-2 в желудочки мозга взрослых животных наблюдали волну пролиферации стволовых клеток в эпендиме/субэпендиме без усиления пролиферации и численности клеток в коре больших полушарий (Vaccarino F.M., Ganat Y., Zhang Y. et al., 2001)
 Сам монослой эпендимы практически не включал БУДР. К субэпендиме прилегают скопления гетерогенных популяций. Мелкие довольно плотно упакованные кластеры клеток включали БУДР. Вокруг этих кластеров располагались более крупные вытянутые клетки с мигрирующей ламеллой. Этот слой клеток имел рецепторы для FGF-2, EGF, TGF-alpha. Мигрирующие предшественики нейронов не имели миелиновой оболочки. Lois и Alvarez-Buylla на мышах доказали миграцию нейрональных предшественников из субвентрикулярной зоны мозга крыс в эпителий луковицы обонятельного эпителия мышей. Миграцию предшествеников визуализировали с помощью меченых антител к нестину и белку-транспортеру 2 (переносчик медиаторов-моноаминов). В этой же лаборатории было показано, что донорские меченые НСК, вводимые в субвентрикулярную область 15-дневных зародышей мышей, давали многочисленные клоны клеток, которые мигрировали, пролиферировали и стабильно заселяли практически все отделы растущего мозга по главным осям роста и клеточной экспансии мозговой ткани зародыша (Lim D.A., Fishell G.J., Alvarez-Buylla A., 1997) . Образование новых популяций клеток в субэпендиме особенно хорошо изучено в мозге певчих птиц (канареек). По уровню обмениваемости клеток в зоне пения головной мозг этих птиц более напоминает костный мозг и эпидермис кожи. Вытянутые глиальные клетки микроокружения сооружали "рельса и колеса" для направленной миграции новообразованных прогениторных клеток. Антитела к глиальному фибриллярному белку, N-кадхерину, виментину частично блокировали миграцию клеток. Сама миграция поддерживалась градиентом сигналов (IGF-1, IGF-2, TGF-beta, BDNF, NT-3, NTB). Показательно, что в цикле обновления нейронов за счет пула НСК в мозге взрослых животных играют эндогенные "минорные" ростовые факторы, особенно IGF1 и IGF2. В культуре эти функции факторов обновления пока не удается воспроизвести, а уж тем более изучить (Brooker G., Kalloniatis M.,Russo V. Et al.,2000) Klas Johansson из Королевского института в Стокгольме подтвердил, что главным источником НСК является внутренняя выстилка желудочков. Количество НСК в эпендиме увеличивалось в 50 раз при повреждении спинного мозга. Изолированные in vitro НСК формировали нейросферы. Клетки кластеров дифференцировались в нейроны, астроциты и олигодендроциты . НСК мигрировали даже в зоны повреждения спинного мозга.
 
 
 
 
  5. Клональная дисперсия стволовых клеток мозга
 
  4 способа маркировки клеток ранних зародышей млекопитающих использовали для проверки клональной гипотезы закладки мозга : 1) трансгенные животные с маркерными НСК (lacZ,GFP) 2) пересадки донорских меченых ЭСК в бластоцисту 3) смешивание маркированных ЭСК с клетками морулы 4) внутриматочное введение меченых донорских НСК/прогениторных клеток в ткани зародыша после гаструляции.
  Первые доказательства клонального устройства нервной трубки были получены на трансгенных зародышах крыс, в клетках которых ген тирозиназы был поставлен под промотор нестина или виментина - ранних генов нейроэпителия. В результате трансплантированные клетки нейроэктодермы и нервной трубки синтезировали тирозиназу. Эти клетки легко визуализировались на срезах ткани зародыша. Окраска срезов нервной трубки на тирозиназу выявила кластерное распределение прокрашенных клеток (Tief K., Schmidt A., Aguzzi A. et al, 1996).
  Пересаженные донорские стволовые клетки не только выживали, но размножались автономными ростками в зародышах-реципиентах. Доля химеризации мозга, кожи, других органов существенно колебалась (от 5% до 60%). Причины вариабельности плохо изучены. Часть донорских НСК формировала кластеры в местах закладки ядер мозговой ткани. Из этих первичных центров меченые клетки мигрировали радиально в верхние слои мозга, либо перемещались горизонтально вдоль формирующихся слоев. Иногда ЭСК химеризовали активней средний мозг, кору зародышей мышей и крыс, не достигая базальных структур мозга и мозжечка. Зубчатая фасция гиппокампа чаще других структур химеризовалась донорскими ЭСК. Кора обоих полушарий головного мозга мышей и крыс с равной эффективностью заселялась донорскими НСК. Миграторные популяции, покидающие клоны, перемещались на значительные расстояния, достигая дефинитивных структур (Kuan C.Y., Elliot E.A., Rakic P.,1997). С помощью пересадок НСК подсчитано, что вся популяция клеток Пуркинье в мозжечке возникает из 15-20 founder-cells. которые давали примерно 100-110 начальных клонов. Эти клоны формировали всю паренхиму будущего органа (Howkes R., Faulkner-Jones D., Tam P. et al., 1998 ). По другим данным, не менее 80 founder - cells участвовало в закладке мозжечка (Mathos L., Bonnerot C., Puelles L. et al., 1997 ). Пересадки донорских НСК в мозг зародышей выявили несколько закономерностей : 1) донорские НСК in situ размножались клонами. 2) сигналы микроокружения с высокой эффективностью контролировали как численность клеток, так и профиль созревания in situ 3) пересадки никогда не приводили к " аномалям" дифференцировки стволовых клеток. В региональных структурах мозга всегда возникало лимитированное количество нейронов/глии местного функционального профиля. 4) не наблюдали ошибок дифференцировки при пересадке стволовых клеток в мозг зародышей/взрослых, что сделало эту технологию особо привлекательной для практической медицины. Близкие данные были получены с НСК, мечеными геном LacZ ( бета-галактозидазой кишечной палочки ). Пролиферация меченых клеток-доноров преимущественно осуществлялась клонами (Mathis L., Nicolas J.F., 2000 ).
 
  6. Регионализация и сегментация нервной трубки
 
  Закладка telencephalon у млекопитающих контролируется парой генов Otx1 и Otx2. Эти уникальные консервативные гены млекопитающих практически не эволюционировали и эквипотенциальны гену orthodenticle (otd), контролирующему развитие переднего отдела головы дрозофилы. Мыши с двойным нокаутом Otx1-/- имели дефекты органов чувств, сенсорных систем мозга, эндокринные расстройства, развивали эпилепсию. Otx2-/- мыши погибали внутриутробно от аномалий развития переднего мозга. Поразительно, что пересадки в мозг Otx1-/- или Otx2-/- мышей гена Otd дрозофилы восстанавливали нарушенный эмбриогенез и утраченные функции переднего мозга (Acampora D., Gulisano M.,Broccoli V. et al., 2001 ). Ген дрозофилы полностью замещал функции утраченного Otx- гена млекопитающих ! Третий ген семейства Otp связан с закладкой гипоталамуса и нейро-эндокринных линий базального мозга. Otp-/- мыши погибали вскоре после рождения из-за полного отсутствия релизинг- факторов и нейропептидных гормонов гипоталамуса (Wang W., Lufkin T., 2000). Нейро-мезенхимальные взаимодействия особенно существенны на начальных фазах развития telencephalon. Нейроэпителий переднего мозга утолщается, иинвагинируя в подлежащую мезенхиму с образованием обонятельных ямок (позднее обонятельной луковицы). Ретиноевая кислота, SHH, FGF-8, BMP-4 опосредовали этот процесс. Нох-гены не принимали участие в закладке и сегментации обонятельной луковицы. Мигрирующие популяции клеток нервного гребня (НГ) составляли часть мезенхимы, формирующий обонятельную луковицу. Мутации гена Рах-6, повреждающие миграцию клеток НГ в зачаток обонятельной луковицы, приводили к аномалиям развития переднего мозга (LaMantia A.S., Bhasin N., Rhodes K. et al, 2000). Первичные культуры telencephalon 13.5 - дневных зародышей крыс использовали для изучения последовательности экспрессии второго эшелона Нох-генов. В популяции прогениторных клеток (селективно выращенных с помощью bFGF) были экспрессированы гены Otx1, Otx2, Dlx1, Dlx2, Dlx5, Emx1. Если Otx1, Otx2 маркировали популяцию некоммитированных прогениторных клеток, то Dlx /Emx маркировали постмитотические бластные линии, вступившие на путь рестрикционного созревания (Robel L., Ding M., James A.J., 1995). Пролиферацию части прогениторных клеток telencephalon контролировал FGF-8. Далее эти клетки экспрессировали BF-1 (ростовой фактор наработки клеточной массы) и Dlx2 для развития вентральных отделов telencephalon. Гомеозисный ген Vax1 контролировал развитие таламуса и визуальной системы (Hallonet M., Hollemann T., Pieler T. et al., 1999). Баланс гена-стимулятора (Vax1) и генов-репрессоров (Pax-6, Rx) задавал численность нейронов в разных отделах зрительной системы.
  Гены гомеозиса (Нох-гены) разделяли территорию нервной трубки клонами некоммитированных клеток, реализующих разные soft-программы. Так, экспрессия Нох-генов маркировала границы шести прозомеров передней части трубки и семи парных ромбомеров задней части нервной трубки. Трехмерная "разбивка" территории нервной трубки устроена более сложно и зависит от множества сигналов. Сперва клетки на ранних стадиях формирования ромбомеров и прозомеров свободно мигрировали в соседние участки нервной трубки. Ограничения на миграцию возникали на более поздних стадиях развития ромбомеров. Первым барьером, намечавшим границы сегментов, был лиганд Ephrin и комплементарный ему Eph-рецептор. Клетки нейроэпителия по закону случая имели на своей поверхности либо лиганд, либо Eph-рецептор. Далее силы размежевания выстраивали вдоль границ ромбомеров слой клеток с лигандом против слоя клеток с рецептором (Wilkinson D.C., 2001 ). Данные о вкладе Нох-генов в эмбриогенез мозга получены в основном на knockout-мышах. У человека описана пока лишь одна мутация HoxD13 гена, вызывавшая полидактилию верхних и нижних конечностей.
  Все 170 Нох-генов контролируют пространственные сборки зародышевых клеток первично на уровне многокомпонентных транскрипционных комплексов, куда включены не только транскриптазы, но и многочисленные кофакторы транскрипции. Поскольку кофакторы не только активируют, но и ингибируют транскрипцию, Нох-гены одновременно тормозят экспрессию "старых" генов, активируя экспрессию "новых" генов морфогенеза. Большинство мРНК Нох-генов предсинтезированы уже в созревающей яйцеклетке и предимплантационных зародышах (включая человека) (Kuliev A., Kucharenko V., Verlinsky Y. et al, 1996).
  Преформированный набор мРНК сохранялся в зародыше к началу гаструляции и нейруляции. Предобразованные мРНК многих Нох-генов выявлены на стадии регионализации нервной пластинки млекопитающих (Altmann C.R., Brivanlou A.H., 2001). 39 Hox-генов кластеризовано в 4 семейства: НохА, НохВ, Нох-С и Нох-D. Эти гены экспрессированы как в трех зародышевых листках, так и мезенхиме. Мутации или делеции Hoxd3, Нох-В4, Hox-d9 , Нох-d-11 приводили к тяжелым аномалиям скелета. Парная делеция Нох-а2, Нох-а3 генов вызывала аномалии развития мышц, костно-мышечной системы лица, шеи, аномалии развития тимуса, щитовидной железы (в силу аномалий развития ромбомеров и региональных дефектов нервного гребня).
 
 
 
  Рис 2-4. Схема действия Нох-генов в мозге зародыша млекопитающих
 
  Зародыши мыши Lim1-/- погибали на 10-й день из-за летальных дефектов развития переднего мозга. Закладка ромбомеров заднего мозга и экспрессия Krox-20 при этом происходила нормально, что подтверждало независимость программы развития переднего и заднего мозга. Поскольку морфогенез мозга зависим от набора активных Нох-генов, это затрудняло установление вклада каждого гомеотического белка в развитие ЦНС. В ромбомерах заднего отдела мозга экспрессировались транскриптазы GATA-2, GATA-3 в субвентрикулярных слоях трубки, где локализованы НСК. Эти же Нох-гены экспрессированы в гематогенных стволовых клетках (Nardelli J., Thiesson D., Fujiwara Y. et al., 1999). Профиль активированных мРНК Нох-генов на уровне одиночных ромбомеров зародыша различен. Селекция инструкций на языке мРНК направляла формообразование в разных ромбомерах заднего мозга (Kato K., O'Dowd D.K., Fraser S.E. et al., 1997). Вторым эшелоном "регион" -сигналов трубки служили продукты гена SHH, Wnt-1, nodal и lefty, а также bFGF, BMP/GDF . Семейство генов НН состоит из трех главных генов, участвующих в регионализации ЦНС, скелетных мышц, краниофациальных структур и желудочно-кишечного тракта. В ЦНС преобладали эффекты SHH (sonic hedgehog) на общую численность и распределение региональных стволовых клеток. В других закладках регионализацию контролировали indian HH (IHH) или desert HH (DHH). Эффекты НН опосредовались двумя рецепторными трансмембранными комплексами - Patched (PTCH) и Smoothened (SMOH) ( Oldakr M., Grzela T., Lazartchuk M. et al., 2001). В постэмбриональном периоде эти гены контролировали общее количество региональных стволовых клеток в эпителии и костном мозге. У трансгенных зародышей мышей с двойной дозой SHH в нервной трубке число прогениторных клеток в клонах НСК спинного мозга увеличено в 2-3 раз ( Rowitch D.H., S-Jaques D., Lee S.M., 1999). У мышей SHH-/- возникала ранняя атрофия и недоразвитие скелетных мышц из-за резкого уменьшения численности пролиферирующих прогениторных клеток в мышечных клонах ( Kruger M., Mennerich D., Fees S., et al , 2001).
  Транскриптаза Wnt-1 многократно разными путями контролировала сегментацию нервной трубки. Внутриклеточной мишенью действия Wnt-1 служит бета-катенин. Комбинируясь с разными коактиваторами, бета-катенин подключает к экспрессии новые Нох-гены. Комбинациями цитоплазматических сигналов запускается экспрессия новых Нох-генов. Модифицированные новыми белками Нох-транскрипционные комплексы направляли трехмерный рост клонов в нейромерах, ромбомерах и других обособленных территориях нервной трубки. Принято думать, что комбинации Нох-генов транслируются в направленный трехмерный рост клонов и разную численность новообразованных клеток. Рельеф доменов транскрипционных комплексов опознает "рельеф" хроматина стволовых/прогениторных клеток. Коды молекулярных соответствий переводят линейную информацию "гомеотических" генов в 3D-пролиферацию, миграцию прогениторных клеток в растущих клонах переднего, среднего и заднего мозга зародыша.
  Растущий клон остается главной мишенью действия следующей батареи Нох-генов. В каждом клоне есть вентро-дорзальная и латеральная ось, вокруг которых работают градиенты продуктов Нох-генов. Появление белков Neurogenin 1 (Ngn1) и Neurogenin 2 (Ngn2) с дорзальной стороны, как и белка Mash1 c вентральной стороны нервной трубки, коррелировало с появлением первых прогениторных популяций. С этого момента доля нестин+ клеток в провизорной нервной трубке снижалась. Нокаут гена Ngn1-/- или Ngn2-/- компенсаторно увеличивал долю Mash1+ клеток в нервной ткани зародышей мышей. Баланс Ngn1+Ngn2 / Mash-1 направлял нейрогенез сенсорных/моторных нейронов спинного мозга, вентральной и дорзальной части среднего и заднего мозга. Действуя с дорзальной стороны, нейрогенины контролировали численность чувствительных нейронов, тогда как Mash-1 стимулировал созревание моторных нейронов. Сверхэкспрессия Ngn1/Ngn2 в прогениторных клетках вызывала избыточное образование нейронов не только в нервной трубке, но и в мезодерме. Нейрогенез дорзального таламуса контролировали Ngn1, Ngn2, тогда как нейрогенез вентральной части таламуса был под контролем Mash1. Далее в вентральной части нервной трубки появлялись мРНК генов семейства Nkx (Nkx 6.1, Nkx 2.2). Баланс экспрессии Mash1/Ngn направлял потоки нейро/глиогенеза в коре больших полушарий (Nieto M., Schuurmans C., Britz O, et al, 2001). У Mash1-/- эмбрионов мышей полностью блокировано образование нейронов (но не глии) в коре больших полушарий. Прогениторные клетки с экспрессией генов Mash-1 и Prox-1 теряли нестин.
  Для вентро-дорзального рестрикционного созревания баланс Mash-1+ Prox-1/ Ngn1+ Ngn2 предопределял долевую численность разных линий нейронов в ЦНС (Kaibushi K., Nakamura S., Casarosa S. et al.,1999).
  Отдельного рассмотрения заслуживают взаимодействия прогениторных клеток по "тандему" рецепторов Delta-Notch. Notch был открыт при изучении эмбриогенеза дрозофилы. Мутации Notch контролировали оогенез, миогенез, нейрогенез, развитие крыльев и глаза. У млекопитающих идентифицированы 4 варианта гена: Notch1-4. В нейрогенезе участвует Notch 1 и 2. Delta является внешним мембранным лигандом. Клетки с экспонированным Delta избирательно взаимодействуют с Notch рецептором других прогениторных клеток. Эта пара рецепторов стабилизирует клон за счет контактов прогениторных клеток между слоями. Эти взаимодействия, стабилизирующие клон, одновременно тормозили нейрогенез. Delta - Notch контакты прогениторных клеток в нейросферах ингибировали экспрессию нейрогенинов и Mash1, стимулируя пролиферацию. Показательно, что в растущих нейросферах эмбрионального мозга экспрессирован ген Notch-1, тогда как в растущих нейросферах постнатального мозга экспрессирован ген Notch-2. Этот маркер различал первичные и вторичные нейросферы (Higuchi M., Kiyama H., Hayakawa T. et al, 1995). Если Notch стимулировал образование новых прогениторных клеток в развивающейся ЦНС, то ген Numb отвечал за генерацию новых клонов и появление клон-инициирующих клеток. Выключение гена Numb приводило к гибели зародышей мыши на стадии 10,5-12 дня развития из-за дефектов формирования головной части нервной трубки и ускоренной генерации зрелых нейронов (Zhong W.,Jiang M.M.,Schonemann M.D. et al., 2000). Поэтому предположили, что градиент экспрессии Notch/Numb контролировал число прогениторных слоев в нейросферах и фазу перехода клона к постмитотическому созреванию (Rao M., Mattson M.P., 2001) В эпидермисе кожи человека взаимодействия Delta - Notch-1 также обеспечивали массивную экспансию прогениторных слоев клона (Lowell S.,Jones P., Le Roux et al., 2000 ). В гематогенных клонах взаимодействия Delta 1,2,3 - Notch, либо Jagged -1,2 - Notch контролировали средние размеры колоний in vitro. Взаимодействие Delta / Notch заканчивалось протеолизом цитоплазматического домена Notch. Последний транспортировался в ядро, где связывался с транскрипционным комплексом RBI-J (Schroeder T, Just U., 2000). Notch рецептор, активированный лигандом, одновременно снижал апоптоз прогениторных клеток (Han W., Ye Q, Morre M.A.,1999). Сигнализация через Delta/Notch в прогениторных клетках сопряжена с экспрессией фактора плюрипотентности Hes-1, который блокировал преждевременное включение генов Mash-1, Ngn1 Ngn2. И одновременно поддерживал уровень нестин+ и виментин+ клеток в клонах (Yuki N., Sakakibura S., Takaki M. et al., 2000).
  В растущей скелетной мышце эмбрионов мышей комплексы Delta - Notch стимулировали пролиферацию некоммитированных предшественников миоцитов путем экспрессии гена Hes-1, подавляющего экспрессию гена миогенина и MyoD (Kuroda K., Tani S., Tamura K. et al., 1999). Мутации гена Notch вызывали аномалии сегментации сомитов у lunatic fringe мышей. В растущих Т-клонах, как и миелоидных клонах, Delta-Notch контролировал экспансию прогениторных популяций (Haysay A.C., Barber D.F., Douglas N. et al., 2000 ; Tan-Pertel H.T.,Walker L., Bowning D.,.2000).
  Нервная плакода у зародышей млекопитающих остается наиболее древней тканью, где рекордно высока плотность Delta-Notch взаимодействий в кластерах прогениторных клеток. В интенсивно обновляющихся клонах обонятельной плакоды активированы оба фактора плюрипотентности НЕS-1 и HES-5. В клетках нейроэпителия плакоды экспрессирован только HES-1. Пока экспрессирован HES-1, невозможна экспрессия Mash-1, т.е. количество будущих нейробластов не определено в данном регионе. Пока в ткани доминировал фактор плюрипотентности HES-1, в клонах преобладала Delta-Notch зависимая пролиферация прогениторных клеток. Если HES-1 клоны определяли общую территорию, занимаемую клетками обонятельного эпителия, то ген HES-5 контролировал региональную плотность клеток (Cau E., Gradwohl G., Casasosa S. et al., 2000). В тканях мезодермы HES-7 регулировал наработку Delta-Notch прогениторных клеток, т.е. основную массу будущих мышц (Bessho Y., Miyoshi G., Sakata R. et al., 2001). Мутации (делеции) HES -генов, как правило, вели к уменьшению размеров органов эмбрионов за счет ранней, ускоренной дифференцировки прогениторных клеток и укорочения цикла HES-Delta-Notch (Kageyama R., Ohtsuka T. et al., 1999). Сам механизм размножения клонов в разных отделах головного и спинного мозга оставался неизменным, хотя пролиферация прогениторных клеток контролировалась сменными Hes- репрессорами (Ohtsuka T., Ishibashi M., Gradwohl G. et al.,1999). В цикле созревания предшественников олигодендроцитов экспрессия гена Hes -5 определяла максимальную наработку прогениторных клеток без Т3 рецептора. Выключение Hes- 5 переключало клон на наработку Mash+ прогениторных популяций, экспрессирующих Т3 рецептор. В свою очередь Т3 запускал терминальную постмитотическую дифференцировку олигодендроцитов (Kondo T., Raff M., 2000).
  В ходе дифференцировки островков Лангерганса из СК дуктулярного эпителия клоны эндодермальных прогениторных клеток экспрессировали триаду генов: Delta/Notch - Math- Ngn3. На втором этапе в клетках-предшественницах островков Лангерганса включался новый набор рестрикционных сигналов: Isl-1, Brn-4, Pax-6, PDX1, Nkx6, Nkx2.2 (Schwitzgebel V.M., Scheel D.W., Conners J.R. et al., 2000).
 Внутрижелудочковая имплантация эмбрионам НСК, трансфицированных Notch геном, вызывала образование радиальной глии (РГ) из клеток трансплантата. (Gaiano N., Nye J.S., Fishell G.et al., 2000). Ген Рах-6 играет незаменимую роль в закладке и развитии среднего мозга, особенно таламуса. У Рах -6-/- мышей (Sey/Sey) наблюдалась микрофтальмия и недоразвитие вентральных отделов зрительного бугра. Пересадки нормальных стволовых клеток мозга мышей в развивающиеся зародыши Sey/Sey компенсировали дефект за счет новых связй между нейронами таламуса и коры (Pratt T., Vitalis T., Warren N. et al., 2000). Пересадки нормальных донорских клеток восстанавливали экспрессию генов Nkx2.2 и Lim1/Lhx1 в вентральном таламусе. На границе среднего и заднего мозга экспрессировалось максимальное число Нох-генов: Eng-1, Eng-2, Pax-2, Pax-5, Pax-8, Pax (zf-b). Каудальнее будущего истмуса экспрессировалась другая пара генов - Wnt-1 и FGF-8. Позднее в участке трубки, кодирующей структуры заднего мозга, экспрессировались гены Еng-1 и Еng- 2, участвующие в закладке мозжечка. Мутации Eng-1-/-, Eng-2-/-, FGF-8-/- вели к остановке развития заднего мозга и гибели зародышей мышей. Нокаут Wnt-1-/- у мышей приводил к тяжелым аномалиям развития среднего мозга. Предполагается, что ген Wnt-1 контролирует транскриптазу, которая каскадным механизмом активирует Eng -1 и Eng-2 (Danelian P.S., McMahon A.P., 1996). Развитие мозжечка включало 4 этапа. Первые Нох-гены ( особенно Eng-1) размечали территорию будущего органа. На втором этапе в ромбовидной губе возникали клоны-предшественники гранулярного слоя клеток и основных ядер. Продукт гена SHH контролировал пролиферацию прогениторных клеток гранулярного слоя. Эффекты SHH частично нейтрализовались действием bFGF , либо активацией протеинкиназы А. На третьем этапе формировались основные слои мозжечка, в том числе шла миграция клеток в гранулярный слой. Секретируемый прогениторными клетками белок нетрин1 и комплементарный рецептор Unc5h3 контролируют направленную миграцию клеток как за счет сил хемопритяжения , так и хемоотталкивания (repulsion). Одна изоформа рецептора заставляет клетки мигрировать по градиенту нетрина1, тогда как другой вариант рецептора заставляет клетки избегать лиганда. Повреждение рецептора Unc5h3 или выключение гена нетрина1 приводяли к летальным аномалиям архитектоники клеток мозжечка ( Przyborski S., Knowles B., Ackerman S.,1998). Важную роль играют также два навигационных рецептора - CD10 и leu-4(CD3), которые селективным взаимодействием организуют локомоцию предшественников по волокнам Бергманновской глии (Gerloff C., Knoth R., Volk B.,1993). После рождения завершалась миграция клеток Пуркинье в гранулярный слой и заканчивалось формирование функциональных связей в нервной сети (синаптогенез).
 Регулируемый сигналами апоптоз прогениторных клеток селектировал клетки для будущих сетей. До 10-го дня беременности в мозге отсутствовали погибающие клетки. На 14-й день развития до 70% прогениторных клеток элиминировались апоптозом. К 18-му дню число погибающих клеток в головном мозге снижалось до 50%. Даже в постнатальном периоде уровень репаративной обновляемости мозга остается очень высоким, поскольку 60-70% внутриутробных мозговых травм и кровоизлияний полностью компенсируется в постнатальном периоде ( Snyder E.Y., 1992). Этот же метод выявлял лишь единичные гибнущие клетки в мозге взрослой мыши ( Blaschke A.J., Staley K., Chun J., 1996). Высокий уровень апоптоза был связан с высоким уровнем сменяемости клеток клонов НСК.
 
 
  7. Первичный нейро - и глиогенез
 Источником клонообразующих стволовых клеток нервной трубки служили два слоя: монослой нейроэпителия и субэпендимы. Идентификация первоисточников клеток in situ осложнялась множеством методических затруднений, поскольку отсутствовали надежные, однозначные маркеры НСК. Чаще всего выделяли в культуру гетерогенную популяцию незрелых клеток с варьирующим фенотипом. Наиболее важными признаками были способность НСК расти клонами в культуре и дифференцироваться в нейроны и глию после остановки пролиферации и добавления индукторов дифференцировки. Региональную принадлежность клонов удалось установить по второму эшелону Нох-генов, которые включались после завершения сегментации и формирования основных отделов мозга. В середине эмбриогенеза развивающийся мозг зародыша мыши состоял в основном из самообновляющихся нейросфер и радиальной глии. Пролиферирующие нейробласты появлялись в головном мозге 13-дневных зародышей (у человека на 51-й день развития). Они организованно мигрировали на периферию. Среди Нох- генов обнаружены ключевые регуляторы (master genes), направляющие рестрикционную дифференцировку будущих линий нейронов. Так, Phox-2 ген контролировал дифференцировку нейробластов в адренэргические нейроны. У Phox-2-/- мышей полностью выключена экспрессия генов тирозингидроксилазы и допамин-гидроксилазы (Pattyn A., Goridis C., Brunet J.F., 2000). ВМР-2 служил главным индуктором экспрессии Phox-2a и Phox-2b генов в Mash+ прогениторных клетках. Некоторые Нох-гены маркировали миграторные популяции нейронов. Известно, что гипоталамус сформирован в основном за счет пришлых клеток. Нейроны, продуцирующие релизинг факторы, мигрировали сюда из вомеро-назальной области. Экспрессия гена Brn-2 связана с "навигационной информаций" мигрирующих клеток. Мыши Brn2-/- утрачивали способность формировать ядра гипоталамуса (Schonemann M.D., Ryan A.K., McEvilly R.J. et al, 1995).
  Клональный характер закладки и развития стриатум вытекал из анализа динамики экспрессии гена Islet-1, представляющего семейство LIM- факторов транскрипции (второй эшелон Нох-генов, определяющих направление созревания прогениторных клеток после фазы пролиферации). В дорзальной части стриатум Isl-1+ клетки практически отсутствовали. Зато их численность резко нарастала в средней и особенно вентральной части органа. Максимальное количество Isl-1+ клеток в стриатуме у эмбрионов крыс определяли на 18-20-й день гестации, позднее их численность резко шла на убыль. Эта транскриптаза детерминировала появление холинэргических нейронов (Wang H., Liu F.,1999)
  В том же стриатуме комбинация Brn-4, IGF-1, BDNF запускала терминальную дифференцировку постмитотических нейробластов. Продукты генов Brn-1, Brn-2 не влияли на созревание этой группы нейронов (Schimazaki T., Arsenjevic Y., Ryan A.K. et al., 1999). Образование специализированных нервных линий in situ, как правило, контролировалось комбинаторикой 4-5 генов. Исключение составляет дифференцировка холинэргических нейронов in vitro и in situ, которая контролировалась ВМР-9 ( Lopez-Coviela I., Bersa B., Krauss R., 2000). Внутрижелудочковая инъекция ВМР-9 14- и 16-дневным зародышам мыши вела к резкому увеличению холинэргических нейронов мозга на последних сроках пренатальной жизни и в постнатальном периоде.
  Некоторые из упомянутых генов контролировали созревание соматических линий в других органах. Например, сдвоенная нокаут-мутация MyoD-/-/Myf5-/- вела к полной остановке развития всех групп скелетных мышц. Мутация Pax-6-/- вела к полной остановке развития глаз. Мутация SCL-/- блокировала созревание всех ростков кроветворения. В ЦНС не обнаружено ни одного гена, селективное выключение которого вызывало полную остановку рестрикционного созревания всех линий нейронов. Так, мутация гена Mash1-/- мозаично блокировала созревание линий нейронов обонятельной луковицы, сенсорных нейронов спинного мозга, а также части нейронов ганглиев симпатической НС. Нокаут мутация гена Math-/- приводила к частичному блоку созревания нейронов гранулярного слоя в мозжечке. Cозревание олигодендроцитов обеспечено наиболее сложной программой. В пролиферирующих предшественниках олигодендроцитов экспрессированы Sox-10 (контроль плюрипотентности) и две транскриптазы Olig-1 и Olig-2. В таком режиме прогениторные клетки длительно размножались. Следующий этап созревания был связан с включением блока POU -генов Tst-1/Oct6/SCIP, которые на третьем этапе запускали экспрессию генов Brn-1 и Brn-2. На заключительной стадии созревания постмитотических клеток включался гомео-Нох-ген Gtx/Nkx6.2 (Wegner M., 2001). Дефицит миелинпродуцирующих клеток человека для лечения демиелинизирующих заболеваний заставил искать пути лабораторной наработки олигодендроцитов и шваннвских клеток из НСК и стволовых клеток нервного гребня соответственно. Налажено получение предшественников олигодендроцитов из нейросфер , выделенных из фетальной мозговой ткани ( Zhang S., Ge B., Duncan J.D.,2000). Состав среды для дифференцировки предшественников олигодендроцитов из нейросфер или диспергированных одиночных клеток запатентован. Предшественнники идентифицировали фенотипически по белку О4 и рецептору для PDGF.
 
  8. Направленная миграция прогениторных клеток: взаимодействие с радиальной глией
 
  Во время развития нервной трубки радиальная глия (РГ) опережающе возникала из клеток хориоидного сплетения, которые затем мигрировали внутрь нервной трубки. Биполярные клетки РГ устроены асимметрично: перивентрикулярный отросток биполярной клетки, обращенный к эпендиме, обычно укорочен. Противоположный отросток пронизывает всю толщу нервной трубки (растущего мозга) (Chanas-Sacre G., Rogister B., Moonen G. et al., 2000). В растущем мозжечке РГ получила название Бергмановской глии, она служила " рельсами" для миграции клеток Пуркинье к клеткам внутреннего гранулярного слоя. В отличие от РГ остального мозга, которая исчезает в постнатальном периоде, Бергмановская глия функционирует в постнанатальном периоде, когда завершается формирование архитектоники клеточных слоев мозжечка. После завершения миграции нейронов РГ трансформировалась в астроглию. Помимо характерной морфологии, маркерами РГ служили виментин (белок промежуточных нейрофиламентов) и RC2-белок, принимающий участие в транспорте липидов. Специфический контакт РГ с прогениторными клетками опосредовался белком межклеточных узнаваний - астротактином. Нейрегулин (GGF) ускорял миграцию прогениторных клеток вдоль тяжей РГ (Anton E.S., Marchionni M.A.., Lee K.F. et al., 1997). Установлено, что клетки РГ имеют более сложный генез, чем ранее предполагалось. Наиболее ранние порции РГ возникали из стволовых клеток сосудистых сплетений pia mater, мигрирующих в растущую нейропаренхиму. Вторая часть РГ возникала из НСК нейроэктодермы. Третья часть РГ появлялась из клеток нервного гребня и нейромезенхимы (Hartfuss E., Galli R., Heins N. et al, 2001). В коре зародыша часть НСК служила временным источником РГ. В постнатальном периоде клетки РГ превращались в астроглию, реже -нейроны (Noctor S.C., Flint A.C., Weissman T.A. et al., 2001). По этой причине глубокие клеточные слои возникали первыми, тогда как самые поверхностные слои клеток формировались последними. В эпендиме и перивентрикулярной области стволовые пространства используют ликвор в качестве "поддерживающей" среды для выживания. В растущем мозге эмбриона формировались так называемые "мобильные стволовые ниши", когда прогениторные клетки в комплексе с клетками растущих сосудистыз сплетений в синергизме осваивали новые клеточные пространства.
 
 
 
  Рис 2-5. Формирование мобильных кластеров НСК/прогениторных клеток на тяжах РГ в культуре ( А- нейросферы в суспензионной культуре, Б,В - тяжи радиальной глии с одиночными мигрирующими прогениторными клетками, Г - участок радиальной глии с мигрирующим кластером прогениторных клеток).
  Гипертрофия ядер таламуса мозга человека связана с расширением клеточной сигнализации с фронтальной корой. Этот феномен отсутствовал в онтогенезе мозга лабораторных млекопитающих и приматов. Исследования Rakic показали, что крупные ядра дорзального таламуса возникали не за счет локальной пролиферации, а путем миграции прогениторных клеток из ganglionic eminence развивающегося мозга. Смешанное культивирование эксплантата ganglionic eminence зародыша человека с эксплантатом дорзального таламуса мыши не приводило к миграции прогениторных клеток человека в таламус мыши ( Rao Y., Wu J.Y., 2001)
  В гиппокампе взрослых животных новые порции прогениторных клеток мигрировали на растущих капиллярах (РГ к тому времени превращалась в астроциты). Мигрирующие прогениторные клетки распределялись кластерами на монослое эндотелия (Palmer T.D., Willhoite A.R., Gage F., 2000).
  Пролиферация и миграция прогениторных клеток - главный феномен, ответственный за быстрый рост мозговой ткани зародыша. В мозговом сегменте нервной трубки человека миграция прогениторных клеток начиналась после первого месяца гестации и в основном завершалась в постнатальном периоде (Rаkic P.,2000).
  В мозге эмбриона выделяли два потока мигрирующих прогениторных клеток: 1) радиальный (тангенциальный) по "монорельсам" РГ 2) горизонтальный вдоль клеточных слоев. Соотношение клеточных потоков по радиальному/горизонтальному пути варьировало от 1/9 до 1/4 (Chanas-Sacre G., Rogister B., Moonen G. et al., 2000).
  Мутации белка reelin у мышей вели к тяжелым нервным расстройствам, обусловленным нарушением архитектоники клеточных слоев в коре больших полушарий и других структурах мозга. Этот белок регулировал время и место покидания прогениторными клетками РГ. Мутации по липопротеидным рецепторам (VLDLR и apo ER2) приводили к сходным нарушениям направленной миграции прогениторных клеток и нарушениям архитектоники клеточных слоев (Rakic C., 2000). Алкоголь, действуя на мозг зародыша, разрушал образование РГ. Помимо алкоголя, некоторые мутации вызвали тяжелые аномалии миграции прогениторных популяций в мозговой паренхиме
  Клоногенная культура НСК/прогениторных клеток, полученная из фетального мозга или мозга эмбрионов млекопитающих, моделировала направленную миграцию прогениторных клеток по остову РГ. Если выращенную в селективной ростовой среде суспензию нейросфер поместить в новую среду, содержащую малые концентрации сыворотки с добавлением ВМР-4, наблюдали формирование вытянутых тяжей биполярных клеток, к поверхности которых прикреплялись кластеры нестин+ или виментин+ клеток (Рис 2-5).
  В дальнейшем наблюдали миграцию прогениторных клеток вдоль тяжей РГ. Клетки РГ окрашивались виментином, кадхерином-11, часть клеток фиксировала антитела к GFAP и к поверхностному антигену RС2. Направленную миграцию к зонам повреждения демонстрировали и гематогенные стволовые CD34+ клетки, трансплантированные в мозг взрослых мышей. Для удобства визуализации, гематогенные стволовые клетки были помечены цветным белком GFP. Трансплантированные клетки формировали кластеры прогениторных клеток в ткани мозга (Ono K, Takii T, Onozaki K. et al., 1999).
 
 
  9. Нейрональные стволовые клетки in vitro
 
  Терминология и главные характеристики НСК существенно зависели от способов выделения, молекулярной идентификации и функциональных тестов. В культуре НСК вели себя как самообновляющиеся в клонах незрелые плюрипотентные клетки с набором селективных фенотипических признаков. После остановки пролиферации они дифференцировались в нейроны, глию и олигодендроциты ( Price J., Williams B., 2001). При этом потенция к трансдифференцировке НСК in vivo в случае их пересадок животным был всегда больше, чем их потенциал in vitrо. Сигналы микроокружения в ткани играли решающую роль в сульбе трансплантированных клеток.
  В 1990 г австралийские биологи во главе с Перри Бартлеттом впервые предложили метод селективного выделения клоногенной культуры НСК из мозга эмбрионов и взрослых животных. С помощью бессывороточной среды, содержащей LIF, bFGF и другие кофакторы, удалось на первом этапе культивирования избавиться от более продвинутых примесных клеток (Murphy M., Drago J., Bartlett P.F., 1990). Это был решающий методический успех, поскольку смешанное культивирование НСК и дифференцированных клеток вело к быстрой гибели, либо спонтанной дифференцировке НСК. Эта группа первой описала особенности роста и дифференцировки суспензионных клонов НСК/прогениторных клеток, а также первой получила иммортализованную линию НСК мышей с помощью трансфекции онкогена c-myc (Bartlett P.F., Reid H.H., Bailey K.A. et al, 1988). В отличие от "природных" НСК, иммортализованные с помощью онкогенов линии стволовых клеток переставали расти клонами. Через два года Reynolds и Weiss использовали близкий подход для выделения суспензионной клоногенной культуры НСК, добавляя в среду сразу два ростовых фактора (EGF, bFGF). Характеристики полученных культур, особенности роста клонов НСК в главном совпали с результатами Бартлетта (Reynolds B.A.,Weiss S.,1992). В 1994 г. Davis и Temple первыми количественно и качественно охарактеризовали клоны НСК, выделенные из мозга эмбрионов крыс. Лишь 7% клонов быстро обновлялись, продуцируя более 60 % всех клеток культуры. Около 40 % клеток в клонах составляли некоммитированные плюрипотентные клетки, которые в специальных условиях дифференцировались в нейроны, астроглию или олигодендроциты. Выращивая клетки в максимальных разведениях, удалось подсчитать примерное число клон-инициирующих клеток. Все клонобразующие клетки экспрессировали нестин - белок промежуточных филаментов нейроэпителия. Характерно, что все клоны НСК с максимальной скоростью обновления прогениторных клеток имели максимальный уровень экспрессии мРНК гена Hes-1 - главного фактора плюрипотентности НСК (Nakamura Y., Sakakibara S., Miyata N., 2000). Экспрессия гена Hes-1 связана с самообновляемостью плюрипотентных клеток в нейросферах. Путем механического разбивания нейросфер, авторам удалось получить вторую и третью генерацию колоний. Клетки клонов после трех пассажей сохраняли плюрипотентность. Авторы выявили гетерогенность клеток нейросфер по чувствительности к ростовым факторам. Цитокины ВМР-2 и ВМР-4 вызывали дифференцировку прогениторных незрелых клеток в нейроны in vitro.
  Природная гетерогенность клеток в нейросферах, изолированных из эмбрионального мозга млекопитающих, была отмечена в первых же работах Маркерные молекулы нейроэпителия (виментин, нестин, polysyalated-NCAM, GFAP, CD133 и др ) прокрашивали разные субпопуляции клеток нейросфер (Ushida N., Buck D.W.,Weismann I.L. et al., 2000). В нейросферах из фетального мозга человека антитела к нестину и СD133 прокрашивали до 30-50% клеток. Как известно, СD133 является маркером гематогенных стволовых клеток. Некоторые культуры НСК удалось пассировать без онкомодификации (только на комбинации ростовых факторов в течение 2-3 лет) (Zhou F.C., Chiang Y.H., 1998). Доля клонов в культуре широко варьировала (0,1%- 25% в расчете на общую численность клеток) (Hulspas R., Quesenberry P.J., 2000). С помощью набора ростовых факторов (bFGF, SCF, EGF, LIF. ILGF-1) и своевременной дезагрегации удалось поддерживать и размножать клоногенную культуру плюрипотентных НСК в течение 1-3 лет без утери основных биологических характеристик незрелых плюрипотентных клеток (Carpenter M.K., Cui X., Hu Z., et al., 1999; Kallos M.S.,Behie L.A.,1999; Kallos M.S., Behie L.A., Vescovi A.L.,1999). Добавление к среде культивирования LIF (20-50 нг/мл) уменьшало время удвоения клеточной массы с 25-30 до 10 дней ( Carpenter M.,патент США No6103530). Такие длительно пассируемые культуры НСК не только сохраняли фенотип, плюрипотентность in vitro, но и уникальную способность направленно мигрировать, находить участки повреждениой ткани, интегрироваться в дефект нейронной сети in situ. В ряде случаев это приводило к полному/частичному восстановлению утраченной функции ЦНС (Rubio F.J., Bueno C., Villa A. et al, 2000). Первыми в онтогенезе мозга млекопитающих появляются так называемые f-нейросферы, пролиферация которых зависит только от bFGF. На более поздних стадиях развития появляются e-f-нейросферы, пролиферация которых более зависима от EGF , чем от bFGF ( Ciccolini, 2001).
  Из эмбрионального и взрослого мозга человека выделяли клоногенную культуру НСК с фенотипом астроглии (Laywell E.D., Rakic P., Kukekov V.G. et al., 2000). Около 5-7% свежеизолированных нейросфер содержали Notch1+ прогениторные клетки. Эти же авторы выделяли жизнеспособные нейросферы из длительно хранившейся нервной ткани (4-6 дней при +4 С).
  НСК с фенотипом астроглии (GFAP+ клетки) чаще всего локализованы в субэпендимальном слое желудочков. При изолировании и культивировании до 60% НСК/прогениторных клеток из перивентрикулярной зоны мозга элиминируются апоптозом (Levinson S.W., Rothstein R.P.,Brazel C.Y. et al., 2000). Низкие цифры жизнеспособности клеток в первичной культуре или пассажах могут быть связаны с присутствием нейросфер с высокой скоростью обновления клеток. Не только фетальная мозговая ткань может быть источником НСК. Кора больших полушарий постнатального мозга является богатым источником нейросфер и прогениторных популяций, инициирующих образование клонов в культуре (Mehler M.F., Gokhan S., 1999). Даже хирургические биоптаты позволили регулярно изолировать НСК из мозга оперированных людей любой возрастной группы ( Kukekov V.G., Laywell E.D., Suslov O. Et al.,1999). Отработана методика сортировки нейросфер по фенотипу с последующим изучением "профиля" мРНК с помощью ПЦР. Метод позволил сопоставить наборы мРНК в нейросферах разного фенотипа или разного происхождения (Suslov O.N., Kukekov V.G., Laywell E.D. et al., 2000). По нашим
 
 данным, нейросферы, выделенные из фетальной мозговой ткани 8-12 нед и 17-21 нед гестации, характеризовались весьма выраженной морфологической гетерогенностью (средними размерами клонов и формой клеток в клонах), гетерогенностью иммунофенотипа ( варьирующим процентом нестин+, виментин+, N-кадхерин+, кадхерин-11+, NCAM+, GFAP+ клеток в разных клонах).
  В культуре процент примеси более продвинутых клеток в изолированных нейросферах не превышал 1-2% (по уровню CD34+, MHCI, MHCII + клеток) (Ржанинова А.А., Репин В.С. и др., 2001).
 
 
  Рис 2-6. Гетерогенность клонов НСК из фетального мозга
  На всех фотографиях заметна морфологическая гетерогенность клонов, по форме и упаковке клеток в клонах.
  Количество нестин+, виментин+, кадхерин11+ , GFAP+ клеток сильно варьировало в первичной суспензионной культуре и трех первых пассажах. Относительная доля указанных маркеров не изменялась существенно при пассировании и колебалась в пределах 5-25%. Ни в одной первичной культуре нейросфер не наблюдали превалирования монофенотипа до уровня 40-60% от всех клеток нейросфер. Этот постоянный полиморфизм подтверждал "пластичность" нейросфер, собранных
 
 из разных нейроэктодермальных и нейромезенхимальных плюрипотентных клеток. Возможно это природное разнообразие прогениторных клеток с разным набором мРНК и фенотипических маркеров обеспечивает плюрипотентность клона, которая всегда больше, чем одна линия НСК. Пока не ясно, как реализуется это преимущество в эмбриогенезе мозга. Однако "репертуар" НСК максимален в развивающемся мозге человека.
 При длительном культивировании и в пассажах наблюдали отпочковывание новых клонов из старых, а не только рост клонов за счет экспансии периферических слоев прогениторных клеток.
 
 
  Рис 2-7. Появление новых суспензионных клонов НСК отпочковыванием при высоких плотностях культивирования
 
 
  В плотной культуре наблюдали отпочковывание новых колоний из выросших крупных нейросфер. Этот феномен пока мало изучен, поскольку затруднено его моделирование in vitro.
  Похожие феномены отпочковывания клон-инициирующих клеток наблюдали в культуре изолированных крипт фетального тонкого кишечника при попытке получения клоногенной культуры эпителия тонкой кишки фетуса ( Рис 2-8)
 
  Часть клонов в культуре прикреплялась к подложке с помощью крупных распластанных клеток, имеющих фенотип стромальных. Этот феномен был описан ранее в лаборатории Gottlieb при получении нйеронов из клеток тератокарциномы ( Bain G., Kitchens D., Yao M. et al.,1995) . Стимулируя нейрогенез в эмбриоидных телах с помощью ретиноевой кислоты и других добавок, авторы наблюдали опережающей миграцию крупных распластанных по подложке клеток. Далее на их поверхности появлялись клетки типичной формы с отростками, которые имели набор маркеров нейробластов. Авторы не определили природу этих клеток. Однако эффективность нейрогенеза была выше в тех зонах миграции, где появлялись бислойные участки культуры.
 
 
 
  Рис 2-8 Процесс отпочковывания новых клон-инициирующих центров в изолированной крипте тонкого кишечника, выделенной в культуру. Такие фрагменты крипт с двумя и несколькими центрами пролиферации продолжали процесс выделения новых стволовых ниш в культуре.
 
 
 
 
 
  Рис 2-9. Спонтанная дифференцировка прогениторных клеток в клонах, прикреплённых к подложке
 
  Комбинация T3, PDGF LIF индуцировала дифференцировку прогениторных клеток в олигодендроциты. Особенность роста клонов в культуре связана с тем, что все клоны с разной скоростью росли до стадии равновесия (renewal), когда число пролиферирующих клеток уравновешалось числом гибнущих и мигрирующих клеток, покидающих клон. Одним из важных маркеров прогениторных клеток, отличающих их от НСК, является формирование электровозбудимой мембраны, в частности появление кальцевых и натриевых токов, регистрируемых техникой patch-clamp (Piper D.R., Mujtaba T., Rao M.S. et al., 2000). В условиях культуры отношение bFGF+EGF/BMP-4 регулировало как общую численность, так и долю прогениторных клеток в нейросферах. Без ВМР-4 оба митогена давали максимальный прирост клеток в нейросферах, тогда как повышение концентрации ВМР-4 в среде останавливало
 
 пролиферацию, стимулировало апоптоз и постмитотическую дифференцировку клеток, особенно с периферии клонов (Lillien L., Raphael H., 2000). Изолированные в культуру нейросферы экспрессировали три изоформы рецептора (Erb2,Erb3, Еrb4), причем мРНК Erb2 и Erb4 максимальна в прогениторных слоях. In situ максимальную концентрацию мРНК Erb2, Erb4 выявляли в перивентрикулярной зоне и герментативном слое развивающегося мозга крыс (Kornblum H.I., Yanni D.S., Easterday M.C. et al., 2000).
  В культуре гетерогенных нейросфер, спонтанно прикрепляющихся к подложке, мы наблюдали опережающую миграцию cadherin-11+ вытянутых биполярных клеток. Позднее вдоль тяжей этих клеток мигрировали типичные ошаренные прогениторные клетки (либо миграция шла целым кластером клеток). Образование клеток радиальной глии из прикрепленных нейросфер, выделенных из коры постнатального мозга человека, наблюдали независимо в лаборатории Clive Svendsen ( Caldwell M.A., He X., Wilkie N. et al.,2001). Для этого выросшие нейросферы помещали на подложку полилизин/ламинин и давали сферам прикрепиться. После этого стимулировали миграцию клеток комбинацией NT,CNTF,PDGF. Клетки возникающей радиальной глии с типичными маркерами опережающе мигрировали из сфер.
 Нет однозначных представлений по поводу фенотипа и микроокружения НСК , выделяемых из разных отделов головного и спинного мозга. Согласно некоторым данным, превалирующая часть НСК в растущем и зрелом головном мозге локализована в эпендиме латеральных желудочков ( Momma S., Johanssen C.,Frisen J., 2000). Среди изолированных DIL-меченых эпендимальных клеток только 6% формировали нейросферы. Примерно 3 - 5 % клеток из этой суспензии окрашивались антителами к нестину или Notch 1.
 
 
 10. Методические трудности получения клонов НСК из ЭСК
 
  В зародыше весь пул НСК нервной трубки образован механизмом нейрональной индукции из эктодермы. Первые нестин+ НСК в нервной трубке возникали у зародышей мыши 7,5 дня развития. Подобно эпибласту, нервная трубка - это уникальная плюрипотентная ткань, где числом формирующихся клонов НСК реализуется трехмерный проект мозга. На уровне первичных клонов пролиферация определяется превалированием сигналов noggin, SHH над BMP-4 и BMP-7 механизмом "дефолта". Дефолт в развитии -это автоматическая программа активации клеток после устранения ингибиторов (TGF-beta) ( Tropepe V., Hitoshi S., Sirard C. et al., 2001). Эти авторы наблюдали частичную трансформацию ЭСК в НСК в редкой культуре без фидера и сыворотки. Существенно, что ЭСК при этом переходе не подвергались предварительной модификации в клетки первичной эктодермы. Присутствие фидерного мезенхимального слоя сдвигало баланс сигналов в пользу других производных эктодермы (эпидермис кожи). Факторы сыворотки также чаще всего блокировали нейрогенез из ЭСК. Из отдельных клеток формировались клоны НСК с промежуточным фенотипом между ЭСК и нейросферами, выделяемыми из концевого мозга новорожденных животных. Единичные самообновляющиеся клоны НСК возникали при плотности 20 ЭСК/мкл и 1000 ед LIF. Другие добавки (B27 supplement, EGF, bFGF) без LIF не индуцировали образование клонов НСК. Этот путь получения нейросфер нерентабелен из-за малой доли (0,2 - 0,4%) образующихся колоний НСК. Показательно, что спектры мРНК исходных ЭСК и колоний НСК не претерпевали существенных изменений, кроме исчезновения мРНК Oct4. В клонах сохранены мРНК всех генов трех зародышевых листков и ранних master-genes рестрикционного созревания клеточных линий. Плюрипотентность клонов НСК позволяла активно химеризовать ткани зародыша-реципиента после имплантации в морулу. С этой целью были получены нейросферы, стабильно меченые цветными белками. Пересаженные НСК активно мигрировали, пролиферировали как в головном мозге, так и других органах зародыша ( Tropepe V., Hitoshi S., Sirard C. et al., 2001). В противоположность НСК зародыша, НСК из мозга взрослых животных, теряли способность к химеризации зародышей ( Clarke D.L., Johansson C.B., Wilbertz J. Et al.,2000).
  Судьба изолированных ЭСК зависела в основном от эпигеномных синалов (noggin, notch, cerebrus, LIF, ВМР-4, ВМР-7). В культуре удалось понять причину блокировки нейрогенеза при высоких плотностях ЭСК - мешают меклеточные взаимодействия между слоями прогениторных клеток. Процент нестин+ клеток снижался на 75-85% в плотных культурах эмбриоидных телец. Многие авторы подтвердили, что в культуре ЭСК проще наладить получение нейронов, глии ( более сложно получить олигодендроциты), чем превратить эмбриоидные тельца в нейросферы ( Okabe S., Forssberg-Nilsson K., Spiro A.C. et al., 1996; Brustle O., Jones K.N, Learish R.D. et al.,1999; Finley M.F.A.,Devata S.,Huettner J.E.,1999). Как известно, пересадки пролиферирующих тотипотентных ЭСК в мозг не практикуются из-за риска малигнизации части клеток. Однако фракцию эмбриоидных телец с дифференцирующимися нейронами удавалось пересаживать в мозг животных без осложнений. После пересадки в мозг часть клеток трансформировалась в нестин+ популяции клеток ( Benniger Y., Marino S., Hardegger R. et al., 2000).
 
 
 
  11. Получение нейронов из ЭСК
 
 Уже в начале 90-х годов в печати появились первые протоколы наработки дифференцированных нейронов из ЭСК тератокарциномы (Yao M.,Bain G., GottliebD.L.,1995). Сперва незрелые клетки тератокарциномы размножали с помощью ростовых факторов в простой питательной среде с добавками. Затем клетки переводили в среду без ростовых факторов, в которую добавляли ретиноевую кислоту и В27 Neurobasal supplement. В новой среде селективно выживали только постмитотические нейробласты, а незрелые стволовые/прогениторные популяции погибали. В первых работах эффективность образования нейронов in vitro оставалась ниже 10 %. Однако эффективность лабораторного нейрогенеза можно значительно улучшить, если на первом этапе улучшить образование НСК из ЭСК. Сперва необходимо увеличить выход нестин+ клеток в культуре . Затем изолированную популяцию НСК размножали в селективной среде. Выход нейронов из высокоочишенной фракции НСК довели до 60-80%. В конце 90-х годов фирма BioLayton (Калифорния) оказалась первым частным собственником технологической линии с целью крупномасштабного выращивания нейронов человека по всем стандартам GМP. Из стандартного сырья стали готовить биотрансплантаты для лечения пациентов. Первоначально фирма купила университетский патент Пенсильванского университета (авторы - Virginia Lee, John Troyanovsky, No5792900), заявленный на способ изготовления нейротрансплантата в виде однородной популяции нейронов, полученных из плюрипотентных незрелых клеток эмбриональной тератокарциномы NT2N. Образование нейронов индуцировали добавлением сыворотки и ретиноевой кислоты под контролем следующих маркеров: нестин, NF-1, MAP-2C, alpha-internexin.Через 5-7 дней островки прикрепившихся незрелых клеток начинали синтезировать N-кадхерин и NCAM. Еще через три дня после добавления индукционной среды, состав которой запатентован, клетки образовали нейрофиламенты, увеличивали фосфорилирование компонентов цитоскелета и сигнальных белков. Еще через 10-13 дней культивирования 90-98% клеток приобретали фенотип нейробластов с характерными отростками. Примерно 4-5 нед уходило на созревание нейронов из ЭСК. Нейроны возникали не только из одиночных прикрепленных клеток, но и агрегатов ЭСК. Синхронно с появлением маркеров диффренцировки из клеток исчезал нестин. Более зрелые нейроны экспрессировали белок tau и MAP-2b. Согласно GLP-протоколу, до 95% клеток в культуре превращались в типичные нейроны с характерными отростками, электровозбудимой мембраной и секрецией медиаторов. Остальные незрелые примесные клетки высортировывали на поточном сортировщике клеток. Лабораторно полученные нейроны не ревертировали спонтанно к фенотипу тератокарциномы или незрелых клеток, не давали опухолей при введении в ткани животным. Лабораторно полученные нейроны фирмы BioLayton хорошо выживали после трансплантации в мозге животных-реципиентов. Часть клеток пролиферировала и встраивалась в локальные нейрональные сети (детали см. www.biolayton.com). На языке профиля мРНК рестрикционное созревание тератокарциномы NT-2 делилось на три этапа. (Przyborski S.A., Morton I.E., Wood A. et al., 2000). В первую фазу увеличивалось число нестин+ клеток, что совпадало с увеличением Notch-1 мРНК. Во вторую фазу роста мРНК NeuroD и снижения мРНК нестина происходило накопление пула прогениторных клеток. Фазу постмитотических зрелых нейронов верифицировали по накоплениею мРНК синаптофизина и энолазы и одновременному исчезновению мРНК NeuroD.
  Пути дифференцировки нейробластов из ЭСК тератокарциномы прослеживали с помощью профиля экспрессии других генов. В случае дорзальных (чувствительных) нейронов первой появлялась мРНК гена Рах-7 после добавления ретиноевой кислоты. В случае вентральных нейронов первой детектировалась мРНК гена Рах-6. Появление клеток нервного гребня в культуре маркировали появлением мРНК генов Рах-7 и Erb3. Дальнейшее созревание сомато-мотонейронов маркировали экспрессией Islet-1, Islet-2, Lim-3, HB-9. Краниальные мотонейроны экспрессировали мРНК Islet-1, Islet-2, Phox-2b. Интернейроны экспрессировали мРНК Lim-1, Lim-2, Eng-1 (Renoncourt Y., Carroll P., Filippi P. et al., 1998).
  Ключевым моментом созревания ДОПА-нейронов из ЭСК линии NT2 была экспрессия гена тирозингидроксилазы (ТГ). В культуре максимальное количество ТГ+ клеток удавалось получить с помощью трех индукторов : FGF-1, стимулятора внутриклеточного уровня цАМФ ( форсколина) и активатора протеинкиназы С ( форболового эфира -форбол-12-миристоил-13-ацетата). Эта "триада" вызывала появление 10-20% ТГ+ нейробластов. Однако путем двухнедельной инкубации в специальной среде для дифференцировки долю ТГ+ клеток удалось поднять до 75% ( Iacovitti L., Stull N.D., Jin H.,2001). In situ, т.е. в ходе эмбриогенеза ТГ+ нейробласты появлялись под влиянием других сигналов ( SHH и FGF8) ( Stull N.D., Iakovitti L., 2001). Эти данные показали, что лабораторные нейроны с выбранным профилем медиаторов реально получать "неприродным" альтернативным путем, в обход путей и сигналов эмбриогенеза мозга.
 Другая стратегия наработки нейронов из линии ЭСК человека намечена сотрудниками фирмы Герон ( Carpenter M.K., Inokuma M.S., Denham J. et al.,2001). В суспензионной культуре ЭСК над фидером нарабатывают значительные массы эмбриоидных телец. Далее начальную дифференцировку запускают прикреплением агрегатов к подложке в среде с набором митогенов. Прикрепленные массы начинают расти незрелой тканью, в которой экспрессируются ранние гены нервной трубки. В ткани формируются клон-инициирующие клетки. Новообразованные клоны маркировались нестином, виментином, GFAP, PC-NCAM. Долю клонов НСК можно значительно увеличить путем подбора митогенов в селективной среде. При пересадке выращенной незрелой ткани, напоминающей нервную трубку, в мозг новорожденным мышам наблюдали интенсивную миграцию прогениторных клеток в разные отделы мозга с последующей дифференцировкой внейроны, глию и олигодендроциты ( Carpenter M., Inokuma M.S., Denman J., 2001)
  Ретиноевая кислота оказалась первым незаменимым индуктором нейрогенинов или Neuro D на пути дифференцировки ЭСК в нейроны. Однако нет четких однозначных прописей получения холинэргических, ГАМК- или серотонинэргических нейронов на втором этапе дозревания бластных форм. Комбинации ростовых факторов, нейротрофинов и других индукторов в дучшем случае заканчивались смешанной дифференцировкой нейронов in vitro ( Takahashi J., Palmer T.D., Gage F.H., 1999). Существенно также, что нейрогенез in vitro, запускаемый ретиноевой кислотой, формировал нейроны из агрегатов, прикрепленных к поверхности крупных распластанных клеток ( по фенотипу -это клетки первичной эктодермы , либо нейромезенхимы )( Bain G., Kitchens D, Uao M. et al., 1995).
 
 
 12. Получение линий НСК
 Бессмертная линия стволовых клеток остается наилучшим лабораторным GМP- сырьем для биотрансплантатов в отсутствии фетальной ткани. Стандартно получаемые клетки из нестандартного биосырья незаменимы на стадии предклинических испытаний. Международные GМP-стандарты отдают предпочтение генетически однородным клеткам (Snyder E.,1994 ). (Таб 1) . Уже много десятилетий линии пассируемых плюрипотентных раковых клеток использовались для трансплантаций на животных. Наибольшее распространение получила линия РС12 , выделенная из феохромацитомы человека. Эти пассируемые мультипотентные предшественники являются клетками-дериватами нервного гребня. Линия CG9 была получена из глиомы человека . Геном клеток этой линии наделен плюрипотентностью, как и геном тератокарциномы Р19 . Но клетки этих линий не встриваются в бластоцисту и не интегрируются в нормальное развитие зародышей в отличие от других линий ЭСК.
 Таблица 1 Преимущества GLP- линий НСК для предклинических испытаний
 Преимущества над фетальной тканью Преимущество над первичной культурой нейронов Преимущества перед другими соматическими клетками *Гомогенные клетки
 *Нелимитированные количества
 * Наличие банка ( т.е. доступность во времени и пространстве, легкость транспортировки)
 *Контролируемое качество материала на уровне фенотипа и активности клеток
 *Контролируемая пролиферация и дифференцировка клеток
 *Стандартная однородность клеток
 * Любые количества
  *Легкость плановой заготовки трансплантата
  * Воспроизводимый фенотип клеток
 * Возможность выполнения всей экспериментальной работы на одной выборке клеток
 * Доступность митотических клеток позволяет использовать методы генной модификации и инженерии
 * Исходная однородность клеток позволяет более строго оценивать мультипотентность НСК и терапевтические эффекты на животных
  *Позволяет оценить специфику вклада НСК по сравнению с самой процедурой трансплантации
 *Иногда позволяет учесть вклад нейроспецифических генов, ростовых факторов или факторов регенерации
 *Оценка специфики взаимодействий НСК с органами, особенно ЦНС
 
 Линии НСК особенно важны в предклинических исследованиях на животных, имея превосходство перед гетерогенной первичной культурой . Без линий было бы невозможно выявить все возможные пути воздействия клеточного трансплантата на поврежденный мозг. Большой интерес вызвала условно бессмертная линия НСК, изолированная из нейроэпителия трансгенных зародышей мыши. Для иммортализации использовали температуро-чувствительный онкоген. В культуре при 20-25С клетки неограниченно пролиферировали, но переставили делиться и дифференцировались при 37С (Hodges H., Veizovoc, Bray R. еt al., 2000). Главное преимущество линейных клеток для трансплантации обусловлено их тремя свойствами: 1) высокая миграционная активность 2) дифференцировка в нейроны с разным профилем медиатора, причем окончательная дифференцировка донорских клеток диктовалась микроокружением. Следовательно, общий пул клеток, трансплантированных в латеральный желудочек, превращался в разные нейроны в разных отделах мозга реципиента 3) в зоне окончательной локализации пересаженные клетки не нарушали нормальной организации ткани, не вызывали локальной дисплазии или гибели клеток. Мышиная линия иммортализированных прогениторных клеток МНР-36, полученная на фирме ReNeuron, испытывалась на крысах с постишемическим поражением мозга, вызванными краткосрочным пережатием средней церебральной артерии (Veizovic T., Beech J.S., Stroerner R.P. et al., 2001). Нарушение двигательных навыков оценивали рядом объективных количественных тестов, в том числе по скорости/эффективности снятия с лап кусочков липкого пластыря. Если МНР-36 клетки трансплантировали между 1-2-й нед после ишемии, удавалось компенсировать ранние нарушения двигательных расстройств, которые никак не могли объясняться встраиванием клеточного трансплантата в мозговую ткань крысы ( слишком короткие сроки для клеточного замещения утраченных нейронов). Одностроннее введение однородных прогениторных клеток давало коррецию повреждения в обоих полушариях, что говорило о стимуляции регенерации или формировании новых зон синаптогенеза, с помощью которых компенсировались утраченные двигательные навыки. Стереотаксические пересадки линии МНР-36 в гиипокамп старых крыс или взрослых крыс с повреждением СА1 зоны гиппокампа ( модель утери пространственных навыков и переобучения) были использованы для доказательства возможной коменсации утраченных функций гиппокампа за счет образования нового химерного органа, собранного из нейронов донора/реципиента (Hodges R., Veizovic T.,Bray N. еt al., 2000). Модель использована также для региональных трансплантаций НСК с целью компенсации феноменов "старения" мозга.
 В другой работе ( Philips M.F., Mattiasson G.,Weloch T. et al, 2001) прогениторные клетки линии HiB5 , изолированные из гиипокампа и трансфицированные геном ростового фактора NGF, вводили через 48 часов после механической травмы головного мозга. Уже через 3-5 суток ( т.е. в очень ранний посттравматический период) отмечали значительную компенсацию нарушенных моторных функций животного. Быстро развивающийся положительный эффект невозможно объяснить на основании известных клеточных механизмов компенсации, поскольку все они требовали значительного времени.
 В совместном шведско-американском проекте, вполненном в лаборатории Рона МакКея и Эндерса Бьорклунда, были получены температуро-зависимые линии НСК/прогениторных клеток, изолированные из гиппокампа и стриатума мозга человека ( Lundberg C., Martinez-Serrano A., Cattaneo E. еt al., 1997). Если клетки гиппокампа активно обновлялись в мозге взрослых животных и человека, то стриатум практически не имел детектируемого обновления клеток. Поэтому было важно сопоставить эффекты пересадок прогениторных клеток в гиппокамп и стриатум. В стриатуме взрослых животных не бывает обновления собственных клеток. Поэтому БУДР селективно визуализировал донорские клетки in situ. После пересадки клетки выживали в течение 6 мес. Количество живых клеток в трансплантате было достоверно больше (в 2-3 раза) при пересадке в мозг животного с экспериментальным повреждением стриатум. Однако обнаружить встраивания донорских клеток в сети нейронов ткани реципиента не удалось. Поэтому пересадки лабораторных линий прогениторных клеток предлагалось использовать для направленной доставки генов, контролирующих выработку нейротрофических факторов или митогенов, стимулирующих регенерацию собственной паренхимы.
 Многократно пассируемую линию НСК получил в Италии Анджело Вескови, не прибегая к онкогенам. (Kallos M.S., Behie L.A., Vescovi A.L.,1999). Коммерческие линии НСК человека в суспензионных биореакторах были получены в совместном итало-канадском проекте ( Kallos M.S., Behie L.A.,1999). Собственные линии НСК человека для экспериментов на животных, а также для подготовки первых клинических испытаний получили испанские исследователи ( Rubio F.J., Bueno C.,Villa A. et al, 2000; Villa A., Snyder E.Y.,Veskovi A.L. et al., 2000 ). В этих работах использовали селекционное пассирование клонов НСК в среде, содержащей сразу два ростовых фактора (EGF и bFGF). Среди первичных нейросфер удалось наткнуться на клоны с необычно мощной и долгосрочной потенцией к самообновлению и высоким индексом пролиферации. Полученную линию НСК пассировали более 50 раз в течение 1,5 лет. От нее получено уже сотни млн прогениторных клеток для биотрансплнататов.
 Линию плюрипотентных НСК мозжечка зародышей мыши (С17-2) получил Evan Snyder для лечения модельных заболеваний мышей, в том числе экспериментальной демиелинизации ( Taylor R.M.,Snyder E.Y.,1997). У 60 % мышей линии shiverer трансплантация НСК вела к устранению тремора - главного признака демиелинизации. При введении в мозг плюрипотентные клетки этой линии мигрировали и расселялись практически по всем регионам мозга. (Yandava B.,Billinghurst L.,Snyder E.Y., 1999). Существенно, что стволовые клетки наделены автоматикой цленаправленной миграции в зоны повреждения мозговой ткани. Детали этих исследований можно найти в патенте Снайдера ( No 5958767). Пересадки линии НСК человека, как и мышиной линии С17-2 использовали для доказательства терапевтической эффективности клеток с целью лечения наследственных заболеваний ЦНС. Например, пересадки НСК в мозг мышей с накаутом гексаминидазы ( модель болезни Тей-Сакса у детей) приводили к существенному снижению уровня токсичных Gm2 -ганглиозидов в реципиентной ткани мозга за счет доставки лимитирующего фермента (гексаминидазы) лизосом, удаляющего избыток накопленных фосфолипидов ( Lacorazza H.D., Flax J.D., Snyder E.Y. et al.,1996). Ранее было известно, что пересадки донорского костного мозга были эффективны в ликвидации последствий болезни в висцеральных органах, но не в ЦНС. Пересадки линий НСК были предложены в качестве прямой доставки нормальной аллели гена гексаминидазы для корррекции метаболизма фосфолипидов в головном мозге. Платформу будущей терапии формирует доказанная клеточная стабильная химеризация мозга реципиента донорскими НСК.
 Линии НСК были изолированы не только из зародышей, но новорожденных и взрослых мышей ( Flax J.D.,Aurora S.,Yang C. еt al, 1998). По той же стратегии была выделена НСК из перивентрикулярной ткани фетального мозга. Сперва получали первичную клоногенную культуру НСК, затем отбирали наиболее быстро пролиферирующие клоны, которые трансфицировали конструкцией из рестровирусного вектора и двух генов : v-myc ( для иммортализации) и lac-z ( микробный ген бета-галактозидазы для визуализации ). Первый ген был поставлен под промотер нестина, второй - под промотер неомицина. З линии были получены из трех разных быстро растущих клонов. Клональность линии подтверждалась единственным местом вставки v-myc в геном. Линии длительно пассировали без изменения генотипа (анеуплоидия) и фенотипа (маркеры НСК). Сохранялась плюрипотентность клеток in vitro. У линий не была выявлена туморигенность. Важнейшей характеристикой наиболее изученных линий НСК оставалась пластичность: большинство трансплантируемых клеток дифференцировались в нейроны и глию, преобладающие в месте нахождения трансплантата. Вновь подтвердилась первостепенная значимость сигналов микроокружения в судьбе клеточного трансплантата (Vescovi A.L., Snyder E.Y., 1999). Первые заметные результаты эта лаборатория получила, используя пересадку линии 17.2 в мозжечок мутантным мышам meander tail. Эти животные имели наследственные дефекты костной системы и аномалии архитектоники в мозжечке. Основу мозжечковых расстройств составляли дефекты миграции незрелых гранулярных клеток. Это вело к двигательным расстройствам. Пересадки клеток линии 17.2 восстанавливали клеточную организацию внутреннего и внешнего гранулярного слоя. Пересадки позволили выяснить как функционирует мутантный mea ген в мозжечке, путем сопоставления коррекции мозжечковых расстройств с гистологической картиной поэтапного восстановления цитослоев в мозжечке ( Rosario C.M., Yandava B.D., Kosaras B. et al., 1997). При трансплантации в боковые желудочки или субвентрикулярное пространство мозга новорожденных клетки активно мигрировали в разные отделы мозга по преформированным путям. Трансплантация этих клеток в герментативный слой мозжечка приводила к миграции, дифференцировке и встраиванию прогениторных клеток в наружний гранулярный слой. Реже из донорских клеток формировались клетки Пуркинье и олигодендроциты. Только некоторые линии НСК отличались высокой скоростью миграции и высоким индексом встраивания в преформированный гранулярный слой. Пересадки первичной суспензии клеток фетального мозжечка в мозжечок иммунодефицитных животных были более эффективными в терминах количества и эффективности восстановления цитоархитектоники слоев донорскими клетками (Pundt L.L., Jorn E.A., Low W.C., 1997). Возможно, что причиной высокой приживляемости клеток является исходный синергизм взаимодействия гетерогенных прогениторных/бластных клеток, созревающих в разном направлении. Функциональное встраивание донорских клеток доказывалось необратимой утерей экспрессии (v-myc) и клеточных делений. Репаративные способности этой линии были сперва апробированы на линии мутантных мышей meander, имевших недоразвитие гранулярного слоя нейронов в передней доле мозжечка. Введение донорских НСК в паренхиму вело к направленной миграции и аккумуляции прогениторных клеток вдоль границы внутреннего гранулярного слоя, где завершалась их дифференцировка. Донорские клетки после встраивания визуализировали с помощью маркерной бета-галактозидазы. Недостатком линий в плане клинического применения является малый процент новообразованных нейронов по отношению к глии. Это происходило в том числе из-за высокой концентрации ВМР-2/4 в паренхиме взрослого мозга ( Gokhan S., Song Q., Mehler M.F., 1998).
 Весьма перспективными представляются пересадки НСК для лечения атаксии-телангиоэктазии - фатального наследственного заболевания детей. Болезнь вызывается мутацией АТМ (АТ-Mutated) гена, контролирующего синтез сигнальной фосфоинозитолкиназы (PI3-kinase), участвующей в функционировании мультиферментного сигнального комплекса в хроматине. Этот сигнальный комплекс имеет множественные функции в клетке. Плейотропные эффекты мутации АТМ проявляются в гибели клеток Пуркинье мозжечка, дегенерации мотонейронов, иммунодефиците из-за дефектов стромы тимуса ( максимальное содержание АТМ комплекса обнаружено в мезенхимальных клетках). На клеточном уровне дефект проявляется в ускоренной гибели клеток вследствие утери чувствительности к кислородным радикалам. Утрата иммунитета ведет к раннему возникновению опухолей. Пересадки НСК в мозжечок РСD(Purkinje cell deficient) мышей, приводили к восстановлению слоя клеток Пуркинье , формированию функционального слоя донорских клеток, контактирующих с клетками внутренннего гранулярного слоя реципиента. Морфологические признаки восстановления клеточных слоев сопровождались уменьшением тремора и патологии движений.
 Похожие на атаксию мозжечковые расстройства вызываются генетическим дефицитом активатора плазминогена. В мозговой ткани зародыша активатор плазминогена контролирует направленную миграцию нейронов и рост нейритов. Его дефицит особенно проявляется дезорганизацией роста клеточных слоев в мозжечке с симптомами атаксии (Seeds N.W.,Basham M.E.,Haffke S.P.,1999).
 До 40% пациентов с острым инфарктом миокарда и нарушением системного кровообращения имели нарушения памяти и распознавания новизны в результате ишемического повреждения гиппокампа (Virley D.,Ridley R.M., Sinden J.D. et al.,1999). Близкие нарушения памяти и обучения имели пациенты с болезнью Алцхеймера на базе нейродегенеративных нарушений гиппокампа. Глобальная ишемия в посоперационном периоде вследствие гипоперфузии мозга также является частой причиной ишемических повреждений гиппокампа и других мозговых структур. Могут ли такие поздние локальные повреждения нейронов взрослого мозга "опознаваться" донорскими НСК? Для этого разработали модель избирательного повреждения пирамидальных нейронов двигательной коры взрослых мышей с помощью направленного фотолиза. Сперва к клеткам ограниченной зоны доставляли фотосенсибилизатор на гранулах микроносителя. На втором этапе зону мозга освещали лазерным лучем, что через 8-10 дней вызывало массовую локальную гибель клеток апоптозом (Snyder E.Y., Yoon C., Flax J.D. et al.,1997). Затем НСК линии 17.2, меченые геном lacZ, вводили в латеральный желудочек . Было показано, что основная часть пересаженных клеток мигрировала и накапливалась в зоне повреждения. Характерно, что интенсивная направленная миграция незрелых клеток происходила без формирования радиальной глии, т.е. эта миграция клеток не повторяла события эмбриогенеза во взрослом мозге животного. При пересадке нейросфер миграция осуществлялась с помощью клеток радиальной глии, которые опережающе возникали из клонов НСК.
 Интерес в последние годы вызывают некоторые Нох-гены в связи с проблемами иммортализации стволовых/прогениторных клеток ЦНС. Была обнаружена асимметрично высокая экспрессия гена Рах-3 в медуллосаркоме человека. В изолированной линии медуллосаркомы с высокой экспрессии Рах-3 были отмечены следующие общие изменения фенотипа клеток: а) 2-4-кратное повышение активности 8-полисиалилтрансферазы, генерирующей pоly-S-NCAM на поверхности клеток б) клетки увеличивают миграцию за счет утери межклеточных контактов ( Mayanil C.S., , George D.,Mania-Farnell D., 2000). Далее у многих миогенных и нейрогенных опухолей была выявлена повышенная экспрессия генов Рах-з/Рах-7. Эта фенотипическая особенность сохранялась в клеточных линиях, изолированных из первичной опухоли ( Barr F.G.,Fitzgerald J.C., Ginsberg J.P.,1999).
  НСК можно идентифицировать по поведению в реципиентной ткани мозга зародышей и постнатального мозга. Согласно многочисленным данным, НСК и прогениторные популяции при введении в полость желудочков активно мигрировали в паренхиму, накапливались в субвентрикулярной области. Далее клетки расселялись буквально по всем отделам развивающегося мозга - от коры больших полушарий и мозжечка до ствола мозга (Brustle O.,Choudry K., Karram K. et al., 1998). Идентификацию НСК человека, расселяющихся в мозге развивающихся зародышей крыс, проводили до и после рождения животных с помощью генетических маркеров ДНК человека (сиквенсы alu) и иммуноморфологических маркеров. Пересадки мышиных НСК в развивающийся мозг зародышей крыс позволили без иммуносупрессии получать новорожденных животных, мозг которых собран из клеток двух видов грызунов (Olsson M., Bjerregaard K., Winkler C. et al., 1998). Донорские ростки стволовых клеток не только делились и мигрировали с высокой скоростью, но и обладали способностью находить места повреждения паренхимы мозга. Например, пересадки нормальных НСК в мозг животных с наследственными аномалиями приводили к частичной компенсации функционального дефекта. Терапевтический эффект обусловлен стабильным выживанием и функционированием донорских нейронов, возникших из стволовых клеток в нервной ткани реципиента (Yandave B.D., Billinghurst L.L., Snyder E.,1999; Zigova T., Sanberg P.R., 1998). Трансплантация предшественников олигодендроцитов в латеральный желудочек приводила к массированной миграции донорских клеток по всей паренхиме мозга животных-реципиентов с появлением множественных очагов ремиелинизации (Learish R.D., Brustle O., Zhang S.C. et al., 1999).
  Пересадки НСК на животных подтвердили самое важное : трансплантированные в паренхиму мозга незрелые клетки вели себя предсказуемо, не формировали аномальных клеток, не генерировали опухолей (Zhang S.C., Wernig M., Thomson J.A.,2001) После пересадки НСК/прогениторные популяции продуцировали только нейроны, олигодендроциты, астроглию, но не гематогенные ростки, кардиомиоциты, или клетки серкреторных желез. Факторы и сигналы окружающей среды in vivo оказывали предпочтительное влияние на дифференцировку имплантированных незрелых клеток. Это позволяет рассчитывать на безопасность метода в клинике .
  Сравнительный анализ выживаемости, пролиферации, стабильной дифференцировки НСК in situ, полученных из разных источников, четко доказал преимущество: а) прогениторных клеток поликлонального происхождения ( более полиморфных популяций) б) клонов (нейросфер) по сравнению с культурой монодисперсных клеток, растущих прикрепленным монослоем ( см. детали в статье Rubio F.J., Bueno C/. Villa A. et al.,2000).
 
  13. Трансплантация НСК/прогениторных клеток в развивающийся мозг эмбрионов
  Лабораторно полученные высокоочишенные прогениторные клетки использовали для пересадки в развивающийся мозг мышей и других лабораторных млекопитающих. Сперва клетки линии ЭСК наращивали до больших плотностей над фидером в среде ДМЕМ-20% FCS + 1000 U LIF/мл. Для получения эмбриоидных агрегатов клетки переносили на чашки, покрытиые желатиной, а также убирали LIF из среды. Через 4 дня меняли на селективную среду пролиферации (ДМЕМ/F12 + 5мкг/мл инсулина, 30 нм селениум хлорида, 5 мкг/мл фибронектина. За 72 в селективной среде пролиферации 80% клеток погибало. Среди оставшихся выживших клеток более 80% были нестин+ веретеновидные прикрепившиеся клетки. Эти клетки прокрашивались антителами к кератину 8 и поверхностному антигену SSEA-1 (Brustle O., Spiro C., Karram K. et al.,1997). После инъекции очищенных прогениторных клеток человека в телэнцефалические пузырьки мозга зародыша крысы 15-20 дня гестации наблюдали массированную миграцию пересаженных клеток по всем растащим областям мозга. Наибольшая доля клеток мигрировала из желудочков в серое вещество коры ,corpus collosum, cтриатум, гипоталамус, гиппокамп, обонятельную луковицу, где дифференцировались в нейроны и астроглию. Позднее всех появлялись олигодендроциты ( если вводить трансплантат на поздних сроках развития плодов). Часть пересаженных клеток оставалась в эпендиме желудочков, где формировались кластеры донорских клеток в монослое эпендимы. Хотя пересаженные прогениторные клетки содержали примесь типичных ЭСК, ни в одном случае не наблюдали образования тератокарцином. Результаты показали, что с помощью повторных пересадок можно достичь высокой доли химеризации мозга крыс.
 
 14. Трансдифференцировка НСК после трансплантации
 
 В этом разделе упомянем лишь корректно выполненные работы, содержащие безукоризненные доказательства трансформации НСК в соматические клетки вне ЦНС и ПНС. Первая работа Bjernson , выполненная с клетками, мечеными геном микробной бета-галактозидазы, верифицировала появление донорских меченых клонов гематогенных клеток в костном мозге облученных мышей ( Bjornson C.R., RietzeR.L., Reynolds B.A. et al.,1999). Позднее у тех же мышей донорские клоны гематогенных клеток были изолированы из селезенки и кровотока методом поточной цитофлуориметрии. В следующей работе была продемонстрирована возможность количественной химеризации скелетных мышц конечностей с помощью пересадок НСК мыши и человека в мышцы животного
 ( Galli R., Borello U., Gritti A. et al., 2000). Меченые геном бета-галактозидазы НСК , изолированные из эпендимы мозга взрослых животных, после инъекции в бластоцисты мыши давали ростки донорской соматической ткани в скелетной и сердечной мышце, кишечнике, мозге, коже, но не в кроветворной системе костного мозга ( Clarke D.L., Johanssen C.B.,Wilbertz J. et al, 2000). Эти особенности колонизации разных органов могли быть связаны с фракцией НСК из эпендимы. В последующих исследованиях приведены убедительные доказательсва гетерогенности НСК, полученных одновременно из эпендимы/субэпендимы ( Rietze R.L., Vacanis H., Bresker G.F. et al., 2001). Изолированные популяции имели гетерогенный фенотип. 80% клеток формировали клоны ( нейросферы). Эта работа подтвердила полученные ранее данные о высокой морфологической и иммунофенотипической гетерогенности НСК , выделенных из тех же отделов мозга фетусов. Природа выявляемой гетерогенности пока не имеет достаточно аргументированных объяснений.
 
 
 
  15. Нейромезенхимальные стволовые клетки нервного гребня
 
  Во время нейруляции только млекопитающие формируют уникальный провизорный орган - нервный гребень(НГ) по всему длиннику зародыша - от промежуточного мозга до сакральных сомитов и ниже. НГ состоит из двух тяжей плюрипотентных зародышевых клеток между эктодермой и нервной трубкой, которые возникают за счет сигналов, возникающих одновременно в нервной трубке и прилегающей эктодерме. Клетки будущего НГ мигрируют из нервных складок - растущих концов открытой нервной трубки. Совместная инкубация эксплантатов нервной пластинки и эпидермиса достаточна для образования клеток НГ в обоих кусочках ткани (LaBonneC.,Bronner-Fraser M.,1999). Момент появления клеток НГ определяют по мРНК двух маркерных генов -Slug , Snail, позднее Pax-3. Точную комбинацию сигналов, запускающих появление клеток НГ как in situ, так in vitro пока не удалось определить. Блокада рецепторов для FGF частично приостанавливала появление клеток НГ. Появление гликопротеина Noelin1 на поверхности клеток маркирует первые клоны НГ в нервной трубке. Ретровирусная сверхэкспрессия Noelin1 ведет к длительному образованию и миграции клеток НГ в нервной трубке зародышей млекопитающих (Christiansen J.H., Coles E.G., Wilkinson D.G., 2000)
  Показательно, что клетки НГ невозможно получить лабораторным путем - из ЭСК, НСК или клеток первичной эктодеомы. Фетальная ткань мозга остается единственным источником клеток НГ. Еще долгие годы фетальная ткань мозга будет служить источником для выделения уникальных провизорных линий из разных органов. Например, аорта фетусов служит уникальным банком ангиобластов, которые невозможно выделить из других тканей.
  В головном отделе из клеток НГ образуются ганглии черепно-мозговых нервов, слуховой, вестибулярный и цилиарный ганлии. Часть клеток головной части НГ идет в стволовые клетки сосудистых сплетений (chorioid plexuses). Значительная часть клеток НГ дифференцируется в астроциты, микроглию и олигодендроциты. Подобно строме эти клетки в дальнейшем вырабатывают ростовые факторы (bFGF,EGF,TGF-alpha, NGF, PDGF, HGF, ILGF-1, NGF, NT3, GGF), адресованные стволовым и прогениторным клеткам (Mentlein R., Kendall M., 1999). Одновременно клетки НГ играют роль "провизорной мезенхимы", поддерживающей развитие среднего и заднего мозга. Локальное удаление головной части клеток НГ вело к массированному апоптозу нейроэпителия и аномалиям прозомеров (Etcheveres H.C., Couly G., Vincent C. et al, 2000 ). Головная часть клеток НГ служила донором стволовых клеток для образования глакомышечных клеток, перицитов всей артериальной и венозной системы лица и шеи (Etchevers H.C., Vincent C., Le Douarin N.M. et al., 2001).
  На уровне 1-7 сомитов из НГ формировались ганглии вегетативной нервной системы внутренних органов. Из туловищного отдела НГ возникали чувствительные ганглии спинного мозга, клетки мозгового вещества надпочечников и меланоциты. Миграция клеток НГ происходила по всем сегментам зародыша. Два главных потока мигрирующих клеток шли по вентральной и дорзо-латеральной стороне зародыша в места будущего расположения ганглиев, надпочечников, периферической нервной системы. Антитела к фибронектину, коллагену и ламинину, как и антитела к молекулам адгезии частично подавляли локомоцию клеток in situ. Из пула клеток НГ возникало значительное число меланоцитов как покровных тканей, так и внутренних органах. Клетки НГ возникали в результате эпителио-мезенхимальной трансформации. Эта трансформация сопровождалась экспрессией Нох-генов (Slug, goosecoid, Dlx2, Dlx3, Barx1, dHAND, eHAND). На поверхности стволовых /прогениторных клеток НГ экспонирован рецептор для эндотелина-1 (Clouthier D.E., Williams S.C., Yanagisawa T.E. et al, 2000). Ген Slug остается наиболее универсальным маркером эпителио-мезенхимальной трансформации клеток, поскольку антисенс-олигонуклеотиды мРНК Slug наиболее эффективно её блокировали (LaBonne C., Bronner-Fraser M., 1999). Вторично было блокировано появление миграторных популяций клеток НГ. Экспрессия гена Рах-3 превращала клетки-предшественники НГ во временную линию на период их расселения по организму. Трансфекция и сверхэкспрессия гена Рах-3 приводила к образованию иммортализованных фибробластов, которые давали опухоли в nude - мышах ( Maulbacker, Gruss, 1993). Непосредственной мишенью действия продукта гена Рах-3 является ген Msx-2 - контролер плюрипотентности пролиферирующих незрелых прогениторных клеток НГ ( Kwang S.J., Brugger S.M., Lazik A. et al., 2002). Экспрессия Рах-3 в прогениторных клетках одновременно включала другой ген - Foxd3. Способствуя экспрессии транскриптазе HNK-1 и кадхерину-7, продукт гена Foxd3 усиливал миграцию ранних прогениторных клеток из НГ (Dettori M., Gross M.K., Goulding M., 2001). Популяция мигрирующих предшественников периферической глии маркировалась антителами к транзитину (Henion P.D., Blyss G., Luo B., 2000). Популяция прогениторных клеток НГ, мигрирующих в сердце, маркировалась рецептором для PDGF. Ретиноевая кислота в тератогенных дозах вызывала подавление экспрессии "навигационных" рецепторов и запускала аномалии миграции клеток НГ in situ ( Li J., Molkentin J.D., Colbert M.C.,2001).
  Для эпителиомезенхимальной трансформации характерно изменение спектра поверхностных молекул адгезии. Если в центре клона промиграторные клетки плотно сцеплены молекулами N-кадхерина, то мигрирующая популяция прогениторных клеток НГ экспонировала кадхерин-6 и кадхерин-11 (Simmoneau L., Kitagawa M., Suzuki S. et al, 1995). Во время эпителио-мезенхимальной трансформации в клетках головной части НГ активировался Нох-7 ген. Характерно, что у части клеток хориодного сосудистого пучка, которые мигрировали в головной мозг и встраивались в слой эпендимы, происходила активация близкого Нох-7 гена (MacKenzie A., Ferguson M.W., Sharpe P.T., 1991).
  Пересадки плюрипотентных клеток проамниона (внеэмбриональной эктодермы) между эктодермой и нервной трубкой зародыша также вели к появлению клеток НГ из клеток трансплантата. Это доказало решающую роль сигналов микроокружения в первичном возникновении клеток НГ. Обнаружен критический период, когда концентрация сигналов, способствующих образованию клеток НГ, достигала максимума (Ruffins S., Bronner-Fraser A.M., 2000). Локальные инъекции SHH блокировали появление эндотелин-позитивных и Slug+ прогениторных клеток. Noggin, Bmp-4, BMP-7 не влияли на появление клеток НГ. Как в случае нервной трубки, появление первых клонов стволовых клеток НГ было сопряжено с активацией одного из Sox- генов (Sox-10). Гены этого семейства отвечают за плюрипотентность стволовых клеток (Cheng Y., Cheung M., Abu-Elmagd M.M. et al., 2000 ). Промиграторные прогениторные клетки клонов НГ также сохраняли плюрипотентность. Подтверждением служил тот факт, что клоны плюрипотентных клеток НГ удалось выделить как из периферических нейронов симпатической парасимпатической НС, так и периферических ганглиев. Мигрируя на десятки см на периферию, часть прогениторных клеток сохраняла мультипотентность. Однако большинство одиночных мигрирующих клеток, покидающих клон, сохраняли более ограниченную коммитацию к дифференцировке.
  Клетки головного отдела НГ мигрировали дорзовентрально, формируя костно-мышечный и хрящевой каркас, соединительную ткань лицевого черепа и шеи (включая хрящи гортани, уха, внутреннего уха, строму тимуса, нейроэпителий щитовидной железы, зачатки зубов). Взаимодействия мигрирующих клеток головной части НГ и эпителия тимуса приводили к локальной экспрессии транскрипционных факторов Hoxa3, Pax1 и Wnt, необходимых для созревания вилочковой железы. Внутриутробные аномалии развития и дефект миграции клеток НГ ответственны за развитие некоторых врожденных иммунодефицитов (типа синдрома DiGeorge).
  Клетки НГ, расположенные между миотомами и спинальным отделом нервной трубки, были донорами клеток ганглиев периферической симпатической и парасимпатической нервной системы, проводящей системы и клапанов сердца, нейросекреторных клеток надпочечников, гладкомышечных клеток артерий, меланоцитов кожи, чувствительных нейронов спинного мозга, шванновских клеток. Сегментация НГ на отделы шла с помощью eph-лиганда и eph- рецепторов. Граница раздела сегментов НГ, как и в нервной трубке, проходила по бислою eph-R- eph-L клеток. Пересаженные клетки НГ от раннего зародыша перепела в мозг зародыша крысы мигрировали в кости и мышщы лицевого черепа, пока территории мозга не были поделены бислоями клеток содержащих пару eph-R-eph-L. Клетки зародыша перепела более поздних сроков развития мигрировали в сердце, вегетативные ганглии тонкого кишечника и кожу (меланоциты) крысы-реципиента.
 
 
 
  Рис 2-10. Миграция и распределение клеток нервного гребня
 
  Экспрессированные гены AP-1, Wnt-1 Wnt-3 служили маркерами миграторных популяций НГ. Рост клонов НГ имел как признаки сходства, так и отличия от роста клонов НСК эктодермального происхождения. В отличие от суспензионных клонов НСК, большинство клонов НГ прикреплялось к подложке.
  Клоногенная культура клеток НГ оказалась мультипотентной: из общего пула незрелых клеток удавалось получить нейроны, глию, шванновские клетки (периферические олигодендроциты), гладкомышечные клетки, хондроциты, остеобласты, миобласты. В то же время из клоногенной культуры НСК не удавалось получать клетки НГ. Не известно, остаются ли какие-либо "резервы" незрелых клеток НГ в мозге взрослых животных и человека. Клоны НГ in situ сохраняли мультипотентность, поскольку "ядро" клона было изолировано слоями плотно собранных прогениторных клеток. Мультипотентность клонов НГ в культуре была меньше, чем при их трансплантации. Например, клоны НГ in vitro не дифференцировались в нейроны парасимпатических кишечных ганглиев. Однако они формировали химерный ганглий из донорских/реципиентных клеток при локальной пересадке в рыхлую соединтельную ткань тонкого кишечника. В то же время только клоны НГ из головного мозга дифференцировались в мышцы и кости лица, а также строму тимуса in situ.
  В середине эмбриогенеза нейроэпителиальная выстилка спинного мозга крысы сохраняла клоны провизорных клеток, из которых возникали как клоны НГ , так и суспензионные клоны НСК. Поэтому принято думать, что часть общих некоммитированных предшественников сохраняется в спинном мозге со стадии нервной трубки. В культуре только ВМР-2, ВМР-4 стимулировали образование клонов НГ из спинального нейроэпителия зародышей крыс. Не исключено, что высокое содержание ВМР-2, ВМР-4, генерируемое аортой, влияло на автономный нейрогенез цепочки симпатических ганглиев из мигрирующих клеток НГ. Автономный нейрогенез ганглиев из пришлых прогениторных популяций НГ имел место в сердце, лёгких, где локальная концентрация ВМР высока, как и в аорте.
  Клетки НГ в клонах экспрессировали N-кадхерин и кадхерин-6. Мигрирующие прогениторные клетки, покидавшие клон, окрашивались кадхерином-7 и кадхерином-11. Мигрирующие клетки НГ отличались экспрессией нового класса сигнальных G-белков - Rho ГТФ-азы. Смена молекул адгезии на поверхности клеток НГ происходила с помощью экспрессии двух Нох-генов: Msx1 и Msx2 (Linecum J.M., Fannon A., Song K. et al., 1998). Региональное включение Msx-1 , Msx-2 опосредовало множество функций, в том числе закладку зубных зачатков и отростков верхнего нёба. Эти гены экспрессировались также в межфаланговой ткани конечностей, которая подвергалась апоптозу. В эпидермисе кожи, волосяных фолликулах гены Msx-1/Msx-2 контролировали численность клеток (число клеточных слоев) в ткани. Экспрессия кадхерина-11 связана с появлением нового белка внутри клеток - бета-катенина, медиатора сигналов через кадхерин-11. Появление бета-катенина подготавливало почву для включения генов семейства Wnt.
 
 
 
  Рис 2-11 Фазово-контрастная микроскопия клеток НГ в культуре
 
  Клоногенный рост стволовых клеток НГ связан с тремя феноменами 1) самообмениваемостью клеток 2) рестрикцией дифференцировки прогениторных клеток 2) апоптозом, селектирующим выживание части прогениторных клеток. Если на уровне обновления и рестрикционной дифференцировки превалировал "инструкционный" механизм, то апоптоз использовал селекцию для отбора клеток. Без апоптоза невозможно регулируемое самообновление прогениторных клеток в клоне. Максимальную скорость пролиферации имели клоны, где соседние слои прогениторных клеток удерживались Delta-Notch взаимодействиями (Maynard T.M., Wakamatsu Y., Weston J.A., 2000 ). Три изоформы гена (Notch1, Notch2, Notch3) обеспечивали уникальную комбинацию рецепторов как на поверхности прогениторных клеток нервной трубки, НГ, сомитов, так и других производных экто-мезодермы (за исключением энтодермы) (Williams R., Lendhal U., Lardelli M., 1995 ). Серийный анализ генной экспрессии в клонах НГ показал, что максимально экспрессируется мРНК Notch/Delta. Как и в случае НСК-клонов нейроктодермального происхождения Delta-Notch контакты являлись главным "вето" на остановку пролиферации прогениторных слоев. Плотная стыковка прогениторных клеток через Delta-Notch защищала клоны от "случайного" нейрогенеза. Нейрегулин стимулировал пролиферацию прогениторных клеток в нейросфере (Calaora V., Rogister B., Bismuth K., 2001). Механическая диссоциация сфер клеток НГ приводила к утрате плюрипотентности прогениторных клеток (Dorsky R., Moon R.T., Raible D.W., 2000). Особенность клонов НГ состояла в том, что стимуляция Delta-Notch, блокируя нейрогенез, активировала созревание шванновских клеток в периферических ганглиях (Morrison S.J., Perez S.E., Z.Qiao et al, 2000).
  Методом конечных разведений было доказано, что диссоциированные прогениторные клетки содержат клон-инициирующие клетки. Фенотипически идентичные промиграторные прогениторные клетки имели разную генетическую потенцию. Фенотипическая гетерогенность прогениторных клеток внутри клонов сочеталась с высокой пластичностью клеток, которая проявлялась при трансплантации.
  Нейрогенез из плюрипотентных клеток НГ шел через ту же цепочку генов, что и нейрогенез из НСК нервной трубки: коэкспрессия Wnt-1/Wnt-3 необходима для экспансии прогениторных популяций. В ряде ситуаций в цепочку включался Mash1 (для некоторых специализированных линий в сочетании с нейрогенинами -Ngn1,Ngn2) (Ikeya M., Lee S.M., Jihnson J.E. et al., 1997). Комбинации TGF-beta, BMP-2, BMP-4, bFGF, EGF индуцировали дифференцировку прогениторных клеток НГ в сенсорные нейроны, нейроны вегетативных ганглиев, гладкомышечные клетки, клетки проводящей системы.
  Phox2b запускал дифференцировку прогениторных клеток НГ в адренэргические нейроны ганглиев. Через последнюю транскриптазу активировалась экспрессия генов ферментативной цепи окисления тирозина в гидрокси - медиаторы. Точные комбинации сигналов для индукции моноспецифической дифференцировки не опубликованы в открытой печати. Клоны НГ, изолированные из головного мозга, имели максимальную потенцию к дифференцировке в нейроны. Клоны НГ, изолированные из ростральных отделов спинного мозга чаще всего дифференцировались в меланоциты.
  В случае дифференцировки прогениторных клеток НГ в меланобласты у клеток формировался сложный комплекс рецепторов для длительной навигации. Во-первых, экспонировался рецептор с-kit для SCF. Мигрирующие предшественники меланоцитов вырабатывали SCF, который разрозненные клетки собирал в пласт . Часть клеток содержала два новых рецептора ( c-kit- рецептор тирозиновой киназы и рецептор эндотелина-3 одновременно) (Guo C., Wherle-Haller B., Rossi J. et al., 1997). Многие клетки экспрессировали рецептор для PDGF. Синхронно активировалась экспрессия Wnt1, Wnt3a, а также транскриптазы MITF, необходимых для включения цепочки генов синтеза меланина (Pou L., Panthier J.J., Arnheiter H., 2000). Трансгенные мыши с лишней дозой гена Wnt-1 имели гиперпигментацию кожи за счет увеличения численности меланоцитов. В прогениторных клетках НГ, мигрирующих в проводящую систему миокарда, активировалась транскриптаза HAND1 (Riley P.R., Gersenstein M., Dawson K. et al, 2000).
  Подавляющая часть шванновских клеток периферической нервной системы возникала из стволовых клеток НГ. Сами резервы стволовых клеток для генерации новых шванновских клеток сохранялись в нервных волокнах, частично в спинном мозге. В эмбриогенезе первые предшественники олигодендроцитов в спинном мозге появлялись у зародышей человека 45 дня развития ( Rogister B., Ben-Hur T., Dubois-Dalcq M.,1999). Предшественники олигодендроцитов экспрессировали рецептор для PDGF. Характерен фокальный рост предшественников. Как in vitro , так и in vivo образование предшественников олигодендроцитов запускалось SHH. На первом этапе прогениторные клетки чаще созревали в астроглию, если в микроокружении преобладали следующие сигналы: PDGF, BMP-2/4, CNTF. Комбинация PDFG+ bFGF, или PDGF+GGF направляли рестрикционную пролиферацию прогениторных клеток в сторону олигодендроцитов. Переход к постмитотическому созреванию клеток связан с экспрессией р27 и р21 -ингибиторов циклин-зависимой киназы (Cdk). Механизм запуска миелинизации остается нерасшифровнным. Комбинация Т3 и IGF-1 запускала экспрессию генов белков миелина. Если активировался ген MBP (myelin basic protein) и PLP, то ингибировался ген Krox-24. Трансплантация предшественников олигодендроцитов в боковые желудочки резко увеличивала число донорских миелин+клеток в зонах демиелинизации мозга крыс. В отличие от НСК, предшественники олигодендроцитов более эффективно мигрировали по белому веществу и накапливались в участках демиелинизации ( Learish R.D., Brustle O., Zhang S.C. et al., 1999).
  Важные последствия получил метод выделения высокоочищенной клоногенной культуры клеток НГ (Stemple D.L.,Anderson D..J.,1992, Morrison S.J., White P.M., Anderson D.J. et al, 1999). С помощью иммуносортинга культуру клеток НГ удалось до 80% обогатить стволовыми/прогениторными популяциями, удалив примесь эндотелия, гладкомышечных клеток, перицитов, шванновских и других "продвинутых" клеток. Стволовые клетки НГ удалось изолировать из нескольких источников: мозга зародышей, периферических нервов, из дорзальных ганглиев. Селективная среда, содержащая ростовые факторы, позволила значительно обогатить культуру прикрепленными к подложке клонами. Важнейшим поверхностным маркером стволовых клеток НГ является белок р75 - рецептор ростового фактора NTF3. Эта же популяция стволовых клеток не прокрашивалась антителами к периферину (Р- фенотип) - одному из белков шванновских клеток. Выращенные в культуре клоны НГ отличались выраженной гетерогенностью. Миграторные прогениторные клетки прикреплялись к пластику и давали характерный монослой распластанных клеток.
 
 
 
  Рис 2-12. Преконфлуентная культура прикреплённых нейромезенхимальных клеток под фазовоконтрастным микроскопом.
 
  Часть клонов удавалось многократно пассировать, причем клетки внутри сфер сохраняли : а) способность инициировать клонообразование, б) плюрипотентность (способность дифференцироваться в нейроны, глию, шванновские клетки, миофибробласты и даже хрящ. Обычно клоны НГ в культуре подвергались смешанной дифференцировке. Моно-дифференцировка клонов НГ в культуре в нейроны шла с помощью комбинации ВМР-2 и ВМР-4. ВМР индуцировал экспрессию Mash-1 в постмитотических клетках. Монодифференцировку клонов НГ в глию получали добавлением GGF (нейрегулина). Гладкомышечные клетки из прогениторных популяций НГ получали добавлением TGF-beta. Glial growth factor (GGF) - митоген и индуктор образования шванновских клеток - ингибировал дифференцировку прогениторных клеток НГ в нейроны. При пересадке клонов стволовых клеток НГ в мозг зародышей донорские клетки ограниченно дифференцировались в холинэргические нейроны как в головном мозге, так и на периферии (White P.M., Morrison S.J., Orimoto K. et al., 2001). Другие исследователи также отмечали ограниченную пластичность клонов НГ при их пересадке в мозг и другие ткани реципиента (по сравнению с клонами НСК, выделенных из перивентрикулярных отделов мозга) (Shah N.M., Anderson D.J., 1997). Исключение составляли стволовые клетки нейроэпителиальной выстилки спинного мозга, которые содержали предшественники ЦНС и клеток периферической нервной системы. В общей массе изолированных клеток встречались клоны, которые прокрашивались как на нестин, виментин, так и Р75 (Mujtaba T., Mayer-Proschel M., Rao M.S., 1998 ). Предполагается, что часть стволовых клеток спинальной части НГ мигрировала в нервную трубку. Поэтому потенции к регенерации спинного мозга выше, чем головного мозга за счет химеризации клетками нейромезенхимы.
 Важно подчеркнуть, что потенции стволовых клеток НГ в генерации костно-хрящевых структур черепа, тимуса, щитовидной железы, ганглиев, проводящей системы сердца уникальны и не могут быть замещены другими фетальными клетками. Пересадки НСК эктодермального происхождения не в состоянии заменить функций прогениторных клеток НГ. Вторая важнейшая особенность прогениторных клеток НГ - это высокая скорость и плотность миграции клеток на рекордные расстояния. Уникальные возможности нейромезенхимальных клеток в плане направленной миграции в организме привлекают внимание медиков с целью репарации клеточных дефектов тимуса, уродств костно-мышечной системы лица, а также репарации проводящей системы сердца.
  Поскольку периферическая часть нервной системы формирует значительное число адренэргических нейронов для симпатических ганглиев и коры надпочечников, актуальными остаются поиски " программ", эффективно управляющих монодифференцировкой постмитотических прогениторных клеток НГ. Практически каталогизирован список генов-участников : Ret, Phox2a, Phox2b, ген тирозингидроксилазы (Young H.M., Ciampoli D., Hsuan J. et al., 1999).
  Наследственные дефекты миграции клеток НГ только начали изучаться. Например наследственная болезнь Ваарденбурга связана с дефектами пигментации кожных покровов и отсутствием вегетативных ганглиев в кишечнике на почве мутации рецептора к эндотелину-3 (Newgreen D.F., Murphy M., 2000 ). В настоящее время стволовые клетки НГ нашли новое неожиданное применение в лечении наследственной мышечной дистрофии, обусловленной дефектом гена дистрофина. Хорошо известно, что у пациентов с дистрофией Дюшенна избирательно поражаются мышцы конечностей, но не лица, глаз и гортани. Оказалось, что вся мышцы лица и шеи, возникшие из клеток НГ, синтезируют утрофин (эмбриональный дериват дистрофина) для функции. Поэтому все мышцы лица и шеи пациентов оcтаются неповрежденными. В настоящее время предпринимаются пересадки фетальных миобластов, лабораторно полученных из клеток НГ с целью реконструкции мышц пациента из донорских клеток, резистентных к заболеванию. (Black H., 2000). Для целей трансплантации получены первые бессмертные линии стволовых клеток НГ (Rao M.S., Anderson D.J., 1997).
 
 
  16. Литература
 
 Коржевский Д.Е. Пролиферативные зоны эпителия в хориодных сплетениях мозга эмбрионов, Морфология, 1999, 115, 38-41
 Abe K., Saito H.,Effects of growth factors on the CNS function, Pharm.Res., 2001,43, 308-14
 Acampora D., Gulisano M.,Broccoli V. et al., Otx genes in brain morphogenesis, Prog Neurobiol., 2001, 64, 69-95
 Altmann C.R., Brivanlou A.H. Neural patterning in the vertebrate embryo; Int.Rev. Cytol., 2001, 203, 447-82
 Anton E.S., Marchionni M.A.., Lee K.F. et al., Role of GGF signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex, Development, 1997, 124, 719-26; Dev Biol, 2001, 229:15-30
 Bain G.,Kitchens D., Yao M. et al., ESC express neuronal properties in vitro, Dev. Biol.,1995,168, 342-57
 Barr F.J., Fitzgerald J.C., Ginsberg J.P. et al., Predominant expression of alternative Pax3/Pax7 forms in myogenic and neural tumor cell lines, Cancer Res.,1999, 59,5443-8
 Bartlett P.F., Reid H.H., Bailey K.A. et al, Mouse neuroepithelial cells immortalized by the c-myc oncogene, Proc.Natl.Acad.Sci.US,1988,85,3255-59
 Beddington R.S., E.J. Robertson , Axis development and early asymmetry in Mammals ,Cell, 1999, 96, 195-209
 Benniger Y., Marino S., Hardegger R. et al., Differentiation and histological analysis of ESC -derived neural transplants in mice, Brain Pathol.,2000, 10, 330-41
 Besso Y., Miyoshi G., Sakata R. et al., Hes- repressor gene regulated by Notch and expressed in the mesoderm, Genes Cells, 2001, 6, 175-86
 Bjorklund A., Lindvall O., Cell Replacement Therapy for CNS disorders, Nature Neurosci.,2000,3, 597-404
 Bjernson C.R., Rietze R.L., Reynolds B.A. et al., Turning brain into blood:a hemopoietic fate adopted by adult NSC in vivo, Science, 1999,283, 534-37
 Black H., Eye and Muscular Dystrophy: extraocular muscle mayhold a key to treatment; The Scientist, 2000, 14, 24-26
 Blaschke A.J., Staley K.,Chun J., Widespread programmed cell death in proliferating and postmititic regions of fetal cerebral cortex, Development, 1996, 122, 1185-74
 Boncinelli E.,A.Mallamaci, Hox-genes in vertebrate gastrulation; Current Opinion Genet. Develop, 1995, 5, 619-27
 Brooker G., Kalloniatis M., Russo V. et al., Endogenous IGF1 regulates the neuronal differentiation of adult stem cells, J. Neurosci.Res.,2000, 59, 332-41
 Brustle O.,Choudry K., Karram K. et al., Chimeric brain generated by intraventricular transplantation of fetal human brain cells into embryonic rats., Nature Biotechnol., 1998, 16, 1040-44.
 Brustle O., Jones K.N., Learish R.D. et al., ESC-derived glial precursors: a source of myelinating transplants, Science,1999, 285, 7554-56
 Brustle O., Spiro C., Karram K. et al., In vitro generated neural precursors participate in mammalian brain development, Proc.Natl.Acad.Sci.US, 1997, 94, 14809-814
 Calaora V., Rogister B., Bismuth K. Et al, Neuregulin signaling regulates neural precursor growth and the generation of oligodendrocytes in vitro, J. Neurosci., 2001,21, 4740-51
 Caldwell M.A., He X., Wilkie N. et al., Growth factors regulate the survival and fate of cells derived from human neurospheres, NatureBiotechnol.,2001,19, p.475 - 80
 Cau E., Gradwohl G., Casasosa S. et al., HES genes regulate sequential stages of neurogenesis in the olfactory epithelium, Development,2000,127,2223-32
 Carpenter M.K., Cui X., Hu Z., et al., In Vitro expansion of a multipotent population of human neural progenitor cells, Exp.Neurol.,1999, 158, 265-78
 Carpenter M.K., Inokuma M.S., Denham J. et al., Enrichment of neurons and neural precursors from human ESC, Exp.Neurol.,2001, 172, 383-97
 Catala M., Embryonic and fetal development of structures associated with cerebro-spinal fluid in man and other species. Part I. The ventricular system> meninges and chorioid plexuses, Arch. Anat. Cytol.Pathol., 1998, 46, 153-69
 Chanas-Sacre G., Rogister B., Moonen G. et al., Radial glia phenotype, J.Neurosci.Res., 2000, 61, 357-63
 Chapman G., Remiszewski J.L., Webb G.C. et al., The mouse Hox Gene Gbx2: genomic organization and expression in pluripotent cells in vitro and in vivo, Genomics, 1997, 46, 223-33
 Cheng Y., Cheung M., Abu-Elmagd M.M. et al., Sox10 transcription factor expressed in both early neural crest cells and CNS, Brain Res. Dev.Brain, 2000, 121, 233-41
 Christiansen J.H., Coles E.G., Wilkinson D.G., Molecular control of neural crest formation,
 migration and differentiation, Curr.Opin.Cell.Biol.,2000, 12, 719-24
 Ciccolini F., Identification of two distinct types of multipotent neural precursors that appear sequentially during CNS development, Mol.Cell Neurosci., 2001,17, 895-907
 Clarke D.L., Johanssen C.B.,Wilbertz J. et al., Generalized potential of adult NSC, Science, 2000, 288, 1660-63
 Clouthier D.E., Williams S.C., Yanagisawa T.E. et al, Signal pathway crucial for craniofacial development revealed by endothelin-1 receptor deficient mice. Dev.Biol., 2000, 217, 10-24
 Conti L., Sipione S., Magrassi L. et al., SHH signalling in differentiating neural progenitor cells, Nature Neurosci., 2001, 4, 579- 86.
 Dalstrand J.,Lardelli M.,Lendahl U. Nestin correlates with the CNS progenitor cell state of developing CNS, Brain Res.Dev.Brain Res., 1995, 84, 109-29
 Danelian P.S., McMahon A.P. En-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development, Nature, 1996, 383, 332-4
 Daniel-Lacorazza H., Flax J.D., Snyder E.Y. et al., Expression of human beta-hexosaminidase in mouse brains upon engraftment of transduced progenitor cells,Nature Med.,1996,2,424-429
 Dettori M.,Gross M.K., Goulding M., Factor Foxd3 suppressesinterneuron differentiation and promotes neural crest cell fates, Development,2001, 128,4127-38
 
 Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo et al, Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 1999, 97, 1-20
 Dorsky R., Moon R.T., Raible D.W., Envoronmental signals and cell fate specification in premigratory neural crest, BioEssays, 2000, 22, 708-16
 Etcheveres H.C., Couly G., Vincent C. et al, Anterior cephalic neural crest is required for forbrain viablity, Development, 2000, 126, 3533-43
 Etchevers H.C., Vincent C., Le Douarin N.M. et al., The cephalic neural crest provides pericytes and SMC to all blood vessels of face and forebrain., Development, 2001, 128, 1059-68
 Finley M.F.A., Devata S., Huettner J.E. BMP-4 inhibits neural differentiation of murine ESC, J.Neurobiol.,1999, 40, 271-87
 Flax J.D., Aurora S., Yang C. et al, Engraftable human NSC respond to development cues and express foreign genes, ,Nature Biotechnol, 1998, 16, 1033-39
 Fricker-Gates R.A., Winkler C., Kirik D. et al., EGF infusion stimulates the proliferation and migration of embryonic progenitor cells transplanted in the rat brain, Exp.Neurol.,2000, 165,237-47
 Gabrion J.B., Herbute S., Bouille C. et al., Ependymal and chorioidal cells in culture: characterization and functional differentiation, Microsc Res Tech 1998, 41, 124-57
 Gage F. Mammalian NSC, Science, 2000,287, 1433-38
 Gaiano N., Nye J.S., Fishell G. Radial glial identity is promoted by Notch signalling in the murine forbrain; Neuron, 2000, 26, 395-404
 Galli R., Borello U., Gritti A. et al., Skeletal myogenic potential of human and mouse NSC, Nature Neurosci., 2001, 3, 986-91.
 Gerloff G., Knoth R., Volk B., Cytoplasmic expression of leu-4 (CD3) antigen in developing Purkinje cells in the rat cerebellum, Neuropathol. Appl. Neurobiology,1993, 19, 313-23
 Gershon A.A., Ridnick J., Kalam L. et al., Xdbx inhibits neuronal differentiation in the developing embyo, Development, 2000, 127, 2945-54
 Gokhan S., Song Q., Mehler M, Generation and Regulation of Developing Immortalized Neural Cell Lines, In: Acomparison to Methods in Enzymol.,1998, 16, 345-58
 Grapin-Botton A., Majithia A.R., Melton D.A., Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes, Genes Dev., 2001,15, 444-54
 Guo C., Wehrle-Haller B., Rossi J. et al., Autocrine regulation of neural crest cell development by SCF, Dev. Biol., 1997, 184, 61-9
 Hallonet M., Hollemann T., Pieler T. et al., Vax1 directs development of the basal forebrain and visual system, Gene Dev., 1999, 13, 3106-14
 Han W., Ye Q, Morre M.A., A soluble form of human Delta-1 inhibits differentiataion of hematopoietic progenitors , J.Biol.Chem.,1999, 274, 7238-44
 Hartfuss E., Galli R., Heins N. et al., Characterization of CNS precursor subtypes and radial glia, Dev. Biol., 2001, 229, 15-30
 Haysay A.C.,Barber D.F., Douglas N. et al., Signals involved in gamma/deltaT-cell versus alpha-beta T cell commitment, Development, 2000, 127, 2323-32
 Helms A.W.,Abney A.L., Ben-Arie N. et al. The control of Math-1 expression in the developing nervous system, Development, 2000,
 127, 1185-96
 Henion P.D., Blyss G., Luo R. et al., Avian transitin expression mirrors glial cell fate restrictions during neural crest development, Dev.Dyn., 2000, 218, 150-59
 Herrera D.G., Garcia-Verdugo J.M., Alvarez-BuyllaA., Adult-derived neural precursors transplanted into multiple regions in the adult brain, Ann.Neurol, 1999, 46, 867-77
 Higuchi M., Kiyama H., Hayakawa T. et al, Differential expression of Notch-1 and Notch-2 in developing and adult brain, Brain Res. Mol. Brain Res.,1995, 29, 263-72
 Hodges H., Veizovich T., Bray N. Et al., Conditionally immortal neuroepithelial stem cell grafts reverse age-related memory impairment in rats, Neurosci.,2000,101, 945-55
 Howkes R., Faulkner-Jones D., Tam P. et al., Pattern formation in the cerebellum of murine embryonic stem cell chimeras, Eur.J. Neurosci., 1998, 10, 790-93
 Huang H.P., Liu M., El-Hodiri H.M. et al., Regulation of the pancreatic islet-specific genes NeuroD by neurogenin-3., Mol. Cell Biol, 2000,20, 3292-397
 Hulspas R., Quesenberry P.J., Characterization of neurosphere cell phenotypes by flow cytometry, Cytometry, 2000, 40, 245-50
 Iacovitti L., Stull N.D., Jin H., Differentiation of human dopamine neurons from embryocarcinoma stem cell line, Brain Res., 2001, 912, 99-104
 Ikeya M., Lee S.M., Johnson J.E. et al., Wnt signalling required for expansion of neural crest and CNS progenitors, Nature, 1997, 389, 966-70
 Jensen J., Heller R.S., Funder-Nielsen T. et al., Independent development of pancreatic alpha- and beta-cells from Ngn3-expressing precursors: a role for the Notch pathway in repression of premature differentiation, Diabetes, 2000, 49, 163-76
 Kaibushi K., Nakamura S., Casarosa S. et al.,Transcription Factors Mash-1 and Prox-1 delineate early steps in differentiation of NSC in develping СNS, Development, 1999, 126, 443-56
 Kageyama R., Ohtsuka T., The Notch-Hes pathway in mammalian neural development, Exp.Cell Res., 1999, 9, 179-88
 Kallos M.S.,Behie L.A., Inoculation and growth conditions for high-cell-density expansion of mammalian NSC in suspension bioreactors, Biotechnol.Bioengineering, 1999, 63, 473-83
 Kallos M.S., Behie L.A., Vescovi A.L., Extended Serial passaging of mammalian NSC in suspension bioreactors, Biotechnol.Bioengin. 1999, 65, 589-99
 Kalyani A., Hobson K., Rao M.S., Neuroepithelial stem cells from the embryonic spinal cord:charcaterization and clonal analysis, Dev. Biol., 1997, 186, 202-23
 Kato K., O'Dowd D.K., Fraser S.E. et al., Heterogenous expression of multiple patterning genes by single cells from the chick hindbrain, Dev. Biol., 1997, 191, 259-69
 Kitada M., Chakrabortty S., Matsumoto S. et al., Differentiation of chorioid plexus ependymal cells into astrocytes after grafting into the pre-lesioned spinal cord in mice, Glia,2001, 36, 364-74
 Kondo T., Raff M., Hes5 and the timing of oligodendrocyte differentiation, Development, 2000, 127, 2989-98
 Kornblum H.I., Yanni D.S., Easterday M.C. et al., Expression of EGF receptor family members Erb2, Erb3 and Erb4 in germinal zones of the developing brain and in cultured neurospheres, Dev Neurosci., 2000, 22, 15-24
 Kruger M., Mennerich D., Fees S., et al , SHH as survival factor for hypoaxial muscles during mouse development, Development, 2001, 128, 743-52
 Kuan C.Y.,Elliot E.A., Rakic P., Restrictive clonal allocation in the chimeric mouse вrain., Proc.Natl.Acad.Sci.US, 1997, 94, 2800-2804
 Kuliev A., Kucharenko V., Verlinsky Y. et al, Expression of Hox-genes in human preimplantation development and in embryos with chromosomal aneuploidies; J Assist Reprod Genet 1996, 13, 177-81
 Kukekov V.G., Laywell E.D., Suslov O. Et al.,Multipotent stem|progenitor cells with similar properties arise from two neurogenic regions of adult human brain, Exp.Neurol.,1999,156, 333-44
 Kuroda K., Tani S., Tamura K. et al., Notch signalling mediated by Rbp-J inhibits Myo D expression and myogenesis,Curr. Biol., 1999, 13, 707-10

<< Пред.           стр. 3 (из 4)           След. >>

Список литературы по разделу