<< Пред.           стр. 2 (из 2)           След. >>

Список литературы по разделу

 2. Выберите из списка "Инструменты анализа" пункт "Генерация случайных чисел" и нажмите кнопку "ОК" (рис. 3.11).
 3. На экране появится диалоговое окно "Генерация случайных чисел". Укажите в списке "Распределения" требуемый тип - "Нормальное". Заполните остальные поля изменившегося окна согласно рис. 3.12 и нажмите кнопку "ОК". Результатом будет заполнение блока ячеек А13.А512 (переменные расходы) сгенерированными случайными значениями.
 
 Рис. 3.11. Выбор инструмента "Генерация случайных чисел"
 
 Рис. 3.12. Заполнение полей окна "Генерация случайных чисел"
 Приведем необходимые пояснения. Первым заполняемым аргументом диалогового окна "Генерация случайных чисел" является поле "Число переменных". Оно задает количество колонок ЭТ, в которых будут размещаться сгенерированные в соответствии с заданным законом распределения случайные величины. В нашем примере оно должно содержать 1, так как ранее мы отвели под значения переменной V (переменные расходы) в ЭТ одну колонку - "А". В случае, если указывается число больше 1, случайные величины будут размещены в соответствующем количестве соседних колонок, начиная с активной ячейки. Если это число не введено, то все колонки в выходном диапазоне будут заполнены.
 Следующим обязательным аргументом для заполнения является содержимое поля "Число случайных чисел" (т.е. - количество имитаций). Согласно условиям примера оно должно быть равно 500 (см. рис. 3.12). При этом ППП EXCEL автоматически подсчитывает необходимое количество ячеек для хранения генеральной совокупности.
 Необходимый вид распределения задается путем соответствующего выбора из списка "Распределения". Как уже отмечалось ранее, могут быть получены 7 наиболее распространенных в практическом анализе типов распределений, каждое из которых характеризуется собственными параметрами. Выбранный тип распределения определяет внешний вид диалогового окна. В рассматриваемом примере выбор типа распределения "Нормальное" повлек за собой появление дополнительных аргументов - его параметров "Среднее" и "Стандартное отклонение", рассчитанных ранее для исследуемой переменной V в ячейках В7 и В8 листа "Имитация". К сожалению эти аргументы могут быть заданы только в виде констант. Использование адресов ячеек и собственных имен здесь не допускается!
 Указание аргумента "Случайное рассеивание" позволяет при повторных запусках генератора получать те же значения случайных величин, что и при первом. Таким образом одну и ту же генеральную совокупность случайных чисел можно получить несколько раз, что значительно повышает эффективность анализа (сравните с предыдущим шаблоном!). В случае если этот аргумент не задан (равен 0), при каждом последующем запуске генератора будет формироваться новая генеральная совокупность. В нашем примере этот аргумент задан равным 1, что позволит нам оперировать с одной и той же генеральной совокупностью и избежать постоянных перерасчетов ЭТ.
 Последний аргумент диалогового окна "Генерация случайных чисел" - "Параметры вывода" определяет место расположения полученных результатов. Место вывода задается путем установления соответствующего флажка. При этом можно выбрать три варианта размещения:
 * выходной блок ячеек на текущем листе - введите ссылку на левую верхнюю ячейку выходного диапазона, при этом его размер будет определен автоматически и в случае возможного наложения генерируемых значений на уже имеющиеся данные на экран будет выведено предупреждающее сообщение;
 * новый рабочий лист - в рабочей книге будет открыт новый лист, содержащий результаты генерации случайных величин, начиная с ячейки A1;
 * новая рабочая книга - будет открыта новая книга с результатами имитации на первом листе.
 В рассматриваемом примере для проведения дальнейшего анализа необходимо, чтобы случайные величины размещались в специально отведенные для них блоки ячеек (см. табл. 3.10). В частности для хранения 500 значений первой переменной ранее был отведен блок ячеек А13.А512. Поскольку для этого блока определено собственной имя - "Перем_расх", оно указано в качестве выходного диапазона. Отметим, что при увеличении либо уменьшении количества имитаций необходимо также переопределить и выходные блоки, предназначенные для хранения значений переменных.
 Генерация значений остальных переменных Q и Р осуществляется аналогичным образом, путем выполнения шагов 1-3. Пример заполнения окна "Генерация случайных чисел" для переменной Q (количество) приведен на рис. 3.13.
 
 Рис. 3.13. Заполнение полей окна для переменной Q
 Для получения генеральной совокупности значений потока платежей и их чистой современной стоимости необходимо скопировать формулы базовой строки (ячейки D13.E13) требуемое число раз (499). С проблемой копирования больших диапазонов ячеек мы уже сталкивались в предыдущем примере.
 Ее решение осуществляется выполнением следующих действий.
 1. Выделите и скопируйте в буфер ячейку D13.
 2. Нажмите клавишу [F5]. На экране появится диалоговое окно "Переход".
 3. Укажите в поле "Ссылка" имя блока "Поступления" и нажмите кнопку "ОК". Результатом этих действий будет выделение заданного блока.
 4. Нажмите клавишу [ENTER].
 5. В случае, если в ЭТ был установлен режим ручных вычислений, нажмите клавишу [F9].
 Аналогичным образом копируется формула из ячейки Е13. При этом в поле "Ссылка" диалогового окна "Переход" необходимо указать имя блока - "ЧСС". Вы также можете выбрать необходимое имя из списка "Перейти к".
 Полученные автором результаты решения примера приведены на рис. 3.14 - 3.15.
 Результаты проведенного имитационного эксперимента ненамного отличаются от предыдущих. Величина ожидаемой NPV равна 3412,14 при стандартном отклонении 2556,83. Коэффициент вариации (0,75) несколько выше, но меньше 1, таким образом риск данного проекта в целом ниже среднего риска инвестиционного портфеля фирмы. Результаты вероятностного анализа показывают, что шанс получить отрицательную величину NPV не превышает 9%. Общее число отрицательных значений NPV в выборке составляет 32 из 500. Таким образом с вероятностью около 91% можно утверждать, что чистая современная стоимость проекта будет больше 0. При этом вероятность того, что величина NPV окажется больше чем М(NPV) + , равна 16% (ячейка F19). Вероятность попадания значения NPV в интервал [М(NPV) - ; М(NPV)] равна 34%.
 
 Рис. 3.14. Результаты имитационного эксперимента (шаблон II)
 
 Рис. 3.15. Результаты анализа (шаблон II)
 3.2.3. Статистический анализ результатов имитации
 Как уже отмечалось, в анализе стохастических процессов важное значение имеют статистические взаимосвязи между случайными величинами. В предыдущем примере для установления степени взаимосвязи ключевых и расчетных показателей мы использовали графический анализ. В качестве количественных характеристик подобных взаимосвязей в статистике используют два показателя: ковариацию и корреляцию.
 Ковариация и корреляция
 Ковариация выражает степень статистической зависимости между двумя множествами данных и определяется из следующего соотношения:
  (3.4)
 где:
 X, Y - множества значений случайных величин размерности m;
 M(X) - математическое ожидание случайной величины Х;
 M(Y) - математическое ожидание случайной величины Y.
 Как следует из (3.4), положительная ковариация наблюдается в том случае, когда большим значениям случайной величины Х соответствуют большие значения случайной величины Y, т.е. между ними существует тесная прямая взаимосвязь. Соответственно отрицательная ковариация будет иметь место при соответствии малым значениям случайной величины Х больших значений случайной величины Y. При слабо выраженной зависимости значение показателя ковариации близко к 0.
 Ковариация зависит от единиц измерения исследуемых величин, что ограничивает ее применение на практике. Более удобным для использования в анализе является производный от нее показатель - коэффициент корреляции R, вычисляемый по формуле:
  (3.5).
 Коэффициент корреляции обладает теми же свойствами, что и ковариация, однако является безразмерной величиной и принимает значения от -1 (характеризует линейную обратную взаимосвязь) до +1 (характеризует линейную прямую взаимосвязь). Для независимых случайных величин значение коэффициента корреляции близко к 0.
 Определение количественных характеристик для оценки тесноты взаимосвязи между случайными величинами в ППП EXCEL может быть осуществлено двумя способами:
 * с помощью статистических функций КОВАР() и КОРРЕЛ();
 * с помощью специальных инструментов статистического анализа.
 Если число исследуемых переменных больше 2, более удобным является использование инструментов анализа. Описание статистических функций КОВАР() и КОРРЕЛ() приведено в приложении 4.
 Инструмент анализа данных "Корреляция"
 Определим степень тесноты взаимосвязей между переменными V, Q, P, NCF и NPV. При этом в качестве меры будем использовать показатель корреляции R.
 1. Выберите в главном меню тему "Сервис" пункт "Анализ данных". Результатом выполнения этих действий будет появление диалогового окна "Анализ данных", содержащего список инструментов анализа.
 2. Выберите из списка "Инструменты анализа" пункт "Корреляция" и нажмите кнопку "ОК" (рис. 3.16). Результатом будет появление окна диалога инструмента "Корреляция".
 3. Заполните поля диалогового окна, как показано на рис. 3.17 и нажмите кнопку "ОК".
 Вид полученной ЭТ после выполнения элементарных операций форматирования приведен на рис. 3.18.
 
 Рис. 3.16 Список инструментов анализа (выбор пункта "Корреляция")
 
 Рис. 3.17. Заполнение окна диалога инструмента "Корреляция"
 
 Рис. 3.18. Результаты корреляционного анализа
 Результаты корреляционного анализа представлены в ЭТ в виде квадратной матрицы, заполненной только наполовину, поскольку значение коэффициента корреляции между двумя случайными величинами не зависит от порядка их обработки. Нетрудно заметить, что эта матрица симметрична относительно главной диагонали, элементы которой равны 1, так как каждая переменная коррелирует сама с собой.
 Как следует из результатов корреляционного анализа, выдвинутая в процессе решения предыдущего примера гипотеза о независимости распределений ключевых переменных V, Q, P в целом подтвердилась. Значения коэффициентов корреляции между переменными расходами V, количеством Q и ценой Р (ячейки В3.В4, С4) достаточно близки к 0.
 В свою очередь величина показателя NPV напрямую зависит от величины потока платежей (R = 1). Кроме того, существует корреляционная зависимость средней степени между Q и NPV (R = 0,548), P и NPV (R = 0,67). Как и следовало ожидать, между величинами V и NPV существует умеренная обратная корреляционная зависимость (R = -0,39).
 Полезность проведения последующего статистического анализа результатов имитационного эксперимента заключается также в том, что во многих случаях он позволяет выявить некорректности в исходных данных, либо даже ошибки в постановке задачи. В частности в рассматриваемом примере, отсутствие взаимосвязи между переменными затратами V и объемами выпуска продукта Q требует дополнительных объяснений, так как с увеличением последнего, величина V также должна расти (Переменные затраты также часто называют пропорциональными, имея в виду что с увеличением объемов выпуска продукта они растут линейно). Таким образом, установленный диапазон изменений переменных затрат V нуждается в дополнительной проверке и, возможно, корректировке.
 Следует отметить, что близкие к нулевым значения коэффициента корреляции R указывают на отсутствие линейной связи между исследуемыми переменными, но не исключают возможности нелинейной зависимости. Кроме того, высокая корреляция не обязательно всегда означает наличие причинной связи, так как две исследуемые переменные могут зависеть от значений третьей.
 При проведении имитационного эксперимента и последующего вероятностного анализа полученных результатов мы исходили из предположения о нормальном распределении исходных и выходных показателей. Вместе с тем, справедливость сделанных допущений, по крайней мере для выходного показателя NPV, нуждается в проверке.
 Для проверки гипотезы о нормальном распределении случайной величины применяются специальные статистические критерии: Колмогорова-Смирнова, . В целом ППП EXCEL позволяет быстро и эффективно осуществить расчет требуемого критерия и провести статистическую оценку гипотез.
 Однако в простейшем случае для этих целей можно использовать такие характеристики распределения, как асимметрия (скос) и эксцесс (см. главу 3). Напомним, что для нормального распределения эти характеристики должны быть равны 0. На практике близкими к нулевым значениями можно пренебречь. Для вычисления коэффициента асимметрии и эксцесса в ППП EXCEL реализованы специальные статистические функции - СКОС() и ЭКСЦЕСС(). Форматы и краткое описание этих функций приведены в приложении 4.
 Мы же будем использовать возникшую проблему как повод для знакомства с еще одним полезным инструментом анализа данных ППП EXCEL - "Описательная статистика".
 Инструмент анализа данных "Описательная статистика"
 Чем больше характеристик распределения случайной величины нам известно, тем точнее мы можем судить об описываемых ею процессов. Инструмент "Описательная статистика" автоматически вычисляет наиболее широко используемые в практическом анализе характеристики распределений. При этом значения могут быть определены сразу для нескольких исследуемых переменных.
 Определим параметры описательной статистики для переменных V, Q, P, NCF, NPV. Для этого необходимо выполнить следующие шаги.
 1. Выберите в главном меню тему "Сервис" пункт "Анализ данных". Результатом выполнения этих действий будет появление диалогового окна "Анализ данных", содержащего список инструментов анализа.
 2. Выберите из списка "Инструменты анализа" пункт "Описательная статистика" и нажмите кнопку "ОК". Результатом будет появление окна диалога инструмента "Описательная статистика".
 3. Заполните поля диалогового окна, как показано на рис. 3.19 и нажмите кнопку "ОК".
 Результатом выполнения указанных действий будет формирование отдельного листа, содержащего вычисленные характеристики описательной статистики для исследуемых переменных. Выполнив операции форматирования, можно привести полученную ЭТ к более наглядному виду (рис. 3.20).
 
 Рис. 3.19. Заполнение полей диалогового окна "Описательная статистика"
 
 Рис. 3.20. Описательная статистика для исследуемых переменных
 Многие из приведенных в данной ЭТ характеристик вам уже хорошо знакомы, а их значения уже определены с помощью соответствующих функций на листе "Результаты анализа". Поэтому рассмотрим лишь те из них, которые не упоминались ранее.
 Вторая строка ЭТ содержит значения стандартных ошибок для средних величин распределений. Другими словами среднее или ожидаемое значение случайной величины М(Е) определено с погрешностью .
 Медиана - это значение случайной величины, которое делит площадь, ограниченную кривой распределения, пополам (т.е. середина численного ряда или интервала). Как и математическое ожидание, медиана является одной из характеристик центра распределения случайной величины. В симметричных распределениях значение медианы должно быть равным или достаточно близким к математическому ожиданию.
 Как следует из полученных результатов, данное условие соблюдается для исходных переменных V, Q, P (значения медиан лежат в диапазоне М(Е) , т.е. - практически совпадают со средними). Однако для результатных переменных NCF, NPV значения медиан лежат ниже средних, что наводит на мысль о правосторонней асимметричности их распределений.
 Мода - наиболее вероятное значение случайной величины (наиболее часто встречающееся значение в интервале данных). Для симметричных распределений мода равна математическому ожиданию. Иногда мода может отсутствовать. В данном случае ППП EXCEL вернул сообщение об ошибке. Таким образом, вычисление моды не представляется возможным.
 Эксцесс характеризует остроконечность (положительное значение) или пологость (отрицательное значение) распределения по сравнению с нормальной кривой. Теоретически, эксцесс нормального распределения должен быть равен 0. Однако на практике для генеральных совокупностей больших объемов его малыми значениями можно пренебречь.
 В рассматриваемом примере примерно одинаковый положительный эксцесс наблюдается у распределений переменных Q, NCF, NPV. Таким образом графики этих распределений будут чуть остроконечнее, по сравнению с нормальной кривой. Соответственно графики распределений для переменных V и Р будут чуть более пологими, по отношению к нормальному.
 Асимметричность (коэффициент асимметрии или скоса - s) характеризует смещение распределения относительно математического ожидания. При положительном значении коэффициента распределение скошено вправо, т.е. его более длинная часть лежит правее центра (математического ожидания) и обратно. Для нормального распределения коэффициент асимметрии равен 0. На практике, его малыми значениями можно пренебречь.
 В частности асимметрию распределений переменных V, Q, P в данном случае можно считать несущественной, чего нельзя однако сказать о распределении величины NPV.
 Осуществим оценку значимости коэффициента асимметрии для распределения NPV. Наиболее простым способом получения такой оценки является определение стандартной (средней квадратической) ошибки асимметрии, рассчитываемой по формуле:
  (3.6)
 где n - число значений случайной величины (в данном случае - 500).
 Если отношение коэффициента асимметрии s к величине ошибки меньше трех (т.е.: s / < 3), то асимметрия считается несущественной, а ее наличие объясняется воздействием случайных факторов. В противном случае асимметрия статистически значима и факт ее наличия требует дополнительной интерпретации. Осуществим оценку значимости коэффициента асимметрии для рассматриваемого примера.
 Введите в любую ячейку ЭТ формулу:
 = 0,763 / КОРЕНЬ(6*499 / 501*503) (Результат: 7,06).
 Поскольку отношение s / > 3, асимметрию следует считать существенной. Таким образом наше первоначальное предположение о правосторонней скошенности распределения NPV подтвердилась.
 Для рассматриваемого примера наличие правосторонней асимметрии может считаться положительным моментом, так как это означает, что большая часть распределения лежит выше математического ожидания, т.е. большие значения NPV являются более вероятными.
 Аналогичным способом можно осуществить проверку значимости величины эксцесса - е. Формула для расчета стандартной ошибки эксцесса имеет следующий вид:
  (3.7)
 где:
 n - число значений случайной величины.
 Если отношение e / < 3, эксцесс считается незначительным и его величиной можно пренебречь.
 Вы можете включить проверку значимости показателей асимметрии и эксцесса в разработанный шаблон, задав соответствующие формулы в листе "Результаты анализа". Для удобства предварительно следует определить собственное имя для ячейки В10 листа "Имитация", например - "Кол_знач". Тогда формула проверки значимости коэффициента асимметрии для распределения NPV может быть задана следующим образом:
 =СКОС(ЧСС)/КОРЕНЬ(6*(Кол_знач -1))/((Кол_знач+1)*(Кол_знач+ 3)).
 Для вычисления коэффициента асимметрии в этой формуле использована статистическая функция СКОС(). Формула для проверки значимости показателя эксцесса задается аналогичным образом. Числителем этой формулы будет функция ЭКСЦЕСС(), а знаменателем соотношение (3.7), реализованное в средствами ППП EXCEL.
 Оставшиеся показатели описательной статистики (рис. 3.20) представляют меньший интерес. Величина "Интервал" определяется как разность между максимальным и минимальным значением случайной величины (численного ряда). Параметры "Счет" и "Сумма" представляют собой число значений в заданном интервале и их сумму соответственно.
 Последняя характеристика "Уровень надежности" показывает величину доверительного интервала для математического ожидания согласно заданному уровню надежности или доверия. По умолчанию уровень надежности принят равным 95%.
 Для рассматриваемого примера это означает, что с вероятностью 0,95 (95%) величина математического ожидания NPV попадет в интервал 3412,14 224,88.
 Вы можете указать другой уровень надежности, например - 98%, путем ввода соответствующего значения в поле "Уровень надежности" диалогового окна "Описательная статистика". Следует отметить, что чем выше принятый уровень надежности, тем больше будет величина доверительного интервала для среднего.
 Расчет доверительного интервала для среднего значения можно также осуществить с помощью специальной статистической функции ДОВЕРИТ() (см. приложение 4).
 Дополнение "Анализ данных" содержит целый ряд других полезных инструментов, позволяющих быстро и эффективно осуществить требуемый вид обработки данных. Вместе с тем, большинство из них требует осмысленного применения и соответствующей подготовки пользователя в области математической статистики.
 В заключении отметим, что имитационное моделирование позволяет учесть максимально возможное число факторов внешней среды для поддержки принятия управленческих решений и является наиболее мощным средством анализа инвестиционных рисков. Необходимость его применения в отечественной финансовой практике обусловлена особенностями российского рынка, характеризующегося субъективизмом, зависимостью от внеэкономических факторов и высокой степенью неопределенности.
 Результаты имитации могут быть дополнены вероятностным и статистическим анализом и в целом обеспечивают менеджера наиболее полной информацией о степени влияния ключевых факторов на ожидаемые результаты и возможных сценариях развития событий.
 К недостаткам рассмотренного подхода следует отнести:
 * трудность понимания и восприятия менеджерами имитационных моделей, учитывающих большое число внешних и внутренних факторов, вследствие их математической сложности и объемности;
 * при разработке реальных моделей может возникнуть необходимость привлечения специалистов или научных консультантов со стороны;
 * относительную неточность полученных результатов, по сравнению с другими методами численного анализа и др.
 Несмотря на отмеченные недостатки, в настоящее время имитационное моделирование является основой для создания новых перспективных технологий управления и принятия решений в сфере бизнеса, а развитие вычислительной техники и программного обеспечения делает этот метод все более доступным для широкого круга специалистов-практиков.
 
 Содержание
 
 Ссылки на ресурсы по теме.
 1. Информация по имитационному моделированию.
 Информация по GPSS. Программы GPSS/PC_a95
 
 2. GPSS/PC_a95
 ??
 
 ??
 
 ??
 
 ??
 
 
 
 
 2
 
 
 

<< Пред.           стр. 2 (из 2)           След. >>

Список литературы по разделу