<< Пред.           стр. 1 (из 4)           След. >>

Список литературы по разделу

 Репин В.С., Ржанинова А.А., Шаменков Д.А.
 
 
 
  Эмбриональные стволовые клетки:
 
 
 
 
 
 
 
 
 
 
 фундаментальная биология
 
 и
 
 медицина
 
 
 Москва
 2002
 "Реметэкс"
 
 Оглавление:
 ГЛАВА 1 Эмбриональные стволовые клетки: фундаментальные исследования
  1. На пороге новой биологии и медицины
  2. ЭСК: основные определения и концепция
  3. Основные источники и способы выделения ЭСК (историческая справка)
  4. Молекулярные основы тотипотентности генома ЭСК
  5. Особенности фенотипа ЭСК
  6. ЭСК - модель для изучения геномики раннего эмбриогенеза и органогенеза
  7. Направленная дифференцировка ЭСК и ППК in vitro
  8. ЭСК в изучении функций Нох-генов
  9. ЭСК - новый биоресурс медицины
  10. ЭСК: законодательство и биоэтика
  11. Мост между наукой и клиникой
  12. Литература 5
 8
 26
 46
 50
 55
 
 60
 69
 71
 79
 83
 86
 ГЛАВА 2 Стволовые клетки в эмбриогенезе мозга млекопитающих
  1. Модели на стыке клеточной биологии и геномики
  2. Нервная трубка - первоисточник провизорных стволовых клеток
  3. Стволовое пространство обонятельного нейроэпителия
 4. Стволовое пространство эпендимы
  5. Клональная дисперсия стволовых клеток мозга
  6. Регионализация и сегментация нервной трубки
  7. Первичный нейро - и глиогенез
  8. Направленная миграция прогениторных клеток: взаимодействие с радиальной глией
  9. Нейрональные стволовые клетки in vitro
  10. Методические трудности получения клонов НСК из ЭСК
  11. Получение нейронов из ЭСК
  12. Получение линий НСК
  13. Трансплантация НСК/прогениторных клеток в развивающийся мозг эмбрионов
  14. Трансдифференцировка НСК после трансплантации
  15. Нейромезенхимальные стволовые клетки нервного гребня
  16. Литература
 
  Коллектив авторов 96
 98
 105
 107
 109
 110
 119
 121
 
 125
 133
 135
 138
 147
 
 148
 149
 162
 
 176
 
  ГЛАВА ПЕРВАЯ
 
  Эмбриональные стволовые клетки:
  фундаментальные исследования
 
 
 
 
 
  Природные силы внутри нас являются наилучшими целителями болезней
  Гиппократ
 
 
 
 
 
 
 
 
 
 
 1. На пороге новой биологии и медицины
 
  Поражающее разнообразие многоклеточных имеет весьма скромное начало в одной оплодотворенной яйцеклетке. Много поколений биологов и эмбриологов размышляло над загадкой, каким образом генетическая информация одной клетки макромасштабируется в сотни миллионов клеток нового зародыша.
 Экспериментальный прогресс сдерживался тем, что яйцеклетки, зиготы и бластомеры не удавалось перевести в бессмертные линии, получив таким способом клеточный материал в количествах, достаточных для изучения спектров мРНК и белков (Weismann, 2000). Только эмбриональные стволовые клетки (ЭСК) - пролиферирующие "дублеры" зиготы - стали новым ресурсом клеток, стоящих у истоков развития. Наука сделала первый шаг к лабораторной ткани, повторяющей соматический эмбриогенез млекопитающих в обход гамет и оплодотворения. Тотипотентность - это свойство генома клеток макромасштабировать программы эмбриогенеза, в том числе воспроизводить любую из 250 специализированных клеток взрослого организма. Подобно зиготе и первым клеткам зародыша, ЭСК в простых условиях культуры воспроизводят "лабораторный" эмбриогенез в два этапа. Сначала микрограммовые количества "клеток без фенотипа" пассируют в миллиарды клеток. Затем незрелые постмитотические клетки с помощью набора химических инструкций in vitro видоизменяют в клетки мозга, сердечной, скелетной мышцы, печени и т.п. Получение соматических клеток из ЭСК идет в обход органогенеза и многих событий, происходящих при естественном развитии зародыша в матке. Как известно, специализированные клетки взрослого организма необратимо утрачивают способность к повторению эмбриогенеза. В культуре большинство специализированных клеток, изолированных из тканей, быстро дедифференцируются, теряя фенотип и профиль функций. Науке пока не известны способы получения стволовых клеток из дифференцированных клеток. ЭСК - это эмбриогенез без половых клеток и беременности.
  ЭСК - незаменимая модель для функциональной постгеномики. Кардиомиоциты, миоциты, клетки крови и иммунной системы являются полными автоматами. Поведение ЭСК определяется взаимодействием внешних сигналов с эпигеномной системой клеток, имеющих уникальную протеомику и огромное "меню" из предсинтезированных мРНК. На клетках ЭСК с максимально простым фенотипом легче анализировать главный алгоритм онтогенеза: как soft сигналы непрерывно изменяют hard- устройство клеток. В отличие от молекулярной генетики, изучавшей функции отдельных генов, постгеномика занимается протеомикой целостных белковых сетей (как soft-сети собирают клеточные устройства). Интегральные белковые сети - платформа целенаправленного поведения клеток в виде альтернативных ответов. Адекватный выбор сигналов и ответы ЭСК заставляют признать, что клетки имеют элементарный интеллект для распознания, выбора сигналов, их селективной переработки. Селективный отбор сигналов транслируется далее в паттерны поведения клеток. Поведение клеток и его нарушение является конечной целью современной медицины. Этот уровень знаний дает новые инструменты для разгадок болезней клеток и старения.
 Другая важная особенность генома ЭСК - спонтанная частота мутаций ниже в несколько раз, чем у соматических клеток. Внутрихромосомная рекомбинация и эндоредупликация отдельных сегментов хромосом полностью блокированы устройством хроматина. Генетическая нестабильность хромосом и анеуплоидия в пассажах характерны только для линий тератокарциномы и эмбриокарциномы (Servantes R.B., Stringer J.R., Tischfield J.A.,2002). Эта особенность организации хроматина делает маловерятными случайные перестройки хромосом, связанные с малигнизацией трансплантированных ЭСК-дериватов.
  Cтволовая ниша - стабильное микроокружение вокруг каждого клона ЭСК, создаваемое монослоем так называемых фидерных клеток. Трофобласт служит фидером для эмбриобласта у предимплантационных зародышей млекопитающих. Клетки хориоидного сплетения служат питательной, защитной и информационной средой для нейральных стволовых клеток эпендимы развивающегося мозга. Эндотелиальные синусы, либо капиллярная сеть служат нишей для региональных стволовых клеток органов и тканей, в том числе для мезенхимальных стволовых клеток. По этой причине все ранние ЭСК зародыша выращивают в суспензии над монослоем фидерных стромальных клеток, которые обеспечивают незрелые плюрипотентные клетки всем необходимым для выживания и самообновления.
  В настоящее время ЭСК нужны не только для расшифровки кодов пред- постимплантационного развития, но и лабораторного воспроизводства клеток органов в обход беременности. Получить миниорганы in vitro - более трудная задача, чем получить дифференцированные клетки тех же органов. Клетки -дублёры зиготы необходимы для биоэтически допустимых экспериментов. ЭСК не являются зародышем, не имеют статуса "новой жизни", поскольку получены в обход оплодотворения и беременности. Сохраняя ранг клеток, ЭСК являются чем-то большим: они серийно копируют органогенез. Они незаменимы для изучения стыков развития клетка/орган/ткань. Пока наука не имеет достаточной платформы, чтобы окончательно определить юридический/ биоэтический статус ранних зародышей, эмбрионов и плодов. Отсутствие законодательной базы относительно всех периодов жизни человека существенно влияет на принятие практических решений в области репродукционного и терапевтического клонирования. Биоэтические посылки многих высокоразвитых стран, утверждающих статус новой жизни и личности с момента зачатия и появления зиготы, идут вразрез с принятым законодательством, признающим права новой жизни лишь с момента рождения. Согласование этих вопросов на уровне государств и международных институтов (ООН, Совет Европы и т.п.) имеет первостепенное значение для свободного развития биологии и медицины. Как известно, права на новые исследования и знания могут быть ограничены, если человек или зародыш не становятся средством в руках других людей.
  Биологи в современном обществе вынуждены отстаивать право на новые границы знаний и новые технологии. Развитие зиготы в зародыш воспроизводится в лаборатории. Многие представители религии настаивают, что создание/разрушение ранних зародышей в лаборатории недопустимо. В то же время в США и многих странах разрешено платное донорство яйцеклеток (1500-2000 долларов в США), которое открыло путь к внеполовому получению ранних зародышей. Один работающий банк спермиев и яйцеклеток в Норфолке (Канада) способен обеспечить работу всех биотехнологических компаний с искусственными бластоцистами для изолирования линий ЭСК. Бластоцисты сейчас можно получить путем переноса ядра соматической клетки заказчика в зрелую донорскую яйцеклетку, из которой предварительно был удален пронуклеус. Лабораторные банки тотипотентных клеток уже создали техногенную эмбриологию и альтернативу половому процессу не с целью повторного воспроизводства копий уже живших людей, а с целью лечения миллионов пациентов на планете. Согласно прогнозу, в 2020-2030 годах примерно треть пациентов будет получать лечение в виде пересадок дериватов ЭСК. Не размышления, а единственно возможная помощь погибающему пациенту - это императив биоэтики у постели больного (особенно у фатально обреченных). Стремление помочь склоняют врача к лабораторному клонированию клеток пациента, как к последнему эффективному средству помощи. Аморальным в наше время становится не использовать ЭСК для создания банка резервных клеток каждого человека на случай заболевания. Наиболее гуманная биоэтика заставляет остальное общество видеть проблему прежде всего глазами и нуждами больных людей и их ближайших родственников. Каждый пациент имеет право на спасение и новые формы лечения. Наука и общество должны развивать медицину, дающую новый шанс на выживание или продление жизни существующим на земле поколениям. Новые реалии медицины сильно изменили вектор дискуссий вокруг ЭСК.
  В XIV веке происходили ожесточенные теологические споры о возможности посмертных вскрытий с целью изучения внутренних органов и причин заболеваний. Всего несколько врачей того столетия посмели создать секционный зал. Без этих пионеров в следующем веке не было бы анатомического атласа и великих открытий Леонардо. Морфология стала первой королевой медицины XV века. В XXI веке на стыке клеточной биологии ЭСК с функциональной постгеномикой рождается новое будущее медицины XXI века. Неизбежно разгораются споры и дискуссии, а знания обрастают мифами и предубеждениями в обществе.
 
  2. ЭСК: основные определения и концепция
 
 Все специализированные клетки взрослого организма происходят из стволовых клеток. Стволовые клетки - это "запасники", "НЗ" информации развития (эмбриогенеза). Эту информацию развития нельзя свести с генам, поскольку каждый этап развития не запрограммирован автоматически, а связан с утилизацией сигналов и эпигенетической информации. ЭСК - это программа и процессор информации одновременно. Программы развития сильно меняются в зависимости от окружающей среды. Своевременное обновление репертура здоровых клеток является незаменимым условием здоровья и долголетия многоклеточного организма. Все органы взрослого человека и млекопитающих сохраняют "реликты" зародышевой ткани в виде микровкраплений стволовых клеток. Стволовые клетки - орган срочной макрорепарации при массированном повреждении ткани. Одновременно стволовые клетки - это аппарат обновления, смены устаревших "больных" клеток, в том числе для защиты от преждевременного старения. ЭСК позволяют избавиться от больных клеток не с помощью лекарств, а путем своевременной смены клеток.
  Главная идея молекулярной медицины - найти лекарство для излечения больных клеткок - выглядит привлекательной, но непрактичной. Если в больном органе блокировано самообновление клеток, то накапливается множество аномальных клеток разного фенотипа. В этом случае понадобилось бы миллион "волшебных пуль" для нормализации миллиона разных больных клеток. Часто функциональная паренхима органов замещается производными мезенхимы (фиброз, атеросклеротические бляшки, глиоз и т.д.). Только факторы своевременной регенерации паренхимы способны защитить органы от повсеместного разрастания соединительной ткани.
 
 
 Рис 1-1 Лабораторные пути получения дериватов тканей человека из тотипотентных ЭСК и ППК
 
 В геноме соматических клеток отсутствуют "программы" лечения. Геномика аномальных клеток использует несколько вариантов апоптоза для аутоэлиминации ненормальных клеток. С другой стороны пересадки СК ускоряют самообновление клеток в органах, в том числе элиминацию патологически измененных клеток.
  Для исследователей ЭСК- это "шпаргалка" для расшифровки работы генома (особенно в период раннего эмбриогенеза и органогенеза). Необходимо напомнить, что изучение эмбриогенеза человека ограничено по биоэтическим соображениям. Постимплантационный эмбриогенез млекопитающих мышей, крыс, других лабораторных млекопитающих имеет существенные отличия. Во многих ситуациях ЭСК остаются единственной экспериментальной возможностью для моделирования событий, происходящих в зародыше человека после имплантации. Таким образом, ЭСК человека и млекопитающих - незаменимый путь для изучения аномалий постимплантационного развития зародышей. Самые ранние события кардиогенеза, миогенеза, нейрогенеза с дешифровкой soft-программ самосборки клеток в органы доступны пока лишь в культуре ЭСК (Kehat I., Kenyagin-Karsenti D., Snir M. Et al.,2001).
  Для ЭСК характерно два варианта запрограммированного поведения в культуре. 1) незрелые ЭСК длительно размножаются в присутствии фидерного слоя клеток и ростовых факторов. 2) после наработки массы недифференцированных клеток, рамножение клеток останавливают, изменяя условия культивирования. Начинается дифференцировка клеток (желательно в один тип специализированных клеток) . (Рис 1-1)
  ЭСК назвали "лабораторными лошадками" регенерации (Petit-Zeman, 2001), потому что регенерация органов практически невозможна за счет резерва собственных дифференцированных клеток. ЭСК "банкируются" in situ и повторяют фрагменты эмбриогенеза в тканях взрослого организма. Некоторые линии ЭСК человека удавалось пассировать без изменения фенотипа более 2 лет. Такие культуры прошли 300-450 циклов удвоения клеток без возникновения анеуплоидии или опухолей. При устранении фидера, ростовых факторов, а также после добавления сигналов начиналась медленная многоэтапная дифференцировка ЭСК в популяции дефинитивных, необратимо специализированных клеток. Интересно, что дифференцировка ЭСК в нейроны, кардиомиоциты идет за 10-15 дней, тогда как аналогичные процессы линейного созревания клеток в эмбрионе идут 5-7 нед (Kawasaki H., Suemori H., Mizuseki K. et al.,2002). В последнее время стали использовать сигналы фидерного слоя клеток для ускоренной дифференцировки клеток в культуре.
  В зародыше и взрослом организме потенции генома стволовых клеток существенно варьируют по "ассортименту" фенотипа специализированных клеток. Более ранние, тотипотентные ЭСК дифференцируются в любую из 250 линий специализированных клеток органов. Необходимо подчеркнуть, что ЭСК in vitro не продуцируют клеток трофобласта, плаценты, т.е. потенции генома ЭСК меньше зиготы.. Соответственно биологический статус ЭСК меньше статуса раннего зародыша. Плюрипотентные ЭСК дают более ограниченный спектр фенотипов. Например, мезенхимальные стволовые клетки (МСК), локализованные в опорно-сосудистом каркасе органов, дифференцируются в культуре только в клетки хряща, кости, кардиомиоциты и миоциты. Монопотентные стволовые клетки (мышц, жировой ткани, периферических нервов) созревают до одного преобладающего фенотипа клеток. Стволовые региональные клетки взрослого организма наделены мультипотентностью- пластичной плюрипотентностью, которая сильно варьирует в контексте органа-реципиента. Так, пересадки гематогенных стволовых клеток в мозг, сердечную или скелетную мышцу приводили к образованию ткане-специфичных ростков донорской ткани в органах реципиента. Однократное переливание 0,5 л донорской женской крови мужчине-реципиенту химеризует женскими клетками все паренхиматозные органы (Korbling M., Katz R.L., Khanna A. et al., 2002). Большое внимание уделяется сейчас мультипотентным МСК взрослых органов, поскольку эти клетки хорошо мигрируют и многократно химеризуют ткани. В свою очередь, пересадки нейрональных стволовых клеток в печень, мышцу или иммунную систему сопровождались тканеспецифичной перестройкой фенотипа донорских клеток. Хорошо доказано, что сигналы микроокружения играют решающую роль в судьбе трансплантированных ЭСК/МСК in situ. Существенно, что ЭСК/МСК при дифференцировке в культуре давали лишь "природные" линии дифференцированных клеток, которые встречались в организме взрослого животного и человека. Никаких новых типов клеток или неизвестных линий дифференцированных клеток из ЭСК не возникало in vitro (O'Shea, 1999). Наблюдения подтверждены другими многочисленными работами, что снижает риск осложнений и повышает безопасность клеточной терапии дериватами стволовых клеток.
  Тотипотентность ЭСК in situ проверяется несколькими способами. При трансплантации в морулу или бластоцисту донорские ЭСК встраиваются сначала в эпибласт и провизорные органы. Далее они мигрируют практически во все органы плода. После рождения ростки донорской ткани, дериватов ЭСК, выявляются и прогрессируют в костном мозге, кишечнике, коже, костях, печени, головном мозге, иммунной системе. Показано, что миграция ЭСК в ранних зародышах велика и практически не лимитирована до стадии сегментации. Пересадки ЭСК использовали для подсчета числа founder cells в закладках органов мыши, крысы, приматов. Усредненная эффективность химеризации линейно зависела от числа донорских клеток, заселивших эпибласт - главный орган образования founder cells. Идентичные пересадки МСК в морулу/бластоцисту овец и мышей приводили к накоплению и размножению донорских клеток только в костной, жировой, гематогенной, иммунной системе. МСК лишь ограничено накапливались в строме печени, легких, почек и мозга (Liechy KW, MacKenzie TC, Shaaban Af, 2000). Несовпадающее распределение МСК и ЭСК по тканям развивающихся эмбрионов является их важным отличительным маркером. Имплантация ЭСК и МСК в ранние зародыши никогда не заканчивалась малигнизацией. Показано, что ЭСК мыши (приматов) встраиваются в морулу, бластоцисту, эпибласт зародыша крысы. Закономерности встраивания МСК в эпибласт не изучены. Только часть территории эпибласта доступна для встраивания МСК. Поразительно, как клетки разных видов без помех взаимодействуют на уровне рецепторов, сигналов, программ, темпов развития химер. Химеры реализуют один трехмерный план строения без морфоаномалий (тератогенеза). У клеточных химер всегда доминирует морфотип беременной самки (O'Shea, 1999). Для скрининга тотипотентности in situ ЭСК пересаживали в разные органы иммунодефицитных мышей, либо изогенных животных (для исключения иммунного отторжения). Если пересадки предимплантационных зародышей в мозг всегда заканчивались резорбцией, то пересадки ЭСК в виде агрегатов (эмбриональных телец) давали стабильные ростки дифференцированной нервной ткани. На стадии эмбриоидных телец постмитотические клетки начинали дифференцироваться in vitro, необратимо теряя способность генерировать опухоли. Пролиферирующие незрелые ЭСК при пересадке в брюшную полость, под кожу или под капсулу почки давали опухоли (эмбриотератомы) у взрослых особей. Чем медленнее росла опухоль, тем больше была доля спонтанно дифференцированных клеток (Robertson, 1987; Watt, 2000). Эмбриотератомы содержали эпителий тонкого кишечника, миоциты, нейроны, кардиомиоциты, гладкомышечные клетки, фрагменты волос, кожи, хряща и кости. .
  Поэтому линии ЭСК тщательно проверяются на канцерогенность в случае пересадок животным. Пересадки ЭСК в мозг никогда не сопровождались возникновением кардиомиоцитов, миоцитов или кожи. В свою очередь трансплантаты ЭСК в сердце не давали нейронов или секреторных клеток кишечника. Локальная дифференцировка ЭСК in situ, как правило, контролировалась "сигналами" микроокружения. Тотипотентность ЭСК человека проверяли по понятным причинам лишь на животных. Ограниченные клинические наблюдения также подтвердили отсутствие аномалий дифференцировки стволовых клеток в трансплантате.
  Рост ЭСК в культуре идет клонами. В отличие от обычного экспоненциального размножения клеток в культуре, клон не растет, а самообновляется. Только в клоне сохраняется микроокружение, позволяющее стволовым клеткам удерживать необычно высокую генетическую потенцию. Эта особая геномика клеток сохраняется и воспроизводится только в плотной сфере. Каждая культура ЭСК имеет варьирующую долю клеток в суспензионных агрегатах (сферах). Одиночные клетки, покидая клон, неизбежно дифференцируются. Лишь агрегаты составляют суммарное пространство плюрипотентных клеток, остальные клетки специализируются под влиянием микроокружения. Большинство новых фенотипов возникает по периферии клонов. В каждом клоне клетки одновременно дифференцируются в разные фенотипы, подтверждая важность микроокружения (мозаика инструкций-сигналов может быть весьма разнообразной даже внутри одного клона).
  Известно, что в первичной культуре эмбриобласта (эпибласта) обязательно сохраняют первичные агрегаты клеток при получении линий ЭСК (Talbot N.C., Carrett W.M., 2001) Одноклеточные суспензии эпибласта/эмбриобласта зародышей человека и обезьяны практически не выживали в первичной культуре. Внешние слои клона более активно пролиферировали в среде с ростовыми факторами (LIF, SCF, IL-6, bFGF, EGF,TGF-alpha). Состав и оптимальные концентрации факторов пролиферации подбираются эмпирически в каждой культуре. Более продвинутые клетки по периферии сфер гибли в селективной среде, предназначенной для выживания наименее зрелых популяций. Когда клеточные агрегаты достигали размера 30-50 клеток, наступало равновесие между пролиферацией и апоптозом. Каждый клон - это микромодуль самообновления клеток в постоянном миниобъеме. Репертуар прогениторных клеток постоянно меняется без изменения самого стволового пространства. Провизорные клоны сменяются дефинитивными клетками за счет множественных циклов самообновления клеток. Спонтанную дифференцировку и гибель клеток предотвращали повторным диспергированием агрегатов. Клоногенность - это способность культуры генерировать разную численность клон-инициирующих клеток на мл. Пока клоногенность существующих линий находилась на уровне 1-2 % (Pera M.F., 2001). Сигналы, запускающие инициацию клонов, практически не изучены. Выявлены варианты ЭСК, в которых исходно экспрессированы разные наборы генов, отвечающих за два главных качества клона: 1) плюрипотентность генома 2) самообновление прогениторных клеток (Morrison S.J., Shah N.M., Anderson D.J.,1997).
  Даже малые концентрации сыворотки полностью блокировали клон-инициирующие клетки. В бессывороточной среде с помощью комбинации митогенов (bFGF, LIF) в лучшем случае удавалось поднять инициацию клонов в 3,5 раза. В каждом клоне присутствовали две популяции незрелых клеток с разным механизмом пролиферации. В ядре клона пролиферировали самообновляющиеся клетки с минимальным фенотипом и максимальной плюрипотентностью. На периферии клона некоммитированные прогениторные слои вступали в цикл созревания, который сопровождался усложнением белкового фенотипа и уменьшением генетической потентности клеток. Если в зародыше млекопитающих на стадии органогенеза половина клеток приходилась на провизорные некоммитированные клоны стволовых клеток, то в фетальной печени одна стволовая гематогенная клетка уже приходилась на 100000 гематогенных клеток. В кроветворной ткани взрослого человека насчитывается одна гематогенная стволовая клетка на 2-10 миллионов коммитированных клеток. Даже в короткоживущих организмах как дрозофила, многие клоны стволовых клеток в яичнике имеют среднюю продолжительность жизни около 20-25 дней (Morrison S., Shah N.M., Anderson D.,1997). Пока точно количественно не подсчитано, какое количество ЭСК выживает в разных органах человека и мыши после рождения.
  Недавно получены линии мышиных ЭСК с эффективностью образования клонов порядка 20%. Их источником стали культуры ЭСК, меченые цветными белками, поставленными под промотор ранних генов (Rex-1), экспрессированных в ЭСК. Все светящиеся клетки отбирали на сортере, а линии получали из высокоочищенного сырья, поскольку продвинутые клетки всегда блокировали выживаемость и пролиферацию клон-инициирующих клеток. Эмпирически из очищенной популяции клеток удавалось получить культуры с 10-20% клоногенностью (Pera M.F., 2001). Существенно, что часть таких клонов стабильно сохраняла высокий индекс клеточной пролиферации.
  Более продвинутые клетки не только конкурировали со стволовыми незрелыми клетками за лимитирующие факторы питания, но и секретировали в среду факторы, блокирующие плюрипотентность генома незрелых клеток. Культивирование стволовых клеток всегда начиналось с селективной среды, где 99% продвинутых клеток погибали, а малая часть выживших стволовых клеток начинала пролиферировать.
 
 
 
  Рис 1-2. Основные характеристики ЭСК
 * происхождение: клетки эпибласта, половые прогениторные клетки, перенос ядра донорской клетки в цитоплазму ооцита
 * стабильная пролиферация без генетической модификации и онко-иммортализации
 * клоногенный рост с самообновлением клеток
 * плюрипотентность генома: источник всех фетальных и взрослых клеток кроме трофобласта и провизорных транзиторных клеток (нервный гребень и т.п.)
 * рецептор - и GP-130- опосредованная супрессия дифференцировки плюрипотентных клеток
 * Oct4 -опосредованное ингибирование транскрипции генома
 * Отсутствие G1 -фазы митоза
 * Отсутствие Х - инактивации в ХХ - клетках
 * Колонизация всего зародыша, включая половой зачаток
 * Видовые и тканевые различия в чувствительности ЭСК к митогенам и индукторам клеточной дифференцировки
 
  Периферия клона использует "навигационную" информацию для направленного перемещения клеток. Пролиферация и миграция клеток отвечают за экспансию клонов и рост зародыша. Клон - эта повторяющийся модуль переноса и реализации software онтогенеза, в котором тотипотентность генома кодируется сначала наборами мРНК, а позднее - новым репертуаром белков.
 
 Рис 1-3а Схематическое устройство клона ЭСК Рис 1-3б Клон ЭСК с шлейфом мигрирующих клеток (фазово-контрастная микроскопия)
  В начале развития клон содержит прогениторные слои с одним набором мРНК. В конце развития тот же клон поставляет другие клетки с другим профилем мРНК. Простые клеточные деления вне клона потребовали бы огромного объема для реализации программ развития. Морула и бластоциста являются уникальной стволовой нишей, в которой пересаженные плюрипотентные клетки репрограммируются до потенции первых бластомеров. Предполагают, что это может быть связано с наличием уникальных белков репрограммирования - Id1,Id2, Id3 и Id4 (inhibitor of differentiation). Плюрипотентность эмбриобласта и тканей постимплантационныех зародышей обеспечивается разными комбинациями ID (Yen J., Manova K., Benezra R., 1997). Трофобласт, строма фидера для выращивания ЭСК, включая клетки Сертоли, также секретирует в среду наборы ID (Chaudhary J., Johnson J., Kim J. et al., 2001). Известно, гематогенные колонии из костного мозга взрослого человека синтезируют бета-цепь взрослого гемоглобина. Если взрослую региональную гематогенную клетку человека пересадить в бластоцисту мыши, то в химерном зародыше потомство донорских клеток начинают синтезировать сперва зародышевый, затем фетальный, позднее взрослый гемоглобин. Фенотип клеток четко идентифицируется разными генами вариабельной цепи гемоглобина. Поэтому пересадки стволовых гематогенных клеток взрослых пациентов в бластоцисту мыши (кролика) пытаются использовать для создания гуманизированных бластоцист мыши. Бластоцисты животных уже используют для репрограммирования генома и возвращения тотипотентности региональным стволовым клеткам человека. Бластоциста является природным миниинкубатором для репрограммирования ДНК более продвинутых клеток к нулевой точке развития. Аналогичным образом из гуманизированных химер в постимплантационном периоде можно рекапитулировать клетки первичной эктодермы, желточного мешка, сомитов и нервного гребня уже существовавшего человека.
  Все сомиты зародыша мыши возникают примерно из 100-150 стволовых клеток эпибласта, занимающих строго фиксированную территорию (Dale K.J., Pourquie O., 2000). В клонах-предшественниках сомитов работают два гена-таймера (c-hairy1, lunatic fringe), которые обеспечивают ритмические, периодические волны пролиферации прогениторных клеток. Плюрипотентность пролиферирующих прогениторных клеток контролируется с помощью продукта гена Hes, а пролиферация клеток - за счет спаренного рецептора Delta-Notch. Далее в каждом сомите разворачивается индивидуальный профиль экспрессии генов во времени.
  Сравнительный анализ показал, что линии ЭСК человека имеют существенные отличия от ЭСК животных по набору параметров: выживаемость и чувствительность к разным условиям культивирования, зависимость от митогенов и факторов апоптоза, факторов цитодифференцировки и сигналов, контролирующих функциональное созревание и поведение клеток in vitro (Carpenter M.K., Inokuma M.S., Denham J. et al., 2001). Поэтому данные, получаемые на ЭСК мышей, с большими оговорками экстраполируются на человека. Исследования генома плюрипотентных клеток животных, включая эффект лекарств, имеют сигнальное, но не решающее значение, особенно в областях прикладной медицины. Здесь нужны прямые эксперименты на ЭСК человека.
  Существенно, что тотипотентность клона больше тотипотентности отдельных ЭСК (рис 1-2). Клон - это ансамбль тотипотентных ЭСК. Каждая ЭСК редактирует наборы мРНК по своим программам. Очевидно, что гетерогенный клон перерабатывает больше информации на языке мРНК, чем одна тотипотентная клетка... Основная часть мезенхимы (первоисточник соединительнотканного и сосудистого каркаса паренхиматозных органов) происходит из мезодермы. Ранее предполагали, что клоны паренхимы (функциональных повторяющихся единиц органа) и мезенхимы (опорная строма + коммуникации) возникают в зародыше независимо. Лишь недавно установлено, что практически все клоны провизорных некоммитированных клеток на стадии органогенеза представлены мозаикой тотипотентных провизорных клеток, имеющих ранние фенотипические маркеры трех зародышевых листков и мезенхимы. Любой такой клон представляет фрагмент тотипотентной ткани - той первичной "строительной глины", из которой "лепится" ранний зародыш. В лаборатории Герхарта налажено лабораторное получение экто-, мезо- и эндодермы из агрегатов (эмбриоидных телец) ЭСК, постоянно содержащих вкрапления мезенхимальных стволовых клеток. В зародыше мыши сначала количественно превалируют клоны провизорной экстраэмбриональной ткани. Как в культуре ЭСК, так и в ранних зародышах, появление экстраэмбриональной эндодермы маркируется экспрессией Hox-12 (Hox-4-7 гена) (Labosky P.A., Weir M.P., Grabel L.B.,1993). Только к середине беременности (10-11-й день) доля плюрипотентной ткани самого зародыша резко увеличивалось (Beddington R., Robertson E.J., 1999). До сих неизвестно, можно ли тотипотентность ЭСК довести до потенции генома зиготы. Если ЭСК пересадить в бластоцисту с удаленным эмбриобластом, развитие зародыша необратимо останавливается. В то же время пересадки ЭСК в 2-36-клеточный зародыш мыши ведут к внешне нормальному развитию химеры. Следовательно, потенциал ЭСК стыкуется с ранними бластомерами, но не стыкуется с клетками эмбриобласта/эпибласта. Это подтверждается невозможностью трансформации ЭСК в клетки эпибласта/эмбриобласта in vitro. (Smith A.G., 2001). Некоторые исследователи до сих пор считают иммортализованные линии ЭСК лабораторным артефактом - экспериментальным "трюком" обновления клонов, возникшим под влиянием эпигенетических сигналов. Поведение плюрипотентных клеток в культуре и зародыше существенно отличается. Ясно, что генетические потенции исходных стволовых зародышевых клеток больше, чем линий ЭСК. Даже в культуре под влиянием факторов микроокружения ЭСК способны генерировать множество фенотипов клеток. Гораздо хуже поняты возможности ЭСК в плане повторения событий эмбриогенеза in vitro.
  Пересадки ЭСК в морулу, митозы в которой были остановлены цитокалазином, приводили к рождению зародышей, органы которых были собраны исключительно из донорских клеток. Неразвивающаяся морула играла важную роль пространственной матрицы, направляющей 3-D-взаимодействие ЭСК. Новый зародыш из донорских ЭСК развивается и на базе тетраплоидных бластомеров, которые прямо не участвуют в развитии.
  Интенсивная миграция и колонизация донорскими ЭСК ранних зародышей не является каким-то эксклюзивным феноменом. Стволовые клетки взрослых тканей также имееют тенденцию к миграции и обмену. Пересадки сердца, печени, почек сыграли важную роль в изучении судьбы донорских стволовых клеток в организме реципиента. Оказалось, что после пересадки женских донорских органов мигрирующие стволовые клетки ХХ генотипа выявлялись практически во всех органах реципиента мужского пола через 10-12 месяцев после трансплантации. В количественном отношении посттрансплантационная химеризация сопоставима с химеризацией беременной матери клетками развивающегося эмбриона. В ряде случаев такое смешение гено/фенотипов сопровождалось частичной иммунотолератностью к антигенам донорских клеток (Uuaini F., Urbanek K., Beltrami A. et al.,2002)
 
 
 
 Рис 1-4 Клональная организация тотипотентной ткани зародыша на стадии органогенеза А- компьютерная 3D-модель зародыша,
 Б- клон провизорных некоммитированных клеток под сканирующим электронным микроскопом В- клон провизорных некоммитированных клеток
 Г,Д- межклеточные взаимодействия в клоне
  Почему клон провизорных мультипотентных ЭСК следует считать центральным звеном органогенеза? Клон передает информацию наборами мРНК. На периферии клона часть мРНК транслируется в изменение фенотипа клеток. На краю сферы появляются клетки с цитоскелетом, аппаратом локомоции для реализации "навигационной" информации. Подавляющее число клеток на периферии клонов направленно мигрируют, колонизуя новые пространства зародыше. Например, все структуры и центры головного мозга зародыша создаются за счет пришлых прогениторных клеток. Серийное размножение провизорных клонов зародыша необходимо для подготовки software органогенеза, которую невозможно уместить в нескольких клетках. В отличие от условий in vitro, в целом зародыше экспансия клонов контролируется генами сегментации и органогенеза (Нох-генами). Комбинации Нох-генов в клетках ретранслируются в трехмерную карту зародыша (включая численность клеток в будущих органах). Карта провизорных органов зародыша создается за счет прямых взаимодействий клонов трех зародышевых листков и мезенхимы. Организованный рост мезенхимы определяет организованный рост паренхимы каждого органа. В отличие от специализированных клеток ЭСК не являются полными автоматами. Сигналы микроокружения существенно влияли как на поведение, так и судьбу незрелых клеток. Факторы среды играли решающую роль в выборе пути рестрикционного созревания стволовых клеток как in vitro, так и in situ. Стволовые клетки мозга и полового зачатка характеризовались повышенной выживаемостью в переживающих фетальных тканях (клоны нейральных стволовых клеток удавалось выделить после 48-72 ч хранения ткани в холодильнике при +4С?). Поскольку парциальное содержание О2 в стволовых пространствах меньше чем в артериальной крови (2-3%), то измерение выживаемости ЭСК в стандартной газовой фазе культуры давали заниженные результаты. В ряде случаев выращивали СК при низком содержании кислорода в газовой фазе (Chakravarthy M.V., Spangenburg E.E., Booth F.W., 2001).
  Первая плюрипотентная провизорная ткань зародыша мыши в количестве 600 клеток эпибласта появлялась на 6,5 дне беременности. Клетки эпибласта под влиянием экстраэмбриональной мезодермы подвергались эпителиомезенхимальной трансформации. Эти уникальные 600 клеток генерировали в течение нескольких циклов пролиферации коллекцию "founder cells" для всех закладок органов (Marshak D.R., Gottlieb D., Gardner R.L., 2001). Сегрегация герментативных клонов также происходила в эпибласте. К сожалению, клетки эпибласта невозможно идентифицировать по морфологическим деталям. Все клетки эпибласта маркировались поверхностным белком Crypto, содержащим домен EGF и участок, богатый цистеином (Beddington R., Robertson E.J., 1999). Зародыши мыши Crypto-/- останавливались в развитии на стадии эпибласта. Если максимальное число клеток в эмбриобласте мыши составляет порядка 350, то то в эпибласте численность клеток достигает 600. Поскольку клетки эпибласта интенсивно мигрируют и перемешиваются, это объясняет интенсивную химеризацию зародышей донорскими ЭСК, пересаженными в бластоцисту (Patrick P., Tam L., Gam G.M. et al., 2001). В эпибласте формируются главные центры клонального размножения и направленной миграции прогениторных клеток. Здесь начинается формирование зародышевых листков. Центральное событие гаструляции - это превращение двухмерной мозаики клеток эпибласта в трехмерный зародыш.
  Пересадки нормальных ЭСК в зародыш Crypto-/- позволяли формировать химерную первичную полоску - вторую важнейшую провизорную плюрипотентную ткань. Этап формирования осей развития и миграции эпибласта маркировался экспрессией следующих генов: Hes-1, Lim-1, HNF3, Otx-2. Перечисленные гены необходимы для инициации сегментации зародыша. Любая нокаут мутация этих генов частично или полностью компенсировалась пересадкой нормальных ЭСК в эпибласт. Нескольких нормальных тотипотентных клеток в зародыше достаточно, чтобы пройти лимитирующую стадию органогенеза, где временно работает транскриптаза (типа Crypto). Ранние гены развития мозаично включаются лишь в части эпибласта, а не сразу во всех клетках. Это открывает новые способы внутриутробной клеточной реконструкции наследственных дефектов развития и тератогенеза. Надежная визуализация клеток эпибласта возможна только с помощью цветных белков, поставленных под промотер ранних генов (например, гена Crypto).
  До сих пор не удалось превратить ЭСК в бластоцисту или клетки эпибласта. Получение лабораторного эпибласта из ЭСК - дело ближайшего будущего. Первые попытки получения эпибласта из ЭСК мышей в условиях культуры уже опубликованы (Rathjen J., Lake J.A., Betesse M.D. et al.,1999). ЭСК выращивали в среде ДМЕМ/Игл с 10% FCS без фидера, с добавлением LIF и кондиционированной среды после выращивания клеток гепатомы HEP-G2. Дифференцировка эмбриоидных агрегатов начиналась после удаления из среды LIF. В фазе пролиферации ЭСК экспрессировали типичные маркеры плбюрипотентных незрелых клеток - Oct4, щелочную фосфатазу, LIF, IL-6-рецептор, SSEA1- поверхностный антиген клеток. После остановки пролиферации дифференцировку контролировали по динамике экспрессии трех "ранних" генов. Созревание клеток эпибласта (первичной эктодермы) маркировали по нарастанию экспрессии мРНК гена FGF-5. Синхронно происходило снижение уровня мРНК генов Rex-1 и Gbx-2 до нулевого уровня в случае полной дифференцировки незрелых ЭСК в клетки эпибласта. Зрелые клетки эпибласта, возникшие in vitro, характеризовались утерей мРНК Oct4, Rex-1 и Gbx-2, но высоким уровнем мРНК FGF-5. Утрата Oct4 по времени совпадала с утерей способности новобразованных клеток эпибласта встраиваться в бластоцисту и химеризовать эмбриобласт ранних зародышей. Существенно, что образование клеток первичной эктодермы из ЭСК в культуре имело обратимый характер. При добавлении LIF и среды для выращивания ЭСК, фенотип клеток первичной эктодермы за две недели возвращался к фенотипу исходных плюрипотентных ЭСК мышей.(Rathjen J., Lake J.A., Bettesse M.D. et al., 1999).
  ЭСК, полученные пересадкой ядер соматических клеток, проложили путь к
 изучению переноса поведенческих навыков и элементарных физиологических программ у реципиента. С помощью пересадок ЭСК человека в сетчатку, гиппокамп, таламус, кору больших полушарий достигли ощутимой "гуманизизации" органов чувств и мозга животных с целью отследить эффект трансплантата на высшие функции ЦНС. Начало было положено передачей характерных навыков пения от перепела цыпленку с помощью пересадки кусочков нейроэктодермы (Long K.D., Kennedy G., Balaban E, 2001). Границы допустимых вмешательств в реконструктивной физиологии животных еще неотчетливо видны, поскольку не известен конечный результат таких действий.
  Трансплантируя стволовые клетки, экспериментатор повторяет "слепые игры" эволюции с клетками мозга, приоткрывая пути участия стволовых клеток в сборке и сортировке сетей ЦНС. Если эволюция вслепую испытывает возможности ЭСК в сборке органов, то экспериментатор ищет идей и подтверждений того, каким образом стволовые клетки могут быть использованы в медицине для лечения заболеваний. Необходимо подчеркнуть, что эксперименты с пересадкой ЭСК человека всегда ограничены опытами на животных. Никакие знания на животных не могут служить полным обоснованием и достаточной платформой для апробации ЭСК на человеке. Только клиницист, а не экспериментатор определяет новые критерии и меру риска, позволяющие начать клинические испытания стволовых клеток как новый способ помощи больным людям, остающимся без лечения, с целью спасения или продления их жизни . Жестких правил и критериев, позволяющих транслировать знания предклинки в начало клинических испытаний, по-видимому не существует из-за сложности и невоспроизводимости многих ситуаций у постели больного, где начинает действовать многолетний опыт и экспертиза врача. Фундаментальные исследования ЭСК остаются лишь частью знаний, которые использует клиницист для принятия решений в новых ситуациях.
 
  3. Основные источники и способы выделения ЭСК
  (историческая справка)
 
  Хотя концепция стволовой клетки была предложена Александром Максимовым в 1908 г для кроветворной ткани, статус большой науки эта область получила в последнее десятилетие ХХ века. Первая попытка лабораторного оплодотворения яйцеклетки млекопитающих датирована 1878 г. Но лишь в 1959 г. в США был получен первый кролик путем искусственого оплодотворения. Первые природные тотипотентные клетки человека оказались в руках экспериментаторов только вначале 60-х годов.
  В начале 70-х годов ХХ века Leroy Stevens обнаружил высокую частоту спонтанного возникновения тератокарцином в половых зачатках мышей линии 129. Эти опухоли для экономии он размножал в брюшной полости взрослых животных той же линии (а не в дорогостоящей культуре клеток). Среди конгломератов опухолевых клеток наблюдал появление неорганизованных популяций дифференцированных клеток: фрагментов кожи, хряща, волос, скопления миоцитов и кардиомиоцитов, кроветворной ткани (Репин В..С., 2000). Спонтанно возникшие тератокарциномы в культуре росли неприкрепленными клонами пролиферирующих плюрипотентных клеток, из которых часть подвергалась спонтанной дифференцировке в специализированные клетки (производные всех трех зародышевых листков). Стивенс первый высказал догадку, что дифференцированные клетки образуются не из раковых клеток, а из малой примеси пролиферирующих плюрипотентных половых зародышевых клеток, которые он описал как "эмбриональные стволовые клетки" (ЭСК) . С этой первой работы термин ЭСК прижился в литературе. В начале 70-х Stevens и Solter независимо друг от друга нашли второй источник эмбриональных стволовых клеток. Пассированную линию плюрипотентных эмбриональных клеток можно получить, если предимплантационные зародыши мыши вводить в брюшную полость, либо под кожу взрослым мышам. В 1975 году Минц доказала, что введение предимплнатационных зародышей мыши/крысы в любую ткань вне матки ведет к образованию опухоли из части клеток зародыша (эмбриокарцином). Высокоочищенные линии эмбриокарциномы (ЭК) были получены в результате многочисленных пассажей культуры через многие поколения животных. Авторы сразу обратили внимание на сходство поведения и фенотипа (ЭК) и тератокарцином (ТК). В культуре плюрипотентные клетки размножались клонами, причем часть клеток, покидавших клоны, подвергались разнообразной спонтанной дифференцировке. При этом клетки в клоне продолжали интенсивно самообновляться после многочисленных пассажей. Разными способами удавалось повышать число клон-инициирующих клеток в культуре. Таким образом было доказано, что плюрипотентность наследуется новыми поколениями клеток, возникающими в клоне, однако быстро теряется вне клонов. Упомянутые авторы первыми показали, что присутствие фидера (монослоя фетальных фибробластов) позволяет сохранять больше плюриптентных клеток в культуре. В дальнейшем из опухолей, размноженных пассажами через животных, удалось изолировать несколько линий эмбриокарцином. После Стивенса во многих лабораториях мира было изолировано более 100 линий ЭК (эмбриокарцином) и ТК (тератокарцином). Для лабораторных исследований линии мышиной тератокарциномы (129/sv, F19, F8, JM-1, E14TG2f, Zin40, CGR 86, R1, CCE) до сих пор остаются самой распространенной, дешевой моделью плюрипотентных клеток. Множество линий ТК и ЭК коммерциализованы биотехнологическими компаниями с готовым клеточным паспортом (иммунофенотип, хромосомный анализ, профиль экспрессии мРНК, профиль рецепторов и белков внутриклеточной сигнализации). Рядом авторов предложена классификация ТК как по происхождению, так и фенотипу клеток (Andrews P.W., Przyborski S.A., 2001). Существенный недостаток большинства линий ТК - быстрая утрата тотипотентности в пассажах, ограниченный потенциал цитодифференцировки клеток. Многие линии ТК оказались анеуплоидными, а потому генетически нестабильными (имеется в виду фентип клеток в пассажах), что снижает воспроизводимость результатов. Сопоставление фенотипа ЭСК и ТК привело Пирса к важной гипотезе о том, что многие опухоли возникают как ошибки созревания региональных стволовых клеток (Pierce, 1974). Для многих раковых линий характерна генетическая нестабильность, как и для анеуплоидных линий ТК. Вторым недостатком ТК и ЭК является риск малигнизации трансплантата. Третьим недостатком ТК и ЭК является смешанная дифференцировка прогениторных клеток в культуре. По этой причине линии ТК чаще всего использовались в опытах на животных в предклиническую фазу для изучения судьбы трансплантата (миграция, пролиферация, дифференцировка клеток, апоптоз, реваскуляризация трансплантата, сроки выживания в разных органах). Описано несколько линий ТК человека (N2, NTERA-1, NTERA -2). По соображения биоэтики не было попыток получения ЭК человека.. Однако высокоочищенные линии ТК человека, проверенные по стандартным критериям биобезопасности, уже используются в клинических испытаниях, в том числе в виде клеточных трансплантаций для коррекции клинических проявлений заболевания. Эти тщательно отобранные линии сохраняют стабильный кариотип, высокий потенциал цитодифференцировки и имеют высокий индекс встраивания в ранние зародыши..
  В конце 70-х ХХ века Беатрис Минц и Карл Илменси из Ракового института (Филадельфия, США) первыми получили аллофенных зародышей мышей, смешивая в чашке петри клетки ТК с клетками нормальных предимплантационных зародышей (стадия 8-64 клеток). Зародыши - химеры из лабораторных и природных зародышевых клеток нормально развивались, проходили без аномалий внутриутробный период развития, а позднее нормально развивались в постнатальном периоде. Этим методом впервые получены межвидовые химерные организмы. Гетерогеномные зародыши реализовали один план морфогенеза без морфологических уродств. Пересадки ТК в предимплантационные зародыши не нарушали работу генов сегментации и гомеозиса, контролирующих 3D - карту зародыша. Это открытие сдалало возможным пересадки ТК для коррекции наследственных метаболических болезней, поскольку пересадки ЭСК не сопровождались аномалиями морфогенеза.
  Использование фидерного слоя клеток для поддержания тотипотентности линий ТК оказалось полезным новшеством для следующего шага: выделения ЭСК из бластоцист мышей (Evans,Kaufman,1981; Martin,1981). Во-первых, клетки эмбриобласта нужно было отделить от трофобласта в культуре. Трофобласт мешал созреванию эмбриобласта в клетки эпибласта. Во-вторых, добавление 10-20% FCS+ меркаптоэтанол способствовало созреванию изолированных клеток эмбриобласта в клетки эпибласта. В-третьих, образование вторичных клонов эпибласта было необходимым условием возникновения ЭСК с неограниченным потенциалом пролиферации (Smith A.G., 2001).
  Ранние (предимплантационные) зародыши и фетальная абортная ткань оставались главными природными источниками ЭСК. Зародыш на стадии бластоцисты представляет собой типичную "стволовую нишу", в которой впервые четко разделены тотипотентные стволовые клетки эмбриобласта и поддерживающие клетки трофобласта (своеобразный фидер) (Рис 1-5-А). Клетки трофобласта вырабатывали кофакторы выживания и защиты, необходимые для сохранения и пролиферации плюрипотентных клеток внутреннего зародышевого слоя. Одновременно они блокировали неконтролированную пролиферацию эмбриобласта (позже - эпибласта) in situ. Малая доля клеток эмбриобласта бластоцисты сохраняла тотипотентность (1-2% клеток удавалось переводить в бессмертную самовоспроизводящуюся линию ЭСК). Репрограммирование эмбриобласта в линию ЭСК начиналось с механического отделения эмбриобласта от трофобласта. Затем фрагменты эмбриобласта помещали на "фидер" из фетальных фибробластов без факторов, ограничивающих пролиферацию тотипотентных клеток. Первые попытки выделения ЭСК сделал Пирс в 1957 г. Историю вопроса можно найти в превосходном обзоре (AndrewsP.W., Przyborski S.A.,Thomson J.A., 2001).
 В середине 70-х годов А.Я. Фриденштейн и сотр . показали, что строма гематогенной ткани взрослых мышей и человека содержит самообновляемые плюрипотентные клетки, которые можно клонировать в линии (Friedenstein A.J., Chailachyn R.K.,Latsinik N.V. et al., 1974, Friedenstein A.J.,Owen M.1988). В постмитотическом состоянии клетки этих линий дифференцировались в остеобласты, адипоциты, хондроциты, миоциты. Некоторые линии генерировали эндотелиоциты. В культуре эти линии формировали колонии фибробластоподобных клеток, хотя клетки размножались симметричными делениями (как прогениторные клетки). Фриденштейн назвал этот вид плюрипотентных клеток мезенхимальными стволовыми клетками. С этих пионерских работ началось изучение стволовых/прогениторных клеток мезенхимы.
 Почему получение линий ЭСК мышей было сразу сфокусировано на клетках эмбриобласта? Во-первых, клетки этой ткани имели максимальное фенотипическое сходство с клетками ТК. Во-вторых, только дериваты этих тканей удавалось длительно пассировать в незрелом статусе, сохраняя после многочисленных пассажей способность дифференцировки в разные линии.. В третьих, исходные клетки эмбриобласта никогда не генерировали клеток трофобласта. Это разделение позволяло новым поколениям клеток избирательно встраиваться в морулу/бластоцисту и заселять ткани, возникающие из трех зародышевых листков. Если дериваты трофобласта начинали быстро генерировать полиплоидные клетки, то производные эпибласта автоматически поддерживали нормальный кариотип, были резистентны не только к аномалиям кариотипа, мутациям, но и многим эпигенетическим сигналам. Сразу после имплантации клетки эпибласта зародышей мыши подвергались интенсивной, но ограниченной пролиферации (Dani C., Chambers I., Johnstone S. et al., 1998).Если интенсивно пролиферирующие клоны эпибласта своевременно изолировали из зародыша, затем кондиционировали среду ростовыми факторами, то малая часть клеток приобретала способность к неограниченной пролиферации. Природа этой ключевой трансформации клеток эпибласта остается неразгаданной. Расшифровка сигналов, останавливающих пролиферацию клеток эпибласта в имплантированном зародыше, поможет эмпирическим поискам условий лабораторного и полу-производственного наращивания клеток эпибласта в автоматическом режиме. Уже очевидно, что ЭСК найдут широкое применение в качестве высокоаффиного вектора доставки новой ДНК в ранние зародыши как с исследовательскими, так и медицинскими целями.
 Недавно было показано, что линии мышиных ЭСК с генотипом 40ХУ возникают легче, чем линии с генотипом 40ХХ. Более того, пересадки ЭСК с мужским генотипом 40ХУ в зону полового бугорка у зародыша самки вело к смене пола у развивающихся зародышей (Smith A.G., 2001).
 В середине 80-х очередной методический прорыв осуществил Marius Capecchi, разработавший метод двойного выключения (нокаута) материнской/отцовской аллели гена в ЭСК мышей. Этот подход оказался незаменимым для изучения функции известных/неизвестных генов в раннем эмбриогенезе мышей. При смешивании 60-80 "нокаут"-ЭСК с 20-30 клетками нормальных ранних зародышей мыши получают развивающуюся химеру, закладки органов которой включают разные пропорции донорских/реципиентных клеток. С помощью таких химер открыты функции многих генов органогенеза, зародышевых листков, гомеозиса и сегментации. Метод двойного нокаута пока эффективно работает только на ЭСК мышей, но не других млекопитающих. За последние годы техника химеризации ранних зародышей продвинулась вперед с помощью трансфицированных донорских ЭСК, маркированных так называемыми генами цветных белков. Многие морские беспозвоночные используют язык флуоресцентных белковых молекул для коммуникации в абсолютной тьме на большой глубине океана. Донорские клетки, окрашенные разными белками, можно вводить в ранние зародыши и отслеживать судьбу живых клеток прямо под флуоресцентным микроскопом. Можно в ЭСК вводить лишний ген под бактериальным промотором, реагирующим на тетрациклин. Этим способом можно включать внесенный ген в зародышах, внося в среду антибиотик. Процесс химеризации зародышей можно прослеживать в динамике с момента введения донорских клеток, изучать пролиферацию, миграцию и судьбу донорских популяций в разных частях зародыша, в том числе в динамике методом цейтраферной съемки.
 В настоящее время ЭСК мыши с двойным нокаутом практически любого гена поставляются на рынок биотехнологическими компаниями за 1500-2000 ам.долларов/ 2-3 млн клеток. За последние годы техника химеризации ранних зародышей донорскими стволовыми клетками достигла пределов эффективности. Так, пересадки одной гематогенной стволовой клетки человека в 8-клеточный зародыш мыши вызывали "гуманизацию" сразу нескольких органов мыши.
 С помощью двойных делеций в ЭСК удалось получить мышей, копирующих мышечную дистрофию Дюшенна, наследственную атаксию-телангэктазию, другие наследственные фатальные заболевания детей. Современная биология пополнилась новым каталогом болезней мышей, копирующих основные наследственные болезни человека.
  Мартин получил первую линию ЭСК мышей из бластоцисты в 1981 г. (Martin, 1981). В 1984-88 гг Эндрюс создал технологию получения "лабораторных" нейронов человека из линии тератокарциномы NTERA-2. В 1989 г описаны методы дифференцировки ЭСК тератокарциномы человека практически в любой тип специализированных клеток взрослого организма. В 1994 г Брижит Хоген из Вандербилтского ун-та, Нэшвилл, США опубликовала метод выделения примордиальных прогениторных клеток (ППК) из полового зачатка зародышей мыши. В 1995-96 гг Томсон изолировал бессмертные линии ЭСК из бластоцисты обезьяны.
 Качественные сдвиги в этой проблеме возникли в 1998 г после изолирования бессмертных линий ЭСК человека. Решающую роль сыграла компания Герон из Калифорнии, которая вложила в исследования Томсона и Герхарда 5 млн долларов. Государственные академические учреждения наложили мораторий на эти исследования. Этот вклад фирмы обернулся новой биологией. Изолирование ЭСК человека авторитетный журнал Science назвал третьим по важности открытием в биологии ХХ века (после открытия двойной спирали и программы "Геном человека"). С середины 90-х годов не прекращались попытки получения линий ЭСК человека в нескольких лабораториях США, Великобритании, Канады, Индии, Австралии/Синапура, Японии.
  В 1998 г ин-т репродуктивной биологии в Норфолке (Канада) первым наладил производство бластоцист человека из банка спермы и яйцеклеток. На втором этапе бластоцисты использовались для выделения линий ЭСК человека. Однако канадцы не успели первыми изолировать линию ЭСК человека из "лабораторных" бластоцист.
  В 1998 г Джеймс Томсон (Висконсинский ун-т, США) изолировал 5 линий ЭСК из замороженных бластоцист человека, оставшихся неиспользованными после суперовуляции и получения оплодотворенных яйцеклеток с целью получения беременности (Thomson J., Itskovitz-Eldor J, Shapiro S.S., 1998). Оригинальный метод получения ЭСК из бластоцисты человека изложен в знаменитом патенте 6.200.806, полученном в марте 2001 г Wisconsin Alumni Res Foundation (WARF). Патент частично продан фирме Geron на получение некоторых специализированных клеток человека (нейроны, кардиомиоциты, клетки печени, поджелудочной железы).
 
 
 
  Рис 1-5 Устройство бластоцисты (А) - под ф/к микроскопом (Б) - ошаренные ППК на подложке из вытянутых клеток Сертоли (сканирующая электронная микроскопия)
 
 
 
  Рис 1-6. Выделение ЭСК из бластоцисты человека
 
 Зародыши обязательно замораживали перед выделением ЭСК. Известно, что после замораживания большинство зародышей теряли способность проходить без отклонений послеимплантационный период развития в матке (одно из требований биоэтики для использования "остатков" зародышей после операции искусственного оплодотворения). После размораживания в среде Дульбекко с помощью игл и микроманипулятора выделяли эмбриобласт, предварительно помеченный флуоресцентно мечеными антителами. Мелко нарезанную ткань эмбриобласта выращивали в той же среде Дульбекко 9-15 дней над облученным фидером фетальных фибробластов с добавлением трех ростовых цитокинов (LIF, IL-6, SCF). Клетки в культуре интенсивно делились, формируя множество новых клонов по периферии микроэксплантатов эмбриобласта. Эти выросшие по краям эксплантата однородные колонии аккуратно собирали и повторно диспергировали (но не до одноклеточной суспензии). В суспензии ЭСК росли клонами, которые вновь диссоциировали пипетированием. Максимальную скорость экспансии клонов достигали повторной диссоциацией агрегатов на стадии 10-15 клеток. Новые клоны возникали через 5-7 суток. Каждый клон переносили в микроячейку и выращивали до агрегата из 40-50 клеток. Процедуру повторяли в пассажах, увеличивая плотность до 6-10 миллионов на чашку Петри (6 см). Из клонов удалось выделить несколько ХХ и ХУ линий ЭСК человека, которые через 100-120 пассажей сохраняли высокий темп клеточных делений, высокую активность теломеразы, минимальный белковый фенотип, тотальную потентность генома. Незрелые ощаренные клетки в мелких интенсивно пролиферирующих клонах экспрессировали на поверхности общий гетеродимерный рецепор для LIF, SCF и IL-6. В присутствии указанных митогенов сигнал от рецептора передается через трансмембранную субъединицу GP-130 в ядро. Детали устройства и работы этого рецептора показаны на рис (Рис 1-9). Активная сигнализация через рецептор в ядре блокировала остановку клеток в G0 -фазе, стимулируя немедленную инициацию G1 - фазы.
  Дифференцировка ЭСК начиналась (после смены среды, удаления фидера и LIF, добавления сыворотки) с прикрепления клеток к подложке и формирования цитоскелета. Ни одна из линий не являлась клоном, т.к. была получена не из одной клетки (а из кластера клеток). Рост клонов шел периферией. В фазу равновесия пролиферация прогениторных слоев уравнивалась апоптозом и миграцией клеток из клона. Рост клоногенной культуры определяли тремя параметрами: а) числом клонов/мл, б) долей клеток в клоне/общее число клеток в культуре, в) скоростью обновления клонов в культуре. Линии ЭСК в культуре формировали суспензионные клоны двух типов: а) плотные симметричные сферы, б) рыхло собранные уплощенные колонии. Компактные сферы были резистентны к трипсину и пипетированию, тогда как рыхлые неправильные колонии диспергировали на отдельные клетки, как трипсином, так и механически.
  В отличие от ЭСК мыши, линии ЭСК человека для сохранения пролиферации без дифференцировки требовали фидерного слоя клеток и LIF одновременно. Без LIF и фидера ЭСК прикреплялись к подложке, делились и формировали монослой из продвинутых диференцированных клеток. Сохранение потенциала пролиферации и незрелого фенотипа не являются частью автоматики этих клеток, а требуют специальных условий для реализации. При малых плотностях культивирования добавляли bFGF или сыворотку для поддержания пролиферации. Появился метод длительного пассирования (250 пассажей в течение года) линии ЭСК человека без фидера на поверхности матригеля в среде, кондиционированной супернатантом от выращивания фетальных фибробластов (Xu C., Inokuma M.S., Denham J. et al., 2001). Благодаря матригелю, удавалось нарастить больше клонов в единице объема. Поверхность микрочастиц матригеля была покрыта ламинином. ЭСК с помощью рецептора к ламинину прикреплялись к поверхности микрочастиц и формировали клоны (ламининовый рецептор - единственный рецептор клеточной адгезии, экспонированный на поверхности ЭСК человека и тератокарциномы). Даже при добавлении кондиционной среды после выращивания фетальных фибробластов и LIF, скорость роста клонов ЭСК оставалась невысокой (на порядок ниже, чем у Томсона). Без добавления супернатанта от фидера клоны ЭСК быстро теряли Oct-4 и вступали в скрытую фазу дифференцировки. Одиночные клетки после прикрепления автоматически дифференцировались. Образование смешанной культуры из дифференцированных распластанных по гелю клеток и клонов ЭСК было вторым недостатком метода.
  Линии ЭСК человека, трансплантированные в виде суспензии одиночных незрелых клеток, генерировали тератомы в тканях взрослых иммунодефицитных животных (Odorico J.S., Kaufman D.S., Thomson J.A., 2001).
  В 1998 г Джон Герхарт (Ун-т Джона Гопкинса, Балтимор, США) впервые изолировал бессмертные линии половых прогениторных клеток (ППК) из полового зачатка фетусов 4-5 недели гестации. Через 2-3 недели половой зачаток человека необратимо изменялся, хотя фенотипически сохранял те же клетки. Однако выделить ППК в виде бессмертной линии из зародышей более поздних сроков пока никому не удалось. ППК возникают в желточном мешке на 3-й неделе развития. Эти экстраэмбриональные провизорные клоны через 1-2 недели мигрировали в зону половых бугорков зародыша, где формировали "дормантные" популяции прогениторных плюрипотентных клеток. Значительная часть ППК сохраняется без изменений в зародыше вплоть до рождения. С ППК работать легче, поскольку этой ткани в фетусе больше, чем клеток эмбриобласта (Shamblott M.J., Axelman J., Gaerhart J. et al., 1998). Технология получения ППК запатентована в 1998 г (патент 6245566 от 12 июня 2001 г). Пересадки аллогенных ППК уже используют для лечения мужского бесплодия, поскольку донорские клоны ППК хорошо встраиваются и колонизируют иммунопривиллегированные вакантные зоны эпителия канальцев (Shinohara T., Avarbok M.R., Brinster R.L.,1999; Shinohara T., Orwig K., Brinster R.L., 2001). Данный метод особенно важен для получения зародышей-трансгенных химер, которые переносят новый генетический вектор в половые клетки и обеспечивают вертикальную передачу нового гена потомству. Существенно и то, что с фетальной абортной тканью можно работать в исследовательских лабораториях. Изолированную ткань полового зачатка 4-5 недельных фетусов диспергировали до взвеси одиночных клеток с помощью смеси коллагеназы IV-V, гиалуронидазы и ДНКазы. Ферментативное отделение ППК от стромальных клеток Сертоли необходимо для активации пролиферации ППК. Клетки Сертоли синтезируют набор антимитогенов и специальных факторов, удерживающих ППК в неактивном "дормантном" состоянии (Рис 1-6-Б)
  Первичную культуру ППК также выращивали над слоем фидера (первый-второй пассаж фетальных фибробластов). Для стимуляции пролиферации ППК в среду добавляли bFGF, LIF и форсколин (стимулятор уровня цАМФ). В культуру ППК добавляли также 15% фетальную сыворотку (HyClone). Преобладающая часть клеток размножалась суспензионными клонами.
  На следующем этапе изолировали самые крупные интенсивно пролиферирующие колонии с множественными пузырьками (кистами). Возникающие клоны являются истинными первичными клонами (в отличие от эмбриоидных телец, которые являются вторичными агрегатами клеток, вступающими в фазу дифференцировки ). Активно пролиферирующие клоны составляли примерно 2-5 % клеток от всей клеточной массы ППК. Лишь малый процент первичных клонов сохранял высокий темп пролиферации клеток. Эта спонтанно растущая плюрипотентная ткань содержала одновременно нестин+, виментин+, GFAP+ клетки (варианты нейрональных стволовых клеток). Эти же клеточные массы содержали стволовые гематогенные, мышечные, мезенхимальные стволовые клетки, маркеры предшественников эндотелия, а также маркеры эндодермы. Одновременно многие клетки в составе этих агрегатов имели экспрессированные мРНК трех зародышевых листков и мезензимы (Schamblott M.J., Axelman J.,Littlefield J.W., et al., 2001). Выращенная плюрипотентная ткань на стадии появления маркеров региональных стволовых клеток имела две особенности. Во-первых, пересадки этой ткани SCID- мышам не давали опухолей (в отличие от линий ЭСК). Во-вторых, ткань содержала мощные пролиферирующие клоны, которые сохраняли высокий темп делений через 50-70 пассажей. Исследования генетической тотипотентности эмбриоидных телец как in vitro, так и in vivo опровергли старую концепцию, что судьба стволовых клеток окончательно определена их положением в трех зародышевых листках или мезенхиме. Скорее высокая пластичность плюрипотентной ткани, возникающей первично из эмбриоидных телец, на основе синергизма стволовых клеток и сложных межклеточных взаимодействий - это пока предел возможного в биологии, установленный эволюцией. Именно этот суммарный потенциал стволовых клеток открывает новые возможности для регенеративной медицины.
  Дифференцированные клетки, возникающие спонтанно при культивировании эмбриоидных телец (вторичных дифференцирующихся агрегатов), являлись главным блокатором выживания стволовых клеток. Своевременное удаление примеси дифференцированных клеток из эмбриоидных агрегатов восстанавливало нормальное обновление клонов и темп пролиферации (Mountford P., Nichols J., Zevnik B. et al., 1998).
  Четвертый способ получения ЭСК человека был предложен сотрудниками Гарвардской медицинской школы в Армхерсте (Cibelli J., Stice I.C., Robl J.M. et al., 1998). С помощью электрического разряда соматические клетки фетуса (в ряде опытов- клетки самих исследователей) сливали с яйцеклеткой коровы, из которой был удален собственный пронуклеус. Такая "лабораторная химера", собранная из клеток двух видов млекопитающих, вела себя как зигота в культуре, развиваясь нормально до стадии бластоцисты (Kato Y.,Tani T., Sotomaru Y. et al., 1999).
 
 
  Рис 1-7. Получение ЭСК переносом ядра соматических клеток в оопласт
 
  После имплантации в матку коровы такие "химерные зародыши" нормально проходили органогенез и заключительные фазы внутриутробного развития. В 1996 г студент-стажер Жозе Сибелли в лаборатории Джеймса Робла получил цитогибриды, собранные из ядра собственной соматической клетки, которое он пересадил в цитопласт коровы. Такие тотипотентные клетки в культуре стали развиваться до стадии бластоцисты. Результаты опытов были доложены президенту Клинтону, после чего на эти эксперименты был наложен мораторий.
  Введение ЭСК крыс в зародыш мыши заканчивалось рождением мыши, органы которой были мозаично собраны из клеток крысы и мыши. Межвидовая химеризация зародышей млекопитающих породила множество нерешенных биоэтических и правовых вопросов. Потенции, генетические пути развития, возможности межвидовой сборки зародышей, особенно с использованием генома и ЭСК человека остаются неизученными. Второй способ клонирования зародышей связан с прямым переносом ядра соматической клетки (либо ядра ЭСК) в цитоплазму яйцеклетки того же вида, из которой был удален собственный пронуклеус. Вторая методика позволяла серийно клонировать бластоцисты (Wakayama T., Rodrigues I., Perry A.C. et al., 1999, 2001). Возраст донорских клеток существенно влияет на жизнеспособность и аномалии развития клонированных зародышей (Colman A., Kind A.,2000). Частота анеуплоидии, хромосомных аберраций и туморигенеза также возрастала в клонах с ДНК от клеток, взятых от пожилых доноров. Аномалии импринтинга в ранних зародышах, обусловленные нарушением гиперметилирования промотерных участков, служат ранним предвестником развивающейся генетической нестабильности клонов. Как известно, эффективность клонирования зародышей амфибий резко зависела от возраста клеток-доноров ДНК. Клонирование лягушек с помощью ядер эндодермы головастиков шло с эффективностью 2%, тогда как ядра клеток взрослых лягушек постоянно давали нулевой результат (Kikyo N., Wolffе A.P.,2000) . У мышей тотипотентность сохраняется до стадии 8 бластомеров. Только пересадки ядер зародышей до стадии 8-клеточных зародышей оказались эффективными для репродуктивного клонирования (полного воспроизводства зародыша и новорожденного по ДНК уже существовавших соматических клеток животного). Утеря тотипотентности резко снижала эффективность клонирования ранних и поздних зародышей вследствие множественных поломок эмбриогенеза. Поэтому методики репродуктивного клонирования целесообразно отлаживать и стандартизовать, используя максимально однородные ядра одной линии ЭСК (прежде всего мышей). До создания высокоэффективных и надежных методов репродуктивного клонирования преждевременно обсуждать проблему клонировании животных. Для проверки "репрограммирования" ядра соматической клетки до состояния тотипотентности предложено несколько методов, в том числе по способности рекапитулироватьь эмбриогенез мышиной бластоцисты после инъекции донорских клеток человека. Появление "гуманизированных" ростков клеток в зародыше и новорожденной мыши свидетельствует о тотипотентности генома созданных цитогибридов, полученных техникой пересадки ядра соамтической клетки (Cibelli J.B., Stice S.L., Golueke P.J. et al., 1998). Эффективность репрограммирования генома соматической клетки будет оцениваться независимо в промежуточном эксперименте, прежде чем выполнять весь эксперимент по репродукционноиу клонированию организма.
  После переноса ядра ЭСК в яйцеклетку у части ядер достигалась максимальная тотипотентность к рекапитуляции начального и позднего эмбриогенеза, хотя в других тестах генетические потенции ядер ЭСК не были эквипотенциальны оплодотворенной яйцеклетке. ЭСК важны для клонирования редких животных. Вырожденность software органогенеза лучше изучать на предельно однородном генетическом материале (Kikyo N., Wolffe B., 2000).
  Пересадки ядра дифференцированных клеток в цитоплазму ооцита сопровождаются потерей 75% ядерных белков (факторов транскрипции, белков-стабилизаторов гетерохроматина, тотальная смена гистонов-линкеров). Под влиянием нуклеоплазмина цитоплазмы ооцитов происходит удаление белкового каркаса ядер дифференцированных клеток, что ведет к деконденсации хроматина, дестабилизации нуклеосом и полной реорганизацией 3-D структуры хромосом. Импорт белков цитоплазмы ооцита автоматически ведет к реорганизации хроматина в состояние, близкое к тотипотентности, если используются ядра ранних зародышей. Однако полное автоматическое репрограммирование генома соматических клеток взрослых тканей оказалось пока технически невозможным (Kikyo N., Wolffe A.P., 2000)
  Как известно, на лабораторное получение/разрушение зародышей человека для научных целей в США и ряде западных стран наложен мораторий. Линии тотипотентных клеток, дублирующие программы развития в обход беременности, вызывают в обществе много биоэтических сомнений, включая риск злоупотреблений. В США и ряде западных стран заморожен проект создания аутогенных ЭСК человека методом переноса ядра из соматической клетки. Кандидатами №1 на аутотрансплантацию признаны стволовые клетки взрослых пациентов, выделенные из кроветворной, жировой ткани, мезенхимы или волосяных фооликулов эпидермиса кожи. По мнению некоторых экспертов, мультипотентность генома этих клеток достаточна для наработки переживающих ростков донорской специализированной ткани. В 2001 г Vargaret Goodele и Karen Hirschi из Бэйлор колледжа (Хьюстон) показали, что трансплантация донорского костного мозга практически химеризует все органы реципиента. Донорские стволовые клетки в измеряемых количествах достигали поврежденного миокарда или поврежденной печени. В циркулирующей крови взрослых мышей, морских свинок, кролика были обнаружены клон-инициирующие МСК с остеогенным, хондрогенным, миогенным потенциалом. Однако таких клоногенных МСК практически не удалось обнаружить в циркулирующей крови у взрослых людей (Kuznetsov S.A., Mankani M., Gronthos S. et al.,2001). В работе британских исследователей удалось из крови нормальных взрослых людей выделить высокоочищенную фракцию CD34- клеток с варьирующим фенотипом и морфологией, которые удалось очистить на элютриаторе. Практически МСК составляют менее 1% очишенной фракции моноцитов. Однако МСК окрашивались антителами к виментину, CD-105 (эндоглину), коллагену I типа, рецептору витронектина и BMP-2 (Zvaifler N., Matinova L., Burger J. et al., 2000). В культуре пролиферирующие МСК формировали фибробластоподобные клоны. При добавлении индукторов дифференцировки клетки стромы формировали адипоциты, остеобласты или миофибробласты.
  Первоначальный оптимизм в отношении возможности мезенхимы органов взрослых людей начал снижаться после открытия особенностей поведения МСК в тканях реципиента. Оказалось, что трансплантированные МСК сливаются с нейронами, миоцитами, гепатоцитами и другими соматическими дифференцированными клетками, формируя гетерокарионы. Такие гетерокарионы с маркерами МСК и фенотипом дифференцированных клеток принимали за трансдифференцированные МСК. Прежде всего в этой области необходима скрупулезная инвентаризация полиморфизма и функциональной гетерогенности так называемых резервных стволовых клеток мезенхимы, представленных множественными "нишами" в эпидермисе кожи, костно-мышечной, жировой, иммунной и кроветворной системе (Young H.E., Steele T.A., Bray R.A. et al., 2001) . Для определения доли стволовых/прогениторных МСК в разных тканях и органах взрослых организмов используют тест с инсулином и дексаметазоном. Все стволовые клетки в культуре под влиянием инсулина пролиферируют, не меняя незрелого фенотипа. Мишенью действия дексаметазона являются прогениторные клетки. Долю прогениторных клеток высчитывают по количеству возникших новых фенотипов клеток, опосредуемых эффектом стероида. Практически все пулы резервных МСК состоят из наборов стволовых/прогениторных субпопуляций с варьирующим фенотипом и генетической потентностью. Мультипотентность линий МСК сужается, особенно в пассажах. Первым исчезает хондрогенный потенциал линий МСК (Tsutsumi S., Shimazu A., Miyazaki K. et al., 2001) . Есть косвенные доказательства сохранения "дормантных" реликтов зародышевой мезодермы в мезенхиме взрослого организма, персистирующей in situ со стадии органогенеза (Young H.E., Duplaa C., Young M. et al., 2001; Zuk P.A., Zhu M., Mizuno H. et al., 2001). По фенотипу и плюрипотентности эти клетки невозможно отличить от МСК. Численность стволовых/прогениторных клеток в мезенхимальной ткани взрослого организма значительно больше, чем пул стволовых клеток в паренхиме (Deans R.J., Moseley A.B.,2000). Пока этому факту нет однозначного объяснения. Внутривенные вливания 50 млн МСК -дериватов гематогенной стромы, проведенные на здоровых реципиентах, признаны абсолютно безопасными (нет эффектов на клеточный состав крови, тромбоциты, иммунные клетки и иммунную систему) (Lazarus H.M., Haynesworth S.E., Gerson S.L. et al.,1995; Deans R.J., Moseley A.B., 2000).
  Мультипотентность постнатальных стволовых клеток человека изучается на животных. Резервы стволовых клеток больных людей - прямой путь к банкам клеток, которые найдут более широкое применение, чем банки органов. Этот биоресурс незаменим в борьбе с фатальными заболеваниями органов. Даже в лидирующих странах система добровольного донорства качественных органов обеспечивает помощь 10-15% пациентам, находящимся на листе ожидания. Миллионы пациентов на планете погибают, не дождавшись кардинального лечения. С учетом нарастания эпидемии СПИДа, вирусного гепатита, новых форм особо опасныз вирусов, поражающих ниши стволовых клеток, растет потребность в альтернативных источниках клеток человеческих органов. Ткани взрослого человека становятся важным источником стволовых клеток для клиники. Микровкрапления эмбриональной зародышевой ткани сохраняются в костном, головном, спинном мозге, в криптах тонкого кишечника, волосяных фолликулах кожи, строме жировой ткани, в специальных стволовых пространствах глаза, периферических нервах, органах чувств. В здоровой ткани пул ЭСК обеспечивает медленную смену постаревших аномальных клеток на новые здоровые популяции. Как известно, апоптоз изношенных клеток в сочетании с обновлением клеточных популяций служит главным механизмом защиты от болезней (Wei G., Schubiger G., Harder F. 2000). Главная трудность в изучении СК взрослых органов - это преодоление их неактивного, "дормантного" состояния in vitro с целью наработки биотрансплантатов. Секреты макромасштабирования таких стволовых клеток - дело недалекого будущего. Получение GMP- трансплантов из ЭСК пациентов-заказчиков - новейшая страница бизнеса.
  Пока мало известно, каким путем стволовые клетки нервной ткани контролируют обновление клеток ЦНС (McKey, 1997). Изолированные нейральные стволовые клетки (НСК) мышей линии Rosa, маркированные LacZ геном и бактериальной бета-галактозидазой, активно участвовали в образовании и заселении трех зародышевых листков и органов зародыша-реципиента. Пересаженные НСК частично мигрировали в костный мозг предварительно облученных животных, формируя колонии гематогенных клеток. Пересадки НСК в кровоток вели к образованию донорских колоний овальных (стволовых) клеток в дуктулярной системе печени. Существуют известные трудности в идентификации ЭСК in situ. Многие настаивают, что пролиферативный потенциал ЭСК взрослых тканей ограничен, и потому одновременно нужно создавать альтернативные источники СК для трансплантации.
  Клоны стволовых мультипотентных клеток, выделенные из кожи взрослого человека, выделили в культуру с их последующей дифференцировкой в нейроны, глию, олигодендроциты (Toma J.G., Akhavan M., Fernandes K.J. et al., 2001). Стволовые клетки эпидермиса взрослых мышей линии С57ВL/6 извлекали из кожи и метили в культуре GFP (флуоресцентным белком). Далее меченые стволовые клетки кожи трансплантировали в изогенные бластоцисты. Затем химеры трансплантировали в матку гормонально подготовленных самок. Распределение донорских флуоресцентных клеток наблюдали на разных сроках пре- и постнательного развития.. Многочисленные ростки донорских клеток верифицировали в разных отделах головного мозга, нервном гребне, печени, почках, коже, других органах. Бластоциста мыши репрограммирует геном пересаженных региональных стволовых клеток взрослых тканей до статуса ЭСК (Liang L., Bickenbach J.R., 2002). Стволовые клетки из жировой ткани взрослого человека стали лабораторным источником дифференцированных линий многих органов и тканей человека (Zuk P.A., Zhu M., Huang J. et al., 2001). В перспективе жировая ткань и кожа взрослых пациентов окажутся важным источником стволовых клеток для аутогенной трансплантации.
 
 Таблица 1. Потенции и характеристики ЭСК взрослых тканей Ограниченная пролиферация Низкая теломераза Мультипотентность генома Полная иммуносовместимость Создание банка клеток до собственного заболевания Создание фамильного банка клеток
  Перспективным представляется пятый способ получения ЭСК из бластоцист-партеногенонов, полученных без спермиев и оплодотворения. Такие зародыши имеют диплоидный набор хромосом матери за счет сохранения второго пронуклеуса. Методы лабораторной активации яйцеклеток к "беспорочному" зачатию позволяют получать 20-30% бластоцист от общего числа яйцеклеток, активированых 1,2-пропандиолом и ионофором Са++ (Gook D.A., Osborn S.M., Johnston W.I., 1995; Rhoton-Vissak A., Lo P.Y., Barud K.M. et al., 1996). ЭСК, полученные из партено-бластоцист, сохраняют нормальную потенцию для крупномасштабной наработки специализированных соматических клеток.. Ткани-партеноты обнаружены случайной биопсией у взрослых людей без признаков болезни или функциональных нарушений (Surani M.A., 1995).
  В 2001 г команда израильских и американских биологов расшифровала первые software для параллельного получения специализированных клеток экто-, мезо- и эндодермы из общего пула ЭСК мыши.(Schuldinger R., Yanuka O., Itskovitz-Eldor I. Et al., 2000). В 2001 г опубликован метод получения бета- и альфа-клеток островков Лангерганса из НСК головного мозга мышей (Lumelsky N., Blondel O., McKey R. et al, 2001). В конце 2001 объявлено о создании 60 бессмертных линий ЭСК человека (19 - в университете Гетеборга, Швеция, 9 - в компании CyThera, San Diego, California; 7 - Reliance Life Science, Mumbai, India, 6 - Monash University, Melbourn, Australia, 5 -Wisconsin Alumni Res. Foundation, 5 - Karolinska Universitst, Stockholm, 4 - Technion Israel Institute, Haifa, Israel ; 3 - National Center of Biological Studies, Bangalor,India; 2 - Unversity of California, San Francisco, USA). После проверок только 25 линий ЭСК отвечали выбранным критериям. Отобранные линии ЭСК имели сходную морфологию и молекулярные маркеры клеток, пассировались более одного года без изменения фенотипа м кариотипа клеток, без признаков бактериальной или вирусной контаминации. В августе 2001 г мультимиллионер Джим Кларк, руководитель Silicon Graphic, инвестировал 150 млн долларов в Центр стволовой клетки при Стенфордском ун-те для расшифровки главных программ, управляющих поведением ЭСК.
 
  4. Молекулярные основы тотипотентности генома ЭСК
 
  Геном зиготы и ЭСК находится в так называемой "нулевой точке", откуда стартуют две главные программы эмбриогенеза:
  1) гаструляция + органогенез
  2) рестрикционное созревание дифференцированных клеточных линий.
 Эти две программы задействуют примерно 5000 генов эмбриогенеза. Каким образом реализуется тотипотентность генома, т.е. способность выбирать одну из многих траекторий развития? Серийный анализ генной экспрессии (SAGE) в культуре ЭСК, мезенхимальной, нейрональной и гематогенной стволовой клетки выявил важнейшую закономерность (Kelli D.L., Rizzino A, 2000; Xiong J.W., Battaglino R., Leahy A. et al.,1998). Во всех перечисленных стволовых клетках присутствовали сходные наборы предсинтезированных мРНК следующих классов генов (Рис 1-8).
 
 
  Рис 1-8 Молекулярные основы тотипотентности стволовых клеток
 
 1) ранних генов экто-, мезо- и эндодермы
 2) набор мРНК гомеотических (Нох) генов, контролирующих сегментацию и трехмерную карту зародыша
 3) пять наборов мРНК генов тотипотентности. Каждый набор факторов тотипотентности увязан с комплементарным набором факторов и рецепторов пролиферации на прогениторных клетках в клоне. Особенно существенны спаренные блоки генов, контролирующие пролиферацию соседних слоев прогениторных клеток в клоне (типа Delta/Notch)
 4) мРНК генов апоптоза, контролирующие численность прогениторных клеток в клоне. Баланс клеток достигается за счет миграции и частичной гибели клеток в клоне. Пролиферация постоянно уравновешивается миграцией и апоптозом клеток.
 5) набор мРНК контрольных генов (master genes) рестрикционного созревания специализированных клеточных линий (Terskykh A.,Easterday M., Linheng L. et al., 2001)
 6) наборы мРНК генов миграции и навигации миграторных клеток
 
 Таким образом, в основе тотипотентности ЭСК, МСК и других стволовых клеток выявлен универсальный механизм: направленная активация и последующий импорт мРНК в ядро. Детали импорта/экспорта информации между ядром и цитоплазмой в ЭСК плохо изучены. Эта концепция тотипотентности подтверждется новыми наблюдениями, выполненными на одиночных клонах мезенхимальных стволовых клеток специальной техникой MICRO-SAGE. Микрометод верифицировал присутствие мРНК 1200 ключевых генов эмбриогенеза в одном клоне МСК(Tremain N., Korkko J., Iberson D. еt al., 2001). Полученные данные поражают воображение. В клонах МСК из взрослой гематогенной ткани идентифицированы практически все наборы мРНК зародышевых листков, органогенеза, а также мРНК master-genes, контролирующих рестрикционное созревание линий мезенхимального, мезодермального происхождения, экто- и эндодермы. Клоны МСК по сути представляли собой библиотеки мРНК ранних этапов органогенеза и рестрикционного созревания специализированных линий. Если программы органогенеза обеспечивали направленный импорт мРНК в ядро для включения новых котранскриптаз, транскриптаз и транскрипционных комплексов, то рестрикционное созревание клеточных линий связано с экспортом мРНК из ядра в цитоплазму с последующей модификацией белкового фенотипа прогениторных клеток. В каждом клоне перераспределение мРНК между ядром и цитоплазмой составляет ключевую часть перестройки soft-сети. Репрограммирование генома плюрипотентных клеток наиболее эффективно изучают средствами протеомики. Тотальная реорганизация белковых сетей ЭСК, составляющих платформу hard-|software, по-видимому, содержит ключи к разгадке эпигенетических процессов у истоков развития (Guo X., Ying W., Wan J. еt al.,2001)
  Мультипотентность МСК, выделенных из стромы гематогенной ткани взрослого человека, была верифицирована с помощью их трансплантации в пред- и постимплантационные зародыши овцы (Liechy K.W., MacKenzie T.C., Shaaban A.F. et al., 2000). Ростки трансплантированных МСК человека выявлялись как в плодах, новорожденных, так и в тканях животных через 1-1,5 лет после рождения. МСК человека преимущественно химеризовали хрящевую, жировую ткань, скелетные мышцы, сердце, строму гематогенной ткани и вилочковой железы. Часть донорских МСК накапливалась в виде перицитов в адвентиции аретриол и мелких венул (Flake A.W., 2001). По-видимому, сосудистая циркуляция играет незаменимую роль в миграции и диссеминации МСК в зародыше. Циркулирующие в крови МСК выявлялись в зародышах человека до 15 нед развития (Compagnoli C., Fisk N., Tocci A. et al, 1999). МСК человека активно химеризовали зародыш овцы, если донорские клетки вводили в амниотическую полость. МСК человека легко преодолевали гематоэнцефалический барьер и детектировались в в разных отделах мозга.
  Особый интерес пересадки МСК привлекают в связи с проблемой иммунотолератности реципиентов - химер. Особое внимание уделялась химеризации донорскими МСК стромы тимуса реципиента. Стромальные клетки используют для локального подавления иммунного ответа (на уровне антиген-презентирующих клеток). Наиболее яркий практический пример - это добавление клеток Сертоли в клеточный нейтрансплантат для блокирования иммунного отторжения (Willing A.E., Cameron D., Sanberg P.R., 1998).
  Рост клонов ЭСК в культуре зависит от состава среды, набора факторов пролиферации. Важно,что рост клонов не контролируется факторами мезенхимы, разобщен с работой Нох-генов и генов органогенеза, регулирующих численность клеток в растущем зародыше. Поэтому клоны ЭСК удается нелимитированнно размножать in vitro, чего не бывает в самом зародыше.
 
 
 
 
 
  5. Особенности фенотипа ЭСК
 
  В отличие от специализированных клеток ЭСК сохраняли уникальную потенцию наборами мРНК "ранних" генов эмбриогенеза. Редакторуя мРНК, ЭСК обходятся без многих блоков транссигнализации, которые используют дифференцированные клетки. ЭСК для контакта с микроокружением используют минимальное число рецепторов, сигнальных белков, транскриптаз хроматина . Между тем наборы " housekeeping genes", обслуживающих потоки энергии, веществ, метаболизм экспрессированы на уровне дифференцированных клеток. Второй важнейшей характеристикой незрелых ЭСК в культуре является высокий потенциал пролиферации. На поверхности пролиферирующих ЭСК экспонирован уникальный общий рецептор для LIF, SCF, IL-6 . Эта тройка сигналов через трансмембранную субъединицу GP-130 и соответственно Jak-Stat-3 транскрипционный комплекс процессирует сигналы в ядро, стимулируя вхождение G0 клеток в митоз. Схема событий между рецептором с ядром выглядят следующим образом. Высокоаффинное селективное связывание LIF, SCF, IL-6 с внешним рецептором активирует латентный фактор транскрипции Stat-3. Далее домен Stat-3 -SIE DNA binding -специфически взаимодействует с промотером c-fos на уровне ДНК хроматина (Рис 1-8). Примечательно, что активный Stat-3 не выявляли в эмбриобласте in situ. Активированный Stat-3 в комплексе с фактором тотипотентности Oct-4 запускал митозы и самообновление клонов ЭСК. Интенсивное самообновление ЭСК в культуре сопряжено с активацией тирозинфосфатазы SHP-2 Этот регуляторный фермент дефосфорилирует фосфотирозины разных белков (включая цитоплазматический сигнальный домен GP-130). Удаление фосфорных групп с тирозинов вызывает стойкую активацию проводящей субъединицы GP-130. Активация GP-130 стимулирует следующую киназу ERK (extracellular regulated kinase). SHP-2- зависимая активация ERK необходима в качестве кофактора для устойчивого самообновления ЭСК in vitro. Сохранение тотипотентности пролиферирующих мышиных линий ЭСК связано с присутствием в этих клетках дополнительного регуляторного белка Gab-1 - кофактора экспрессии главного белка тотипотентности Oct-4.
 Похоже, что белок Oct4 выполняет разные функции в ранних зародышах млекопитающих. Избыток Oct4 в эмбриобласте и ЭСК блокирует развитие клеток трофобласта, поддерживая тотипотентность пролиферирующих незрелых клеток. С началом органогенеза Oct4 контролирует начало рестрикционного созревания многих клеточных линий. Oct4 необратимо исчезает в созревающих клетках. В неактивном виде Oct-4 выявлен о зрелых ооцитах, зиготе и эпибласте. В фетусе Oct-4 выявляется в половом бугорке и примордиальных половых клетках. Если в ЭСК увеличить экспрессию Oct-4, клетки спонтанно дифференцируются в эндодерму и мезодерму. Оказалось, что Oct-4 активирует одни, ингибируя другие гены в зародышевых тканях.
 Бластоцисты мыши Oct4-/- останавливаются в развитии после имплантации. Такие аномальные зародыши преимущественно содержат клетки трофобласта, тогда как клетки эмбриобласта подвергаются гибели (Nicols J., Zevnik B., Anastassiadis K. Et al., 1998). Однако клетки трофобласта также вяло пролиферируют, поскольку в зародышах отсутствует FGF4 (индуктором экспрессии гена FGF4 является Oct4). Все зародыши-гетерозиготы Oct4-/+ проходят фазу имплантации без аномалий, поскольку 30-50% уровня Oct4 в эмбриобласте достаточно для его превращения в эпибласт и первичную полоску. Уровень Oct4 не влиял существенно на постимплантационную гибель зародышей.
  Особую роль рецептор LIF/ GP-130 играет в задержке развития бластоцист у мышей, других грызунов на стадии диапаузы. Такие "законсервированные" на 3-4 нед бластоцисты, переживающие в полости матки, содержат зрелые клетки эпибласта вместо эмбриобласта. У зародышей с поврежденным GP-130 блокировано созревание эпибласта в диапаузных бластоцистах (Smith A.G., 2001)
  Jak-Stat-3 "кабель" транссигнализации используется региональными гематогенными, мышечными стволовыми клетками для самообновления клеток клонов. LIF - рецептор ЭСК существенно влияет на выживание прогениторных клеток в культуре. Michel Revel из Вайссмановского института в Израиле показал, что прогениторные клетки в гематогенных клонах теряют способность формировать димерный вариант рецептора, который способен связывать IL-6. Такие клетки немедленно элиминируются из клона апоптозом. Если стволовые клетки трансфицировать генетической конструкцией, содержащей ген лиганда IL-6 и ген GP-130 рецептора, то трансфицированным клонам возвращается потенция к неограниченному самообновления с минимальным апоптозом. Такие клоны долгосрочно обновлялись in vitro и in vivo (Kollet O., Aviram R., Chebat J. et al., 1999).
 
  Рис 1-9. Система сигнализации LIF-рецептора в клеточное ядро
 
  На следующем этапе прогениторные клетки пролиферуют под контролем спаренных рецепторов Delta/Notch в комплексе с фактором тотипотентности- продукта семейства генов Hes (Hes7 в клонах мезодермы, сомитах и клонах миогенных стволовых клеток скелетных мышц). В клонах стволовых клетках ЦНС экспрессирована пара Нes1, Hes5, тогда как один Hes5 экспрессирован в клетках- предшественицах олигодендроцитов.
  "Минимальный фенотип" ЭСК и примордиальных половых клеток (ППК) проявлялся ошаренной формой клеток из-за отсутствия цитоскелета, белков и рецепторов адгезии на поверхности плазматической мембраны, а также многих кофакторов сигнализации, вмонтированных в компоненты цитоскелета. ЭСК и ППК имели высокую активность теломеразы и щелочной фосфатазы. В отличие от региональных стволовых клеток ППК не имели на поверхности бета1-интегрина. ППК вступают в дифференцировку, формируя вторичные агрегаты клеток в суспензии (эмбриоидные тельца).
  В последние годы бессмертные тотипотентные линии ЭСК были выделены из эмбрионов крыс, коровы, приматов, свиней. Показательно, что все ЭСК имели не только близкое строение, но и практически универсальный набор антигенов-маркеров, (SSEA-3, SSEA-4, TRA-1-81, TRA-1-60). (Таблица 2)
 
 Таблица 2. Сравнительные характеристики фенотипа ЭСК разных видов Название маркёра ЭСК/ППК/ТК
 Мыши ЭСК приматов ЭСК человека ППК человека ТК человека SSEA-1 + - - + - SSEA-3 - + + + + SEA-4 - + + + + TRA-1-60 - + + + + TRA-1-81 - + + + + Щелочная фосфатаза + + + + + Oct-4 + + + Данные отсутствуют + Высокая активность теломеразы + ЭСК, ТК Данные отсутствуют + Данные отсутствуют + Зависимость от фидера ЭСК, ППК, некоторые ТК Имеется Имеется Имеется Небольшая, низкая клоногенность Факторы, способствующие самообновлению стволовых клеток LIF и другие факторы, действующие через gp130- рецептор, способны замещать фидер Сокультивирование с фидерными клетками; другие факторы не выявлены Фидерные клетки + сыворотка; фидер + бессывороточная среда + bFGF LIF, bFGF, форсколин Факторы не выявлены, утеря тотипотентности в пассажах Характеристики роста in vitro Округлой формы, многослойные агрегаты ЭТ Агрегаты ЭТ уплощённой формы Агрегаты ЭТ уплощённой формы Округлой формы, многослойные агрегаты ЭТ Агрегаты ЭТ уплощённой формы Формирование тератом in vivo + + + - + Образование химер + Данные отсутствуют + - +
  Внешние домены этих "метчиков" представлены комплексом гликолипида GL7 с сиаловой кислотой. Фенотипические характеристики ЭСК и ППК не менялись после 20-30 пассажей. Культура продолжала расти плотными суспензионными клонами, в которых клетки удерживались плотными межклеточными контактами, резистентными к трипсину (рис 1-4 г-д).
 
  6. ЭСК - модель для изучения геномики раннего эмбриогенеза и органогенеза
 
 С помощью ЭСК удалось выяснить первые гены, либо комбинации генов, реализующие трехмерную карту зародыша, а также коды линейного созревания клеток-предшественниц в зрелые функциональные единицы органов (дольки печени, альвеолы легкого, нефроны почек). Развитие зародышей с выключенной гамма-субъединицей ламинина LAMC1-/- останавливается на стадии формирования экстраэмбриональной энтодермы из-за дефекта миграции клеток (Smyth N., Vatansever S.H., Murray P. et al., 1999). Нокаут гена Brachyury или zeta-globin вызывал раннюю гибель зародышей из-за блока развития мезодермы. Выключение гена GATA-4 останавливало развитие эндодермы. Вторым master-gene эндодермы оказалась транскриптаза vHNF-1 (variant Hepatocyte Nuclear Factor 1), которая на следующем этапе активировала следующее семейство генов: HNF-4alpha1, HNF-1alpha, HNF-3gamma. Третьим master-gene эндодермы оказался ген cas (casanova) . Выключение этого гена блокировало развитие всей эндодермы зародышей.
 
 
 Таблица. Маркеры зародышевых листков в культуре эмбриональных телец День культивирования Маркер 1 2 3 4 5 6 7 8 9 10 Экспрессия in vivo oct-3 +++ +++ +++ +++ ++ ++ + + + + •Эмбриональная экстодерма 0.5-8.5 (Rosner et al., '90; Scholer et al.'90); FGF-5 + +++ +++ +++ +++ ++ + + + + •Эмбриональная эктодерма и дистальный embryo proper 5.25-7.7 GATA-4 + + + + + ++ ++ +++ +++ +++ •Primitive endoderm visceral and parietal endoderm
 Endodermal derivatives endocardium, card, gonade.
 5.0 - adut nodal - + + ++ ++ +++ ++ ++ + + •embrynic ectoderm, primitive endoderm, and anterior primitive strik
 6.25-7.5 Brachyury - - ++ +++ +++ +++ ++ + + + •Mesoderm and notacord, 6.5-8.5 flk-1 - - ++ ++ +++ +++ ++ ++ ++ + •Vascular, 7.0-adult Nkx-2.5 - - - - - ++ ++ ++ ++ ++ •Cardiogenic mesoderm, 7.5- adult EKLF - - - - - + + ++ ++ ++ •Blood cells of yolk sac Primordia 7.5-adult Msx3 - - - - - - - + +++ +++ •Neural tube, 8.5-16.5 Стадии развития ЭТ эквива-лентны: Постимплантация -------> Гаструляция -------------> Ранний органогенез --------->
 
 Из табличных данных следует важный вывод: временной порядок включения ключевых транскриптаз совпадает в постимплантационных зародышах и в культуре эмбриоидных телец (вторичных агрегатов ЭСК) (Leahy A., Xiong J.W., Kuhnert F. Et al., 1999). Порядок включения важнейших генов постимплантационного периода существенно не зависит от факторов микроокружения.
 Зародыши мыши GATA3-/- погибали на 11-12 день гестации от блока гемапоэза в фетальной печени. Зародыши мыши SCL-/- погибали на 9.5 день из-за блока желточного кроветворения. Зародыши Flt-/-, как и зародыши Flk-/- погибали вскоре после имплантации из-за дефектов васкулогенеза и капиллярогенеза. Без этих рецепторов ангиобласты подвергались ошибочной сборке. В результате возникали фатальные аномалии в желточном мешке. Если мутация Flk-/- наиболее сильно поражала зародыш (где сосредоточено максимальное число этих рецепторов), то мутация Flt-/- преимущественно блокировала развитие желточного мешка. Если в нокаут-зародыши своевременно пересаживали нормальные ЭСК, дефект развития устранялся. С помощью донорских клеток удавалось ликвидировать внутриутробную аномалию развития в зародышах-химерах.
  Зародыши мыши FGF4-/- останавливались в развитии и погибали сразу после имплантации из-за блока развития клеток трофэктодермы (Nishimoto M., Fukushima A., Okuda A.,1999). Техника нокаут-генов позволила выяснить детали образования транскрипционного комплекса Oct4 / Sox-2. Синергистическая активация/репрессия Oct4/Sox-2 осуществляется с помощью третьего гена -UTF1 (Nishimoto M., Fukushima A., Okuda A.,1999). Показано, что для любых линий ЭСК in vitro характерна синхронная активация 5 факторов транскрипции: Oct4, Oct6, Sox-2, PEA3 и REX-1. С началом вступления незрелых пролиферирующих ЭСК в дифференцировку экспрессия 5 факторов транскрипции более или менее синхронно угасает. Экспрессия UTF1 находится под синергестическим контролем генов Oct4/Sox-2. В свою очередь активный белковый комплекс транскриптаз Oct4/Sox-2 активирует третий ген - FGF4. По-видимому, комплекс Oct4/Sox-2 контролирует также экспрессию следующих ранних генов в ЭСК: osteopontin adhesion molecule (Opn), коактиватор транскрипции UTF1, фактор транскрипции REX-1 (Du Z.,Cong H., Zhen Y.,2001). В ряде линий ЭСК этот генетический "конвейер" поддержания плюрипотентности клеток нарушается при пассировании. Экспрессия вышеупомянутых факторов транскрипции существенна для оценки качества ЭСК, поступающих из клеточных банков.
  Выключение генов nodal, FGF-5, Oct3 останавливало развитие нейроэктодермы и нервной пластинки. Ген Nkx-2-5, CSX избирательно контролировал закладку кардиогенной мезодермы, Msx3 - закладку нейральной трубки, EKLF - закладку желточного кроветворения (Репин, 2001). Техникой нокаут был идентифицирован SIL ген, ответственный за парное симметричное формирование зачатков органов. На мутантных мышах открыто новое семейство генов Taube Nuss, контролирующих уровень апоптоза клеток у зародышей на стадии органогенеза. Эти гены особенно важны для элиминации провизорных клонов и органов (Voss A.K., Thomas T., Petrou P. et al., 2000). Расшифрованы функции семейства сигнальных белков STAT (signal transducer and activator of transcription) в ЭСК мышей. STAT1 обеспечивает сигнализацию между рецепторами интерферона и хроматином. Выключение STAT1 элиминировало все клоны зародышей, экспонирующие рецепторы для интерферона. Зародыши STAT4-/- и STAT6-/- развивали летальные дефекты созревания тимоцитов. Зародыши STAT3-/- погибали внутриутробно на стадии раннего органогенеза. Зародыши STAT5a-/- имели внутриутробные аномалии развития молочной железы (Akira S., 1999). У зародышей SF-1-/- нарушалась закладка надпочечников и половых зачатков. У зародышей Wt-1-/- нарушалась закладка и развитие почек. Этим же способом, показано что выключение Нох-1 гена частично блокирует гематопоэз в зародышах. Выключение Нох-7, Нох-8 генов вызывает аномалии развития миоцитов.
  После имплантации, клетки эмбриобласта дифференцируются в экстраэмбриональную энтодерму и эмбриональную эктодерму. Эмбриологи искали способы моделирования этих событий in vitro. Если из среды убрать фидер и LIF, пролиферация клонов приостанавливалась. ЭСК формировали агрегаты (эмбриоидные тельца). В части агрегатов шла дифференцировка клеток, которая в обратном порядке по отношению к зародышу включала маркерные гены трех зародышевых листков. Наружний слой маркировал экстраэмбриональную эндодерму геном GATA-4, тогда как внутренний слой - в эктодерму маркерным геном nodal (Xiong J.W., Battaglino R., Leahy A. et al., 1999). Одновременно в клеточных агрегатах убывала экспрессия гена Oct-4. Несколько лабораторий научились эффективно контролировать дифференцировку клеточных агрегатов (эмбриоидных телец) после экспрессии генов трех зародышевых листков (Schamblott M.J., Axelman J.,Littlefield J.W., et al., 2001). Задача заключалась в направленном получении клеток одного зародышевого листка из эмбриоидных телец. С этой целью научились включать гены гаструляции и органогенеза в эмбриоидных тельцах в более медленном темпе (Leahy A., Xiong J.W., Kuhnert F., J. Exp. Zool., 1999). Включение генов органогенеза автоматически вело к утрате туморигенности постмитотическими клетками эмбриоидных агрегатов. Более того, трансплантационная выживаемость и активная колонизация такой плюрипотентной ткани в организме реципиента была выше, по спавнению с исходными ЭСК. Пересадки тотипотентной зародышевой ткани на стадии экспрессии первых генов зародышевых листков вытеснят в недалеком будущем пересадки клеточных линий стволовых клеток из-за более высокой эффективности колонизации, приживления, плюрипотентности ростков. По мнению Герхардта, плюрипотентная зародышевая ткань сохраняла синергизм взаимодействия клонов, который необходим для выращивания полноценного трансплантата.Такая плюрипотентная ткань незаменима для моделирования и изучения процессов гаструляции, а также взаимодействия мезенхимы с гомогенной эктодермой или мезодермой in vitro. Напомним, что потенции линий ЭСК человека в генерации дифференцированных клеток пока не стоит преувеличивать. Например, только 8 % эмбриоидных телец удается in vitro превратить в островки сокращающихся кардиомиоцитов (у ЭСК мышей эта способность к моно-дифференцировке - на порядок выше) (Kehat I., Kenyagin-Karsenti D., Snir M. Et al., 2001). При этом образующиеся в культуре кардиомиоцитоы имеют незрелую ультраструктцру саркомеров и дисков. Между тем многие биотехнологические компании, владеющие первыми линиями ЭСК человека, уже делают широковещстельные заявления о том, что линии ЭСК человека должны стать единственным мостом в будущее ( игнорируя неограниченные геномные возможности природных фетальных тканей).
  С помощью ЭСК апо-Е3-/- удалось вывести линию мышей с высокой предрасположенностью к атерогенному атероскерозу. У этих животных в постнатальном периоде развивалась гиперхолестеринемия и исчезала природная резистентность к стенозирующим бляшкам. Эти мыши сейчас широко используются для тестирования новых гиполипидемических и антиатерогенных препаратов.
  Как известно, первичные сигналы, формирующие 3D-оси зародыша после имплантации, возникают на стыке экстраэмбриональной энтодермы, висцеральной энтодермы и эмбриональной эктодермы. Лишь часть этой программы фрагментарно воспроизводится в культуре эмбриоидных телец. (Knezevic V., Mackem S.,2001).
  Если ЭСК выделять из эмбриобласта бластоцисты, первыми возникали эмбриоидные агрегаты с маркерами эндодермы в виде фрагментов желточного мешка. Примитивная висцеральная энтодерма образуется из мигрирующих клеток эмбриобласта. Позднее многие клетки эпибласта мигрируют в париетальную энтодерму и в клетки желточного мешка. Далее из части желточной эндодермы шло формирование первичных ангиобластов и капиллярогенез. Поэтому примесь эндодермы и эндотелиальных клеток удаляли перед повторным пипетированием клонов для получения тотипотентных ЭСК. Попытки выделить ЭСК из трофобласта закончились неудачей (возможно из-за наличия в сыворотке бактериальных эндотоксинов). Однако популяцию гигантских клеток трофобласта получают путем трансфекции бластомеров мыши геном Hand1 и его сверхэкспрессии в клетках, которые дифференцируются в трофэктодерму (Fan Y., Melhem M., Chaillet R.,1999). Даже следовые концентрации эндотксина в среде культивирования вызывали массовую гибель незрелых стволовых клеток. Впрочем получить клетки трофобласта из ЭСК человека или приматов удавалось (Odorico J.S., Kaufman D.S., Thomson J.A., 2001). Недавние исследования израильско-американских биологов выявили комбинации из 8 ростовых факторов, которые направляли дифференцировку эмбриоидных телец в сторону экто-, мезо- или эндодермы. Так, активин в сочетании с TGF-beta предпочтительно стимулировал развитие мезодермы, тогда как комбинация ретиноевой кислоты, bFGF, EGF, BMP-4 стимулировали одновременное развитие экто- и мезодермы. Возникновение эндодермы в культуре не шло без добавления HGF и NGF.
 
 

<< Пред.           стр. 1 (из 4)           След. >>

Список литературы по разделу