<< Пред. стр. 2 (из 7) След. >>
Ответ на раздражители: выполнение действий в соответствии с внешними событиями.Воспроизводство: создание себе подобного организма.
Современная биология избрала более простой путь: любое живое существо - клеточное. Отдельный организм может быть одноклеточным или состоять из множества взаимодействующих специализированных клеток, но в основе всех организмов лежит клетка. Далее, каждая клетка обладает мембранной оболочкой для обособления ее от остального мира. Внутри этой мембраны содержится полный набор команд по работе и воспроизведению клетки. Эти команды записаны в виде кода в дезоксирибонуклеиновой кислоте - ДНК.
Долгое время считалось, что существует лишь два вида клеток - эукариоты и прокариоты (рис. 3.2). Они разнятся размещением команд (эукариоты имеют ядро, а у прокариот оно отсутствует) и воспроизведением (эукариоты размножаются путем деления клеток, именуемого митозом; прокариоты - простым разрывом клеток). Недавно выяснилось, что существует еще одна разновидность клеток, названных археями. Анатомически археи сходны с прокариотами - у них нет ядра, но археи обладают, помимо таких же, как у эукариот, лишь им присущими генами.
ДНК содержится в одной хромосоме; отсутствует ядро
ДНК содержится во многих хромосомах внутри ядра
Рис. 3.2. Прокариотная и эукариотная клетки
ДНК архей содержится в простой кольцевой молекуле, а не в нескольких скрученных молекулах, где хранится ДНК эукариот. Большинству архей присущ метаболизм без участия кислорода (анаэробные археи), а некоторые (именуемые экстремофилами) обитают в условиях, при которых не выжили бы иные организмы. Гипертермофилы, обитающие в воде с температурой выше точки кипения (100°С), были обнаружены в горячих источниках Йеллоустонского национального парка, а также близ глубоководных термальных отдушин, именуемых "черными курильщиками" (о них рассказ впереди). Другие живут в холодной, соленой или кислотной среде вроде пресноводных озер под антарктическим льдом, соленых озер и отработанной угольной породы. С конца 1970-х это крайне захватывающая область исследования.
Археи считаются самыми древними клетками, предшествующими и прокариотам, и эукариотам. Поэтому археи по своему виду находятся ближе к самой ранней форме жизни по сравнению с другими клетками. Отсутствие ядра и более простая ДНК делают архею возможным соискателем на близкое родство с первичным простым организмом.
Отправления клетки
Теперь рассмотрим отправления клетки на молекулярном уровне. Ее генетическая информация содержится в молекуле ДНК (рис. 3.3). ДНК представляет собой сравнительно попарно нуклеотидов. Звено между этими нуклеотидами соединяет пары азотистых оснований, которые связываются заданным образом: аденин (А) - лишь с тимином (Т), а гуанин (Г) - с цитозином (Ц). Это так называемые пары оснований Уотсона-Крика. Остальные нуклеотиды приходятся на долю Сахаров (дезоксирибозы), связанных с фосфорной кислотой, образуя остов спирали (рис. 3.4). (На изображениях молекул при отсутствии на углах кольца наименований атомов подразумевается атом углерода.)
Рис. 3.3. Структура молекулы ДНК (по кн.: Raven Р. //., Johnson G. В. Biology)
длинную двойную спиральную молекулу, состоящую из соединенных
Молекула ДНК строит молекулы РНК (матричной - мРНК, транспортной - тРНК и рибосомной - рРНК), представляющих собой одинарные спиральные цепочки нуклеотидов. Нуклеотиды РНК имеют то же строение, что и ДНК, только место тимина (Т) занимает урацил (У) (рис. 3.5).
Рис. 3.4. Строение нуклеотидов (из кн.: Raven P. H., Johnson G. В. Biology)
Двухцепочечная ДНК слишком велика, чтобы пройти сквозь отверстия в мембране ядра у эукариот, тогда как одноцепочечная и более короткая матричная РНК свободно туда проходит.
Рис. 3.5. Молекулы ДНК и РНК (из кн.: Raven P. H., Johnson G. В. Biology)
Прокариоты не сталкиваются с подобной трудностью, так как их ДНК не заключена в ядре. ДНК реплицируется (удваивается) расщеплением связей посередине с последующим восстановлением комплиментарных половин самой молекулы посредством спаривания соответствующих азотистых оснований Уотсона-Крика. Расщепление и восстановление требуют участия ферментов (о которых речь впереди). РНК, переписанная с ДНК, затем строит белки, состоящие из длинной цепочки аминокислот (рис. 3.6):
Белки обеспечивают отправления клетки, запуская определенные химические реакции внутри клетки: реакции, строящие требуемые части клетки, переваривающие пищу, запасающие энергию и обеспечивающие иные "работы по хозяйству" (впрочем, подробности функционирования системы "ДНК > РНК > белки" еще не полностью выяснены, особенно белков и их упаковки, составляя крупнейшую нерешенную проблему биологии; см. гл. 4).
Для уяснения работы белковых ферментов, ускоряющих течение лишь определенных химических реакций, рассмотрим, как человеческий организм получает энергию: в процессе окисления Сахаров и жиров. Такое же окисление происходит во внешнем мире. Доводилось ли вам видеть горение сахара-сырца или быть свидетелями воспламенения жира? Оба процесса требуют очень высокой температуры, а ведь внутри человеческого тела поддерживается температура всего 37°С, при которой происходит окисление. Собираемые РНК белки позволяют химическим реакциям протекать при значительно меньшей температуре, хотя их самих реакция не затрагивает, так что они не расходуются. Обычно подобные молекулы именуют катализаторами.
В случае с биологическими молекулами катализаторами выступают ферменты (энзимы). Часто ферменты временно связывают сложные молекулы. Замедляя движение этих молекул, ферменты дают им возможность соединяться с другими сложными молекулами. Такое соединение схоже с действием ключа в замочной скважине. Каждый, возвращаясь поздно ночью домой, может удостовериться, что значительно проще попасть ключом в замочную скважину, если замок неподвижен. Катализатор тоже механически скрепляет или распускает связи между молекулами, затем их отпускает. Каталитический дожигатель выхлопных газов в автомобиле служит примером небиологического катализатора. Разделенные частицы платины, палладия или родия расщепляют окиси азота, высвобождая кислород и азот, соединяют угарный газ с кислородом для получения углекислого газа либо расщепляют несгоревшие углеводороды до двуокиси углерода и воды. Катализаторы в некотором смысле схожи с организаторами боев боксеров, хотя сами в поединках не участвуют (вспомним знаменитого агента, организовавшего бои Мухаммеда Али с Джорджем Форманом и Джо Фрэзером, матчи Лео Спинкса, Майка Тайсона и Дона Кинга).
Рис. 3.6. Белковые молекулы и их строение (из кн.: Raven P. H., Johnson G. В. Biology)
Как показывают приведенные изображения молекул, они довольно длинные и сложные, хотя собираются из более простых единиц. ДНК и РНК представляют собой сочетание нуклеотидов, каждый из которых состоит из фосфата, сахара (рибозы или дезоксирибозы [той же рибозы, но без одного атома кислорода, когда гидроксильная группа ОН при одном из атомов углерода заменена на атом водорода Н] и азотистых оснований. Белки - длинные цепочки из аминокислот. Каждая такая цепочка именуется полимером. Подобно тому как садовая ограда принимает различные очертания в зависимости от величины и вида камней, из которых она возводится, так и длинные молекулы всевозможного вида могут собираться из небольших, скрепляющихся между собой молекул. Единичные молекулы называются мономерами, а сборку больших молекул из маленьких именуют полимеризацией.
Одна из реакций полимеризации - конденсация, при которой два мономера связываются, вызывая "выпадение" молекулы воды, образуя так называемый димер (двухчастный). Три связанных мономера именуют тримером, четыре - тетрамером и т. д. Обычно при соединении двух мономеров образовавшуюся молекулу называют полимером (многочастной). Примером небиологической реакции полимеризации, сопровождающейся конденсацией, может служить схватывание бетона. Силикатные мономеры образуют полимеры, избыток воды испаряется, а смесь гравия с песком заключается внутрь полимерной массы. В итоге получается очень прочное соединение.
Итак, ДНК содержит чертежи всех белков, включая ферменты, а РНК собирает ферменты, часть которых ускоряет репликацию ДНК. Ферменты невозможно собрать без чертежей от ДНК, а ДНК не в состоянии самовоспроизводиться без ферментов. Звучит подозрительно, напоминая пресловутый вопрос: что было раньше - курица или яйцо?
Выход из этого затруднения предложил биохимик Лесли Оргел в 1960-е годы. РНК несла достаточное количество генетической информации, но если бы она еще могла выступать в роли ферментного катализатора, то была бы способна решать задачи и ДНК, и белков. В таком случае исходной молекулой были бы не ДНК или белки, а РНК. Кроме того, молекулы РНК легче синтезировать по сравнению с ДНК, и ДНК вполне могла бы развиться из РНК.
На протяжении 1970-х годов в роли ферментов учеными отмечались одни белки. Но в начале 1980-х молекулярные биологи Томас Чек и Сидни Олтмен независимо друг от друга обнаружили, что и РНК может выступать в качестве катализатора. Теперь известно около ста ферментативных РНК, именуемых рибозимами.
Это открытие пролило свет на вопрос о происхождении жизни. В статье 1986 года молекулярный биолог из Гарварда Уолтер Гилберт ввел в оборот понятие РНК-мир. Он писал:
"Первую стадию эволюции затем продолжают молекулы РНК своей каталитической деятельностью, необходимой для собственной сборки из нуклеотидного бульона. Молекулы РНК развиваются в способные к самоудвоению формы, используя рекомбинацию и мутацию для освоения новых ниш... Потом они обретают всю совокупность ферментативной деятельности. На следующей стадии молекулы РНК начинают синтезировать белки, сначала создавая адаптирующие молекулы РНК, способные связывать активированные аминокислоты, а затем выстраивая их согласно матрице РНК с использованием других молекул РНК вроде ядра РНК рибосомы. Этот процесс привел бы к созданию первых белков, которые оказываются лучшими ферментами, нежели их собратья из РНК... Эти белковые ферменты... складываются из минимальных составляющих структуры".
У гипотезы РНК-мира есть альтернативы, самая известная из них - выдвинутая биохимиком Сидни Фоксом о первичности белка и гипотеза "глиняного мира" химика А. Г. Кэрнса-Смита.
Эти теории привлекли меньше внимания исследователей, и их обсуждение отложим до той поры, пока не изучим лучше мир РНК.
Предсолнце
Начнем свое путешествие к истокам жизни, отправившись в то время, когда стали образовываться основные кирпичики жизни - атомы. Итак, чтобы увидеть, каким образом Земля получила атомы, особенно атомы углерода, обратим время вспять.
Очень давно, где-то в нашей галактике Млечный Путь была некая звезда, назовем ее Предсолнцем. Предсолнце образовалось при уплотнении под действием тяготения большого водородно-гелиевого облака межзвездного пространства. Подобно большинству звезд, Предсолнце состояло из сердцевины [ядра], где тяготение сближало протоны до такой степени, что происходил ядерный синтез, и газовой атмосферы, которая нагревалась под действием испускаемой сердцевиной энергии. На первой ступени жизни Предсолнца в его сердцевине происходило слияние водородных ядер (протонов) с образованием ядер гелия (именуемых альфа-частицами). Атмосфера ярко светилась под действием выделяемой из недр Предсолнца энергии.
Со временем водород в сердцевине частично выгорел. Отсутствие топлива привело к сжатию сердцевины и повышению ее температуры, что вызвало расширение атмосферы и ее красное свечение. Между тем сжавшаяся сердцевина нагрелась до такой степени, что началось слияние трех ядер гелия с образованием ядра углерода, и эта переработка гелия в углерод получила название тройного альфа-процесса, или тройной гелиевой реакции. Ввиду большой массы Предсолнце обладает большой силой тяготения, так что гелий быстро выгорает. Сердцевина опять сжимается, температура ее повышается, и в итоге новые реакции синтеза порождают элементы тяжелее углерода. Слияние ядер происходит послойно, так что сердцевина крупной звезды напоминает луковицу, где каждому слою соответствует своя реакция синтеза. Атмосфера расширяется и сжимается слегка, не поспевая, однако, за изменениями в сердцевине. Сердцевина старается предотвратить вызванное тяготением сокращение, и таким образом синтезируются все более тяжелые ядра. Когда начинается образование ядер железа, синтез подходит к концу. Образование ядер железа оказывается не столь энергетически выгодным, и синтез более тяжелых ядер идет на спад. Неотвратимо приближающийся коллапс сердцевины Предсолнца представляет собой удивительное зрелище. Предсолнце взрывается, выбрасывая некоторую часть своей сердцевины и всю атмосферу в межзвездное пространство (о том, что происходит с оставшейся сердцевиной, см. в гл. 6).
Вещество, состоящее из 70% водорода, 28% гелия и 2% более тяжелых элементов, разлетается с огромной скоростью. Замедляя свое движение под действием сил тяготения, исторгнутое Предсолнцем вещество наполняет межзвездное пространство более тяжелыми ядрами.
История жизни Предсолнца позволяет объяснить происхождение тяжелых ядер в нашей Солнечной системе и на Земле, но остается прояснить еще один вопрос. Крупные звезды по астрономическим меркам имеют непродолжительный срок жизни - от миллионов до сотен миллионов лет. Так что до образования нашей Солнечной системы могли существовать тысячи Предсолнц. Получается, что в газово-пылевом облаке, уплотнившемся под действием притяжения и давшем нам начало, возможно, присутствовали ядра, образованные предшествующими звездами.
Наше Солнце
Начало жизненного цикла нашего Солнца такое же, как и у Предсолнца, за исключением того, что Солнце не столь массивно. Малые звезды живут дольше, поскольку их меньшая масса препятствует столь быстрому процессу слияния ядер. Поэтому нашему Солнцу отпущен больший срок и уготована не столь ужасная кончина. Но нас прежде всего интересует Земля. Образование Земли протекало сходным со звездами образом, но на Земле вследствие значительно меньшей массы у слипшихся частиц слияния ядер не происходило. Слипшиеся частицы сталкивались и скучивались, так что более плотное вещество оседало в сердцевине (ядре), а менее плотное поднималось на поверхность планеты.
Частицы газа и пыли сталкивались друг с другом, объединялись в ходе так называемого сращения и в итоге образовали горячую первобытную землю. Сросшиеся массы, именуемые планетезималями, продолжали падать на поверхность молодой Земли. Возможно, одна крупная планетезималь по касательной столкнулась с Землей, выбив из нее вещество, давшее начало Луне, а также заставив ее вращаться. Наконец, новоиспеченное Солнце "вымело" большую часть осколков за пределы Солнечной системы. Пространство, занимаемое внутренними планетами, оказалось на редкость чистым, за исключением случайных столкновений с грязными осколками льда, появляющимися при сближении с тяжелыми внешними планетами. Эти осколки льда мы сегодня называем кометами. Их хвост состоит большей частью из паров воды и углекислого газа, поскольку под действием солнечных лучей лед напрямую переходит в газообразное состояние.
Появление РНК
Поверхность вновь образовавшейся планеты Земля была каменистой и горячей. На нее продолжали обрушиваться планетезимали и хвосты комет, оставляя смешанные с углеродом пары воды и углекислый газ. По мере охлаждения Земли происходила конденсация воды, вместе с водой от кометных хвостов образовавшей океаны. Газовая атмосфера, похоже, состояла из газов, выделяемых при извержении вулканов: водяных паров (Н2О), углекислого газа (СО2), аммиака (NH3), метана (СН4) и небольшого количества оставшегося водорода (Н2), не утраченного Землей ввиду присущей ей слабой силы тяготения. Свободного кислорода (О2), по сути, не было, так как даже имевшиеся крохи вследствие химических реакций оказались в связанном состоянии.
При таком развитии событий на Земле могли начаться химические реакции. Чтобы заложить основы жизни, эти реакции должны были проходить беспрепятственно в тогдашних условиях, с достаточной силой и устойчивостью. Начиная с простых молекул и доходя до РНК, мы изучим каждую реакцию, наблюдая, где и как они могли произойти и какое положительное или отрицательное воздействие оказывала на них окружающая среда. Что касается времени, все реакции должны были начаться в конце периода падения потоков планетезималей, а завершиться до того, как были образованы древнейшие окаменелости. Мы получаем промежуток в 100-500 млн лет, или около 1016 с.
На рис. 3.7 приведены химические реакции, которые должны были породить РНК.
1. Простые молекулы при химическом взаимодействии образуют аминокислоты- предшественниц азотистых оснований. Опыт 1953 года Стэнли Миллера благодаря случайным реакциям дал множество органических молекул, некоторые Из них представляли аминокислоты - предшественницы азотистых оснований. Проводились сходные опыты с использованием различных веществ и ультрафиолетового излучения вместо электрических разрядов.
Рис. 3.7. Химические реакции, ведущие к образованию РНК
Но результаты выходили одинаковые: в различных количествах получались все 20 аминокислот, присутствующих в живых организмах (см.: Список идей, 5. Аминокислоты). Такой процесс мог начаться в атмосфере, а затем перейти в толщу океана. Или же он начался глубоко под водой в океане близ гидротермальных отдушин ("черных курильщиков"), где высокая температура давала энергию и ускоряла химические реакции. Но поскольку жизни еще не было, молекулы могли собираться в толще океана без поглощения их организмами-санитарами, как происходило бы сегодня.
2. Простые молекулы при химическом взаимодействии образуют рибозу. Хотя реакция возникла, полная цепочка реакций, приводящая к образованию рибозы в качестве основного продукта, еще не наблюдалась. В реакциях, где рибоза являлась побочным продуктом, выход большей частью был слишком мал, чтобы иметь устойчивые реакции для получения достаточного для начала жизни количества молекул. Возможно, ученые не выявили требуемых реакций для образования нужной рибозы, или же тогда присутствовали уникальные неорганические либо органические катализаторы. Вместо того чтобы следовать подходу Миллера и продолжать "варить" простые молекулы все дольше и дольше, ученые перескочили через этот этап и приступили к соединению промежуточных молекул, чтобы увидеть, как мог протекать дальнейший процесс.
3. Простые молекулы при химическом взаимодействии образуют фосфорную кислоту. Это простая неорганическая реакция, совершаемая атомами фосфора, которые получаются при выветривании скальных пород.
4. Азотистые основания и рибоза при химическом взаимодействии образуют нуклеозиды. Ученые достигли некоторых успехов в проведении данных реакций, но сам синтез оказался неэффективным без использования ферментов, чтобы катализировать данный процесс.
5. Нуклеозиды и фосфаты при химическом взаимодействии образуют нуклеотиды. Одни нуклеотиды получаются достаточно легко, другие - крайне трудно. Камнем преткновения к тому же служит образование большого количества нуклеотидов. Одни наличествуют в организмах, другие отсутствуют и, что может помешать репликации РНК, поскольку они не будут соединяться с встречающимися в природе нуклеотидами. Опять же тогда могли присутствовать неорганические или органические катализаторы, содействующие протеканию такой реакции. Катализаторы могли возникнуть на Земле или быть занесены хвостами комет либо метеоритами. Природа самих катализаторов пока неизвестна (более подробно см. далее). Не исключается протекание в ту пору неферментативных реакций, но ученые их еще не выявили.
6. Нуклеотидные мономеры, полимеризуясь, образуют нуклеотидные полимеры- РНК. Полимеризация может оказаться затруднительной в изобилующей водой среде. Бульон мог оказаться слишком разбавленным; вероятно, он должен быть более густым - наподобие каши или даже теста для пиццы. Полимеризация посредством конденсации могла происходить в мелком пруду, на песчаном берегу или на глинистом взморье. Длинные органические молекулы могли не вынести сильного ультрафиолетового излучения, что предполагает наличие некоторого укрытия, чтобы состоялась полимеризация. Вполне вероятно, что молекулы паров воды в верхних слоях атмосферы разлагались под действием солнечных лучей в ходе так называемой фотодиссоциации, порождая водород и кислород. Водород, преодолев силу притяжения, покидал Землю, а кислород превращался в первый озоновый (О3) слой Земли, укрыв ее поверхность от ультрафиолетовых лучей. Находясь слишком высоко в атмосфере, кислород не мог мешать течению ведущих к зарождению жизни химических реакций на земной поверхности, а задержка ультрафиолетовых лучей обезопасила органические молекулы от распада (продолжалось становление атмосферы, процессы внутри которой породили проблему погоды, которая обсуждается в гл. 5).
Другое возможное развитие событий связано с самовоспроизводящейся молекулой, которая предшествовала РНК. Предполагаемая молекула-предтеча синтезировалась легче РНК, имея при этом сходное с ней строение. На ее роль претендуют два "соискателя".
1. ТНК (треозонуклеиновая кислота), состоящая из содержащих четыре атома углерода [с двумя центральными гидроксильными группами с трансизомерией**) моносахаридов (треоза), а не пять (рибоза), которые образуют остов РНК. Синтез ТНК [не встречается в природе] в добиологическом мире происходил бы легче по сравнению с РНК, поскольку ТНК требует идентичных остатков с двумя атомами углерода, а не с двумя и тремя, как у [содержащей пять атомов углерода] рибозы. Полимеры ТНК образуют двойную спираль подобно ДНК и совместимы с ДНК и РНК (рис. 3.8).
Рис. 3.8. Моносахариды с углеродной цепью из четырех (треоза) и из пяти (рибоза) атомов
2. ПНК (пептиднуклеиновая кислота), остов которой образован не сахарами, а полимерами аминокислоты Г^(2-аминоэтил)-глицин. Эта молекула образует двойную спираль, ее составляющие легко синтезируются устойчивыми реакциями простых молекул, и она легко полимеризуется.
Был ли у РНК самовоспроизводящийся предшественник, неясно. Ну а мы тем временем продолжим.
РНК-мир
С появлением РНК механизм образования первой клетки проясняется. РНК-миру для его становления остается пройти пять этапов.
1. Этап репликации (самовоспроизведения).
A. Нить РНК создает свою комплиментарную нить (Ц-Г, А-У) притягиванием друг к другу спариваемых оснований аминокислот. Возможно образование любых сочетаний, однако неустойчивые сочетания не смогут удержаться вместе, как это происходит с парами оснований Уотсона-Крика (АУ, ГЦ), которые и берут верх.
Б. Комплиментарная нить РНК отделяется от исходной нити.
B. Комплиментарная нить создает свою собственную комплиментарную нить, совпадающую с исходной РНК.
Г. Молекулярные комплиментарные нити разделяются, образуя копию исходной молекулы РНК и комплиментарную молекулу РНК, которые в свою очередь могут теперь строить очередные копии по тому же образцу.
Воспроизведение всех этих этапов в лабораторных условиях пока не увенчалось успехом. Возможно, протеканию этих реакций способствовали катализаторы. Здесь могли участвовать неорганические катализаторы в виде заряженных [кристаллов] глины, притягивая молекулы и удерживая их в нужном для реакции положении. Другой вариант связан с возможностью проведения необходимых репликаций обладающими ферментной активностью молекулами РНК - рибозимами. Здесь могли присутствовать и органические катализаторы, которые пока не выявлены. Другая трудность связана с право- и левовращающимися спиральными молекулами РНК и ДНК, о чем речь пойдет в следующей главке. Возможность дарвиновской эволюции на молекулярном уровне наличествует на всех этапах развития РНК-го мира. Изменение происходит при репликации, как следствие случайной природы самого процесса. Полученные молекулы начинают бороться за аминокислоты, и преуспевшие в этом завладеют большинством аминокислот, став преобладающими. Заметим, сколь схоже такое развитие событий с ходом классической дарвиновской эволюции с ее изменением, конкуренцией, подкреплением и распространением на уровне организмов.
2. Направляемый РНК белковый синтез. РНК, синтезирующие белковые молекулы, должны пользоваться даруемыми дарвиновской теорией выгодами, вероятно, через некую косвенную обратную связь, пока еще не выявленную.
3. Разделение на клеточные скопления. Должно начаться образование мембран из сложных белков или жирных липидных молекул, ведущее к отделению множеств РНК друг от друга. Это вызовет усиление конкуренции между ними и белковыми молекулами, прежде чем они подойдут к этапу становления клетки. Эти клеточные скопления именуют протоклетками.
4. Сцепление белков и РНК. Предположив разделение этих первых РНК на гены, каждый из которых синтезирует один белок, получим, что они должны состоять из 70-90 нуклеотидов. Для сравнения: ген современного человека включает несколько тысяч нуклеотидов. Первичный белок (в действительности остаток аминокислоты, именуемый пептидом), вероятно, состоял из 20-30 нуклеотидов. Согласно теоретическим выкладкам минимальное число генов должно равняться 256, и тогда первая клеточная РНК состояла примерно из 20 тыс. нуклеотидов.
5. Сохранение информации в ДНК и образование белковых ферментов-катализаторов. РНК вполне способна хранить генетическую информацию, но двойная спираль ДНК лучше приспособлена к более надежному ее хранению по сравнению с одной спиралью РНК. Развивая мысль о сборке рибонуклеиновой кислотой множества молекул в качестве хранителей информации и ферментов, получаем, что с эволюционной точки зрения обеспечивающая более надежное хранение генетической информации ДНК сменит в этой роли РНК. Далее, белковые ферменты оказываются более действенными как катализаторы по сравнению с РНК и поэтому белки приходят на их место. Таким образом, молекулы РНК ограничиваются транскрипцией [мРНК], транспортировкой [тРНК] и катализом [рРНК], так как остальные их обязанности взяли на себя молекулы, справляющиеся с ними гораздо лучше. Дарвин был бы доволен. Как только протоклетке удается обрести способность к метаболизму и воспроизведению, она становится полноценной клеткой. Начало жизни положено.
Альтернативы РНК-миру
Есть иные варианты с участием РНК, включая "первичность белков" и "глиняный мир".
Первичность белков. Сидни Фокс в 1977 году показал, что отдельные смеси аминокислот при нагревании без воды полимеризуются, образуя протеиноиды (короткие полипептидные цепи с некоторыми каталитическими свойствами). Если затем опустить протеиноиды в воду, они образуют мембрану и начинают походить на клетки. Такие клеткообразные структуры Фокс назвал микросферами. Внутри микросфер белки предположительно катализировали образование РНК и ДНК.
Глиняный мир. Согласно этой гипотезе радиоактивность обеспечивала аминокислоты энергией для полимеризации на глиняной подложке, содержащей железо и цинк, которые служили неорганическими катализаторами для образования и белков и РНК. Такой подход в 1982 году предложил Кэрнс-Смит.
Научное сообщество пока не балует эти гипотезы вниманием, но все может измениться, если обнаружится какое-нибудь веское доказательство в пользу одной из них.
Сложности
Оказывается, происхождение жизни - весьма сложный процесс. Многие вопросы пока остаются без ответа. Это касается состава и соотношения исходного сырья, роли температуры, количества наличествующей воды, отсутствия или присутствия катализаторов, органической или неорганической их природы, их источника, течения химических реакций и т.
Непреодолимая трудность состоит в невозможности обратить время вспять, чтобы проверить те или иные детали.
Возможно, от отчаяния некоторые идут напролом в поисках более простых ответов, рассматривая, например, процесс статистически и оценивая общую вероятность событий. Предлагались многие такие оценки, о них весьма ярко выразился астроном Фред Хойл, сказав, что вероятность зарождения жизни из простых молекул сродни "сборке "Бо-инга-747" ураганом, пронесшимся над мусорной свалкой". Сборка сложного технического изделия из простого сырья больше смахивает на "лягушек из чушек", чем на описанный выше многоступенчатый процесс. Кроме того, сам процесс далеко не случаен. Катализаторы ускоряют реакции, а дарвиновская система изменения, конкуренции, подкрепления и распространения "удачливых" молекул делает химические процессы значительно более действенными, нежели случайный ход событий. Скорее нужна многократная подгонка частей и сохранение того, что станет походить на "Боинг-747". Посредством такого рода обратной связи можно в итоге собрать самолет.
Другая трудность - наличие право- и левовращающих молекул. Способность углерода образовывать четыре связи позволяет ему создавать трехмерные тетраэдрические структуры. Так, один атом углерода, даже связанный с одинаковыми атомами, может образовывать две совершенно разные молекулы, именуемые стереоизомерами (рис. 3.9). Эти молекулы являются зеркальными отображениями друг друга, однако из-за своего трехмерного строения они не взаимозаменяемы. Это известно любому, кто пытался надеть левую перчатку на правую руку.
Рис. 3.9. Хиральные стереоизомеры
Подобная "закрученность" молекул именуется хиральностью. Поскольку молекулы из-за их малости невозможно увидеть, для определения хиральности сквозь раствор с молекулами пропускают поляризованный свет, отмечая вращение плоскости поляризации света. Молекулы, вращающие свет влево, обозначают буквой L, вправо - буквой D. Для более сложных молекул используется и более сложная система обозначений. Смесь L- и D-форм одного и того же стереоизомера называется рацемической. То, что стереоизомеры существуют в виде рацемических соединений (рацематов), представляло бы сугубо научный интерес, если бы не крайняя чувствительность биологических систем к хиральности. Например, L-форма молекулы кетона, именуемая карвоном, пахнет тмином, тогда как D-форма той же молекулы - мятой.
Еще важнее, что молекулы в живых системах сохраняют свою хиральность. Белки содержат лишь D-, а не L-caxapa. Данное обстоятельство, возможно, указывает на то, что все добиологические химические процессы имеют один источник. Недавние опыты, однако, показывают, что пептиды одинаковой закрученности (гомохиральные) реплицируются охотней, нежели рацематы (гетерохиральные) и даже подавляют находящуюся в меньшинстве у таких соединений хиральность. Возможно, из-за этого преобладают L-аминокислоты и D-caxapa, которым удалось подавить своих собратьев в ходе последующих репликаций.
Другая сложность: возвращение панспермии. В 1960-е годы американский астроном Карл Саган переосмыслил представления Аррениуса, установив те условия, при которых маленькие частицы вроде спор могли преодолевать космическое пространство. Оказывается, что не Земля, а спутники внешних планет (например, обладающий атмосферой Тритон у Нептуна или имеющая скрытую в недрах воду Европа у Юпитера) - наилучшее место в Солнечной системе для выживания подобных спор. Это не приближает к разгадке тайны происхождения жизни на Земле, но побуждает исследовать космос.
Следующее предложение внес в те же 1960-е годы британо-американский астроном Томас Голд. Если некая развитая цивилизация исследовала нашу планету в далеком прошлом и оставила следы своего пребывания, там могла быть жизнь, что повлияло на развитие жизни на Земле. Эта теория пикника чужеземцев не имеет никакой предсказательной силы, но она повлияла на представления о наших путешествиях к другим планетам.
Британские астрономы сэр Фред Хойл и Н. Чандра Викрамасингх приступили к изучению спектра космической пыли в 1978 году. Они пришли к убеждению, что полученные ими крайне сложные спектры совпадают со спектрами высушенных бактерий. По их мнению, бактерии живут на частицах пыли в огромных газово-пылевых облаках среди космического пространства. При сжатии подобного облака, приводящем к созданию Солнечной системы, крупицы пыли становятся ядрами комет и выпадают вместе с бактериями на образовывающиеся планеты. Местонахождение и развитие первых бактерий не проясняется, однако эта теория отводит больше времени для появления первой клетки, чем отпускаемые на добиологические химические процессы гипотезой Опарина-Холдейна несколько сотен миллионов лет.
Другие ученые нашли подтверждение некоторым сторонам теории Хойла-Викрамасингха. Свыше 130 различных молекул удалось выявить по линиям поглощения в спектре звезд при прохождении их лучей сквозь пылевые облака. В пылевых облаках присутствовали молекулы сахара, винилового спирта и других биологически значимых веществ. Механизм образования таких сложных молекул в облаках крайне малой плотности совершенно не ясен. Если крупица пыли внутри облака выступает в качестве катализатора, удерживая более простые молекулы, пока они не образуют более длинных молекул, то каким образом последние избегают их хватки? Столкновения с другими частицами, достаточные для распускания больших молекул, смогли бы разорвать и связь катализатора с молекулой. Над этой загадкой придется поломать голову.
Метеориты тоже содержат значительное количество органических молекул. Например, в них было найдено свыше 70 различных аминокислот, восемь из которых относятся к 20 аминокислотам, входящим в состав белков. Найденный в Мерчисоне (Австралия) в 1969 году метеорит содержал много сложных органических молекул. Его аминокислоты относились преимущественно к L-типу, присутствующему в биологических системах Земли.
Ширится изучение комет и межпланетной пыли. В 1999 году НАСА запустила космический корабль Stardust, который возьмет пробы содержимого хвоста кометы Wild-2 и межпланетной пыли и доставит их на Землю в 2006 году. Любопытны предварительные результаты, согласно которым Stardust уже наблюдал частицы с молекулярной массой 2000 единиц. И хотя с определением их состава придется ждать до 2006 года, несомненна их углеродная основа и то, что они в 10 раз крупнее известных молекул.
Мог ли некий внеземной фермент катализировать отдельные ключевые реакции в добиологическом бульоне? Подождем, что за космическую пыль преподнесет нам Stardust.
Решение головоломки: как, кто и почему?
Как. Рассмотрим с позиции научного метода две основные, допускающие проверку гипотезы о происхождении жизни на Земле.
Гипотеза 1
Панспермия Хойла-Викрамасингха
Предсказание: если бактерии обитают на ядрах комет, то жизнь или по меньшей мере сложные органические молекулы могут существовать и в других местах.
Опыт: экспедиции на Марс и спутники внешних планет или, возможно, космический корабль Stardust прояснят положение дел. Если не отыщется следов жизни, гипотезу придется дополнить или отвергнуть. В противном случае... Если калифорнийский проект по поиску внеземного разума получит сигнал от разумных форм жизни, то вопрос происхождения этих форм жизни приобретет большое значение (см.: Список идей, 4. Внеземная жизнь).
Гипотеза 2
Молекулярное самопроизвольное зарождение жизни, по Опарину-Холдейну. Как видно из нашего обсуждения, данная гипотеза страдает незавершенностью. Требуется уточнить многие частные вопросы.
Предсказание: при уточнении частных вопросов необходимо определиться с рядом устойчивых реакций, которые можно было бы воспроизвести в лабораторных условиях.
Опыт: ученые ждут предсказаний от теории, чтобы проверить их опытным путем.
Кто. Кто, в частности, мог бы помочь в завершении гипотезы и проведении трудных лабораторных опытов? Вот неполный список соискателей: Сидни Олтмен, Дэвид Бар-тел, Рональд Брикер, Андре Брок, А. Грэм Кэрнс-Смит, Томас Чек, Кристиан де Дюв, Манфред Эйген, Эндрю Эллингтон, Альберт Эшенмозер, Джеймс Феррис, Айрис Фрай из Израиля, Уолтер Гилберт, Норман Гарольд Горовиц, Уэнди Джонсон, Стюарт Кауффман, Ноам Лахав из Израиля, Барри Эдуард Хауорт Маден из Великобритании, Петер Эйгил Нильсен из Дании, Харри Ноллер, Лесли Оргел, Норман Пейс, Курош Салехи-Аштиани, Эёрш Сатмари из Венгрии, Питер Унрау, Чарльз Уилсон и Арт Цауг. Или же это будет кто-то из малоизвестного учреждения вроде Швейцарского патентного бюро, обладающий острым зрением, чтобы охватить взором не только общую картину, но и необходимые для ее понимания подробности.
Почему. Почему ученые берутся за такие большие и запретные темы, как происхождение жизни? Многими движет любопытство, но в этом деле есть и одно притягательное для всех обстоятельство. Фонд Origin-of-Life Foundation выплатит вознаграждение тому, кто предложит "наиболее приемлемый механизм самопроизвольного возникновения в природе генетических команд, достаточных для зарождения жизни". Награда - 1,35 млн. долларов - лакомый кусочек. За подробностями обращайтесь на узел Всемирной Паутины www.us.net/life .
В 1862 году Луи Пастер принял вызов вопреки советам друзей. Он решил головоломку и за свои труды удостоился премии Французской академии наук. Чего нам недостает, так это Пастера XXI века.
Глава четвертая
Биология
Каково строение и предназначение протеома?
Что такое жизнь? Вспышка светляка в ночи. Дыхание бизона в зимнюю пору. Короткая тень, пробежавшая по траве И потерявшаяся среди заката.
Предсмертные слова Вороньей Лапы,
вождя племени сиксика ††
Но каким бы ни был переход Земли от безжизненной к обитаемой планете, он проложил путь к становлению планеты, полной разнообразных форм жизни. Биология занимается изучением этих самых форм жизни и процессов, обеспечивающих их жизнедеятельность. До недавнего времени крупнейшей нерешенной задачей биологии оставалось прочтение молекулярного чертежа, генома, отдельных форм жизни.
Теперь, после расшифровки генома человека и иных форм жизни, задача такова: выяснить, как белковые молекулы, собранные в соответствии с содержащимися в геномах указаниями, участвуют в устроении и жизнедеятельности организмов? Как эти белковые молекулы обеспечивают невероятно сложное молекулярное взаимодействие, именуемое жизнью?
E. coli
Быстро ешь, быстро расти, быстро размножайся, быстро реагируй... Для клеток спешка - образ жизни.
Каким-то образом молекулы осуществляют все эти жизненно важные отправления клетки. Согласно основам молекулярной биологии сообщение от ДНК переписывается (транскрибируется) в виде РНК, которая затем передает (транслирует) сообщение белкам, длинным цепочкам полимеров с различными боковыми группами, протянувшимися вереницей вдоль повторяющегося остова. Эти белки в свою очередь обеспечивают налаженную работу клетки.
Операционная система жизни превосходит любую версию Windows. Крошечная молекулярная установка жизни решает свои задачи надежно в различных условиях работы и с малыми сбоями. Хотя биология достигла многого в понимании функционирования форм жизни, детали операционной системы жизни столь сложны, что составляют крупнейшую нерешенную проблему биологии.
Чтобы получить представление о природе данной проблемы, рассмотрим некоторые сложности в действиях молекул при отправлении сравнительно простым организмом одной жизненно важной надобности - метаболического разложения молекулы сахара. Данный процесс впервые изучили в 1960-е годы французские ученые Жак Моно, Франсуа Жакоб и Андре Львов. Начнем изыскания с крошечной бактерии, обитающей (обычно вполне мирно) в толстой (ободочной) кишке многих животных и человека. Ее имя Escherichia coli (кишечная палочка) - Е. coli. Это один из излюбленных объектов исследования у биологов, и поэтому он хорошо изучен.
Одна разновидность К-12 вполне безобидна и часто используется в лабораторной работе. Ее полная ДНК (геном) описана и содержит 4 639 221 пару оснований. Из ДНК палочки К-12 транскрибируются 89 РНК, которые в свою очередь строят 4288 различных белков. Обходясь простым (единичным) сахаром, глюкозой и несколькими неорганическими ионами, молекулярный механизм этого выносливого организма способен синтезировать любую органическую молекулу, необходимую для метаболизма, роста, восприятия и воспроизводства. Благодаря своей приспособляемости это крошечное существо выращивается в богатой глюкозой среде в биологических лабораториях по всему миру.
Опероны Е. coli
Молекулярная подвижность Е. coli зависит от оперонов - генетических единиц, расположенных на молекуле ДНК, хромосоме, и состоящих из кластера генов с соответствующими функциями. Один из оперонов называется lac-опероном ввиду ключевой роли в метаболизме молочного сахара (лактозы). Lac-оперон содержит три гена, отвечающих за выработку трех белков, импортирующих лактозу в клетку и расщепляющих ее на глюкозу и другой сахар, галактозу.
Рассмотрим, как lac-оперон участвует в метаболическом процессе при добавлении лактозы в обычно богатую глюкозой питательную среду. Лактоза, молочный сахар, сложнее глюкозы и состоит из глюкозы с галактозой, образующих одну молекулу, дисахарид (рис. 4.1). После добавления лактозы к среде с присутствием Е. coli происходит то, что описывалось выше. Е. coli переваривает глюкозу, оставляя в неприкосновенности лактозу. Но при нехватке глюкозы в ход идет и она.
Рис. 4.1. Молекулы глюкозы и лактозы
Крайне любопытно поведение при этом Е. coli. На время все замирает. Е. coli не влияет на лактозу, другие метаболические реакции идут на убыль, и клетка перестает делиться. Настают трудные времена для Е. coli. Но вскоре начинает действовать лактоза, затем Е. coli. Изучение химических процессов клетки выявляет три новых белка, которых не было,
пока хватало глюкозы. Эти белки состоят из [галакзид-]пермеазы, препровождающей молекулы лактозы через мембрану клетки, где они перевариваются; бета-галактозидазы, расщепляющей лактозу на глюкозу и галактозу; и [тиога-лактизид-]трансацетилазы, чья роль еще полностью не выяснена.
Оперон ДНК - РНК - белки
Представляется, что присутствие лактозы в клетке служит пусковым механизмом, приводящим в действие транскрипцию РНК, которая производит эти три белковых фермента. На самом же деле все обстоит значительно сложнее. Сигнал к производству различных белковых ферментов задается одновременно наличием лактозы и отсутствием глюкозы. Рассмотрим этот процесс на молекулярном уровне, чтобы выяснить его механизм.
ДНК порой представляют в виде обособленной молекулы, надежно защищенной благодаря своему крепкому сложению, хранящей жизненно важную для клетки информацию. Но это далеко не так. В действительности ДНК постоянно прощупывают, крутят, тормошат, раскрывают различные белковые ферменты. Такая деятельность заставляет эту информационную магистраль изрядно выкладываться.
Все эти действия обусловлены обликом ДНК и распределением электрического заряда. Двойная спираль имеет бороздки, маленькую и большую, а все нуклеотидные основания обладают только им присущим распределением электрического заряда (см.: Список идей, 6. Сборка модели ДНК, где рассказывается, как собирать часть ДНК из набора конструктора). Некоторые белки имеют размер и очертание, приходящиеся "впору" этим бороздкам. Благодаря распределению электрического заряда у белков и ДНК они могут плотно прилегать друг к другу. Однако притяжение не столь сильно, как ковалентные связи внутри каждой молекулы. Такое вкладывание одной молекулы в другую называют связыванием.
В зависимости от формы и распределения заряда белки присоединяются в соответствующих местах вдоль ДНК. Ввиду теплового движения молекул белки постоянно связываются и отделяются.
Соответствие сложных молекулярных очертаний часто представляется аналогичным ключу и замку. Лишь немногие очертания в достаточной степени соответствуют друг другу для соединения молекул. Белки тоже могут связываться с другими белками, образуя новую единицу под названием комплекс. Обычно комплекс приобретает иные по сравнению с исходной молекулой очертание и распределение заряда. Такую перемену, играющую главную роль в сборке белка, поскольку меняются "ключи" и "замки", именуют конформационным изменением.
РНК собирается с помощью белкового фермента (полимеразы), который прикрепляется к связывающей стороне ДНК, распускает двойную спираль посередине подобно "змейке" и переписывает (транскрибирует) порядок парных оснований ДНК на молекулу РНК. Затем РНК покидает ДНК и переносит (транслирует) порядок парных нуклеотидных оснований, собирая белок на молекулярном устройстве под названием рибосома. Каждая группа из трех нуклеотидных оснований, именуемая кодоном (см.: Список идей, 7. Кодоны), определяет, какую аминокислоту добавить к белку. Полимераза РНК связывается с ДНК лишь в тех местах, где приходится впору. Это прилаживание определяется не только очертанием молекулы полимеразы, но и наличием места связывания у ДНК, которое в свою очередь зависит от изгибов ДНК.
Для получения полной картины метаболического процесса на основе лактозы недостает трех молекул. Прежде всего это белок-активатор катаболизма (БАК-белок). В обычном состоянии строение БАК-белка не позволяет ему соединяться с ДНК. БАК-белок содержит место для связывания с другой молекулой, циклическим аденозинмонофосфатом (цАМФ). Молекула цАМФ вырабатывается в среде, где отсутствует глюкоза. Если цАМФ связан с БАК-белком, БАК-белок претерпевает конформационное изменение, позволяющее ему присоединяться к ДНК. В свою очередь, связывание комплекса БАК-белок/цАМФ с ДНК Е. соli заставляет ДНК сгибаться, как показано на рис. 4.2.
На заключительном этапе требуется наличие другого белка, действующего в качестве репрессора. В данном случае он называется lас-репрессором. Эта молекула обычно входит в бороздку ДНК в том месте, где нужно помешать закрепиться полимеразе РНК, переписывающей информацию ДНК на белки, которые усваивают лактозу.
Если лактоза не соединена с lac-репрессором, репрессор точно входит в бороздку ДНК в нужном месте, препятствуя выполнению полимеразой РНК возложенной на нее задачи перезаписи (транскрипции). Если лактоза соединена с lac-репрессором, это вызовет в репрессоре конформационные изменения, так что он уже не будет подходить бороздке ДНК Е. соli и не будет мешать полимеразе ДНК выполнять транскрипцию. Рассмотрим, как эти молекулы сотрудничают, определяя наблюдаемую линию поведения Е. coli.
Рис. 4.2. Связь цАМФ с БАК-белком, а БАК-белка - с ДНК (из кн.: Raven P. H., Johnson G. В. Biology)
В исходных условиях имеется глюкоза и отсутствует лактоза. При наличии глюкозы цАМФ не вырабатывается, а значит, не образовывается комплекс БАК-белок/цАМФ, не сгибается ДНК и полимераза РНК не переписывает белки для усвоения лактозы. Помимо этого, репрессор находится на ДНК, препятствуя соединению полимеразы РНК с ДНК в этом месте. Получается двойная блокировка перезаписи (рис. 4.3а).
В смешанной среде с глюкозой и лактозой присутствие глюкозы препятствует образованию комплекса БАК-белок/ цАМФ, так что ДНК не изгибалась, а полимераза РНК не занималась перезаписью. Даже если присутствие лактозы вынудит репрессор покинуть бороздку ДНК, полного связывания полимеразы РНК не произойдет. Она покидает ДНК, так и не прикрепившись ни к одному из участков lac-оперона.
Рис. 4.3. Lac-penpeccop (из кн.: Raven P. H., Johnson G. В. Biology)
В отсутствие глюкозы и лактозы появляется комплекс БАК-белок/цАМФ, изгибается ДНК в ожидании РНК, но при этом наличествует и репрессор. С точки зрения Е. coli отсутствие пищи означает предстоящий голод. Но мы видим, насколько она готова к возможному повороту событий. Если появится глюкоза, она не станет расходовать энергию на выработку белковых ферментов, а сразу приступит к усваиванию глюкозы. Если же появится лактоза, изогнувшаяся ДНК уже готова к сборке нужной РНК, стоит лишь лактозе соединиться с репрессором, который тотчас покидает ДНК (рис. 4.36).
В отсутствие глюкозы и при наличии лактозы происходит следующее. Недостаток глюкозы приводит к образованию комплекса БАК-белок/цАМФ, который соединяется с ДНК, вынуждая ее изгибаться. Это дает возможность полимеразе РНК отыскать свое место прикрепления. Присутствие лактозы приводит к ее связыванию с laс-репрессором и отсоединению репрессора от ДНК, так что уже вся полимераза РНК может присоединиться к ДНК и собрать три белка для усвоения лактозы (рис. 4.3в).
Подобное положение дел сходно с ситуацией с дверью, снабженной ручкой и засовом. Ручка действует подобно активатору, а запор выступает в роли репрессора. В таблице действие системы "ручка-засов" сравнивается с механизмом "активатор-репрессор".
Положение ручки (активатор) Положение запора (репрессор) Откроется ли дверь (образуются ли усваивающие лактозу белки?) Не повернута (высокое содержание глюкозы) Заперто (высокое содержание лактозы) Нет Не повернута (высокое содержание глюкозы) Не заперто (низкое содержание лактозы) Нет Повернута (высокое содержание глюкозы) Заперто (низкое содержание лактозы) Нет Повернута (низкое содержание глюкозы) Не заперто (низкое содержание лактозы) Да
Эта сложная система управления схожа со старым устройством Руба Голдберга‡‡, где целая цепь сложных событий служит для достижения некой простой цели (рис. 4.4). И все же почему при всей затратности данного механизма Е. coli не вырабатывает постоянно все нужные ферменты, чтобы усваивать любой поступающий к ней сахар? Возможно, некогда такая бактерия и существовала.
Но появившаяся в ходе мутаций Е. coli с ее lac-опероном благодаря значительно большему по сравнению со своей старшей родственницей коэффициенту полезного действия вытеснила ее. Наглядный пример классического естественного отбора.
Белковые ферменты собираются практически одновременно с перезаписью РНК, когда РНК все еще прикреплена к длинной кольцевой молекуле ДНК. Поскольку Е. coli относится к прокариотным клеткам, у нее нет тормозящих ход метаболизма ядра или ядерной мембраны, так что усвоение лактозы начинается очень скоро. Е. coli прекрасно живет и на лактозе, и на глюкозе.
Рис. 4.4. Действие lac-оперона на молекулярном уровне (из кн.: Raven P. H., Johnson G. В. Biology)
Е. coli и другие организмы
Е. coli - одно из наиболее изученных живых существ; исследователи выявили примерно две трети функций ее генов. Механизм задействования lac-оперона составляет лишь малую часть молекулярных отправлений Е. coli. Возможно, вас удивит, почему столь много внимания уделяется этой крохотной бактерии, настолько маленькой, что 50 таких созданий уместится на кончике человеческого волоса.
Все дело в том, что значительно проще проводить биологические исследования без привлечения людей, к тому же при этом не возникают этические вопросы. Простые организмы проще и быстрее выращивать, и это относится к проведению самих опытов. По размерам Е. coli - весьма подходящий объект для исследований, к тому же она поразительно быстро размножается: делится каждые 20 минут. При достаточном количестве воды, глюкозы (или лактозы) и места за десять часов из одной Е. coli можно получить свыше 1 млрд. клеток. Если другие штаммы Е. coli опасны для здоровья, то разновидность К-12 вполне безобидна, так что нет нужды предпринимать серьезные меры предосторожности.
Вот уже свыше 70 лет Е. coli выступает рабочей лошадкой биохимии, генетики и биологии развития. Сходство ее молекулярного процессинга с происходящим в других организмах даже привело к использованию ее в качестве фабрики по производству инсулина для больных диабетом. Жак Моно, выдающийся французский ученый и Нобелевский лауреат 1965 года, однажды заметил: "Что верно для Е. coli, верно и для слона".
Изучаются и другие прокариоты, вроде Mycoplasma genitalium [возбудителя мочеполового микоплазмоза], самого крохотного самостоятельного живого организма, в составе ДНК которого 580 тыс. пар азотистых оснований и 517 генов, и Haemophilus influenzae [палочки Пфайфера, возбудителя пневмонии и гнойного менингита], в составе ДНК которого 1 830 137 пар азотистых оснований и 1743 гена. Но относительная простота прокариотной ДНК в связи с ее величиной и кольцевидностью ограничивает ее применение к более сложным организмам.
От прокариот к эукариоталл
Жизнь у прокариот хлопотная. Эти проворные маленькие существа должны обладать отменной реакцией. Как только появляется пища, они должны ее переварить, чтобы успеть вырасти. Система управления наподобие lac-оперона хорошо приспособлена к быстрым действиям, когда нужно установить требуемый уровень ферментов в соответствии с быстро меняющейся средой.
Положение с эукариотами совершенно иное. Большинство многоклеточных организмов развивалось таким образом, что их внутренние клетки оказались отрезанными от меняющейся внешней среды. Стабильная внутренняя обстановка - гомеостаз - необходима для надежной работы многоклеточных организмов. В итоге генные механизмы управления у эукариот оказались в большей степени рассчитаны на регуляцию организма в целом.
Например, некоторые гены активируются лишь однажды и вызывают необратимые действия по сравнению с полностью обратимым механизмом lac-оперона. У многих животных неспециализированные, так называемые стволовые клетки развиваются очень рано, еще у зародыша. Они превращаются в специализированные клетки, вроде клеток мозга или ногтей, следуя определенному генетическому образцу, который может в итоге привести даже к смерти клетки. Такая специализация клеток порождает все большее число ДНК, РНК и белковых ферментов, так что эукариоты могут совмещать в своем метаболизме тонкие взаимодействия между этими молекулами.
Модельные организмы
Излюбленный объект исследования среди эукариот - Sacchammyces accharomyces cerevisae (S. cerevisae), больше известный как пивные дрожжи. Пожалуй, это более всего изученный на молекулярном и клеточном уровнях эукариотный организм. S. cerevisae представляет собой всего лишь одноклеточный грибок, но многие процессы в его клеточном ядре сходны с теми же процессами у млекопитающих. Действительно, исследование дрожжей помогло выявить многие молекулы и химические реакции, задействованные в процессах, ход которых нарушается при раке. S. cerevisae устроены сложнее бактерии, чье ДНК, содержащее около 12 млн нуклеотидных пар азотистых основания, имеет 6 тыс. генов. И Е. coli, и S. cerevisae считаются модельными организмами, которые должны:
1) быстро развиваться, имея короткий срок жизни;
2) обладать малыми размерами, будучи взрослыми;
3) быть всегда под рукой;
4) быть простыми в обращении;
5) выполнять свои биологические функции сходным с более сложными организмами, вроде человека, образом.
Усердно изучаются и другие модельные организмы. Caenorhabditis elegans - прозрачный круглый червь, вырастающий в длину не более 1 мм, вполовину величины вот этого знака ~. С. elegans достигает взрослого состояния за три дня, живет в почве по всему свету и питается микробами вроде тех, что обитают в перегное. Этот маленький червь представляет собой многоклеточную (959 клеток) эукариоту с 19 099 генами в состоящей из 97 млн пар азотистых оснований ДНК. Он развивается из одной клетки в организм с нервной системой и "мозгом". С. elegans способен к обучению, вырабатывает яйцеклетки и сперматозоиды, постепенно стареет и умирает. Сидни Бреннер, молекулярный биолог из Великобритании, говорит, что С. elegans оправдывает свое название, ибо на самом деле "фотогеничен", как видно на рис. 4.5. Бреннер, Джон Салстон и Роберт Хорвиц разделили Нобелевскую премию 2002 года по физиологии и медицине как раз за работу с червем С. elegans.
Другой модельный организм, Drosophila melanogaster, знаком многим из нас. В 1906 году гарвардский профессор эмбриологии Уильям Эрнест Касл привлек к участию в одном проекте аспиранта [Крейга Вудворта].
Рис. 4.5. С. elegans
Он попросил его не убирать несколько перезрелых виноградин, а затем посмотреть, что получится. Получились D. melanogaster - плодовые мушки - организм, изучаемый ныне в лабораториях по всему миру. Благодаря своим идеальным свойствам модельного организма плодовые мушки широко используются в исследованиях по генетике и биологии развития.
Жизненный цикл плодовой мушки составляет 16 дней, а новое поколение она дает каждые 12 часов. Эти существа плодовиты, непритязательны и, по словам генетика из Беркли Герри Рубин, имеют столь много общего с человеком, что их называют крохотными людьми с крыльями. Дрозофила располагает 13 600 генами на ДНК из 165 млн нуклеотидных пар азотистых оснований. Весь этот молекулярный аппарат умещается в тельце длиной 3 мм, величиной примерно с букву V в имени Venter (о самом Вентере чуть позже).
Mus mesculus (мышь), давний любимец медиков, занимающихся изучением болезней и лекарств, тоже соответствует всем требованиям, предъявляемым к модельным организмам. К тому же геном мыши весьма схож с геномом человека.
Генетические сравнительные исследования уже многое прояснили в отношении строения и функционирования человеческого тела. Дальнейшие исследования принесут дополнительные сведения.
Другие создания, вроде полосатой перцины, иглобрюха [родственного горчице сорняка из семейства крестоцветных], резушки Таля (Arabidopsis thaliana) и палочки Пфайфера (Haemophilus influenzae), выступают в роли модельных организмов и изучены в разной степени. Модельные организмы и приспособления, требуемые для их изучения, вызывают в памяти ситуации из классической описательной биологии с образами бесчисленных исследователей, склонившихся над микроскопом или щурящихся сквозь стекла очков во время поездок по экзотическим местам, где можно увидеть организмы в их естественной среде обитания (вспомним Чарльза Дарвина на Галапагосских островах).
Физика - биология - химия
Несмотря на значимость модельных организмов для биологов, поле деятельности современной биологии значительно расширилось во многом благодаря нахлынувшим туда представителям других отраслей знаний, чья деятельность преобразила сам подход к изучению биологии.
Чтобы понять, как произошло это преображение, взглянем иначе и шире на центральное учение молекулярной биологии. Описательная биология сосредоточивалась на видимых признаках, но находила мало объяснений, связанных с этими признаками молекулярных механизмов. Затем пришел черед химии, занимавшейся химическими реакциями внутри живых существ, прояснявшими биологические процессы. Но главная трудность состояла в том, что управляющие живыми системами молекулы были слишком малы, чтобы их можно было для разглядывать в микроскоп.
Следующими нахлынули физики, посредством рентгеновской кристаллографии выявившие двойную спираль ДНК (ВСПОМНИМ биолога Джеймса Уотсона и физика Фрэнсиса Крика, воспользовавшихся данными рентгеновского кристаллографа Розалинды Франклин). Итак, хорошие вести заключались в создании представления об общем строении ДНК, а плохие - в невозможности разглядеть подробности ее строения из-за малых размеров. ДНК содержит такое огромное количество парных оснований нуклеотидов, что их определение и выписывание оказалось сложной задачей.
Рис. 4.6. Общая картина биологии
Итак, положение биологии в 1980-е годы было следующим: молекулярная биология сосредоточилась на работе с крайне малыми объектами; классическая описательная биология ограничилась наблюдением той части биосферы, которая была доступна зрению, пусть и сквозь окуляр микроскопа. Многие детали на стыке микро- и макроскопических областей биологии оказались совершенно необъяснимыми (рис. 4.6).
Переход от большого масштаба к малому происходил медленно. Изучение молекул с химической точки зрения кое-что проясняло, но продвижение шло черепашьим шагом, а черепаха, увы, не модельный организм.
В середине 1980-х годов некоторых биологов осенило: почему бы не изучить весь состав ДНК живого организма, так называемый геном? Более того, посредством отдельных модельных организмов прийти к конечной цели - геному человека. Это привело к очередному наплыву в биологию приборостроителей, программистов, предпринимателей и появлению одного неуемного исследователя - Дж. Крейга Вентера.
Составление карты генома человека. Великие задачи требуют величественных орудий
Прежде чем описывать все перипетии, увенчавшиеся в итоге составлением карты генома модельных организмов и человека, вникнем в подробности того, как устанавливается последовательность оснований плотно упакованной молекулы ДНК. Оказывается, геном человека состоит из 3 млрд. парных оснований нуклеотидов. Если считать их по одному в секунду, на это уйдет почти 100 лет. Очевидно, для их определения потребовался более быстрый способ, для чего понадобилось усовершенствовать несколько методов.
Электрофорез. В 1937 году шведский биохимик Арне Тиселиус (Тизелиус) разработал метод разделения заряженных частиц во взвеси на основе их массы и заряда (рис. 4.7). Заряженная частица в электрическом поле под действием его силы ускоренно движется в сторону противоположно заряженного электрода. Погруженная в среду (гель) частица тормозится под действием силы трения. При равенстве электрической силы и силы трения частица движется с постоянной скоростью, именуемой конечной.
Рис. 4.7. Установка для электрофореза
Данный подход знаком парашютистам, которые благодаря уравновешиванию их веса с силой трения опускаются на землю с постоянной, а не с возрастающей скоростью.
Для выделения частиц в геле Тиселиус применил красители. Данный подход он впервые опробовал при разделении белков в растворе - а в 1948 году был удостоен за свою работу Нобелевской премии по химии. С тех пор его метод использовался в опытах с множеством частиц при движении в различных средах. А для их выделения существуют несколько различных приемов.
Рестрикционные ферменты. Создание рестрикционных ферментов началось весьма необычно: в опытах с бактериофагами. Бактериофаги (или фаги) представляют собой вирусы, атакующие клетки бактерий, внедряя свои ДНК в клетку-хозяина, который затем плодит данный вирус. Фагов независимо друг от друга открыли в 1917 году бактериологи Фредерик Туорт из Великобритании и Феликс д'Эрелль из Франции. Опыты на бактериофагах получали все больший размах благодаря их возможности убивать опасные для человека бактерии. Однако интерес к ним упал после открытия пенициллина и других химических антибиотиков.
Бактериофаги столь многочисленны (по оценкам, их количество составляет 1030), что их общая биомасса значительно превышает общий вес населения Земли. Они почти целиком состоят из белков и ДНК (рис. 4.8). Будучи вирусами, они не могут жить без хозяина. Ввиду простоты своего устройства они оказываются идеальными испытуемыми для получения сведений о жизнедеятельности и их самих, и их хозяев.
Хвостовые нити Рис. 4.8. Бактериофаг
Хамилтон Смит, микробиолог из университета Джонса Хопкинс১ в конце 1960-х работал с Haemophilus influenzae Rd и фагом Р22. Случайно бактерии и фаги стали выращивать вместе. Смит заметил, как активность ДНК у фага все время падала, что указывало на расщепление ДНК фага чем-то внутри бактерии. Смит со своими сотрудниками выделил и очистил ответственный за расщепление фермент и установил его механизм: белковый фермент внутри Н. influenzae расщепляет ДНК фага, выявляя определенную цепь из шести парных оснований и расщепляя ДНК - неизменно в одном и том же месте и одним и тем же способом.
Такой фермент получил название рестрикционного. Помимо этого фермента Н. influenzae Rd располагает еще одним ферментом, метилазой, защищающей ДНК бактерии от подобной участи. Фермент метилаза присоединяет метиловую группу к нуклеотидным основаниям цитозина или аденина в ДНК бактерии. Метилирование настолько изменяет молекулу ДНК, чтобы рестрикционный фермент все еще мог распознать место своего подсоединения, не вмешиваясь при этом в обычный ход воспроизводства или метаболизма самой бактерии.
С тех пор удалось открыть тысячи ферментов, расщепляющих ДНК на определенных участках. Отрыты были и ферменты, скрепляющие вместе куски ДНК. В итоге всех этих открытий молекулярные биологи располагают ныне набором белковых ферментов, позволяющих им разрезать или склеивать ДНК в заданных местах.
Сенгеровский метод обрыва цепи [замещающим нуклеотид] дидезокси[рибонуклеозидтрифосфатом] для секвенирования ДНК. В 1977 году биохимик из Великобритании Фред Сенгер разработал способ расщепления ДНК на участки, соответствующие любой длине исходной ДНК. Этот метод использовал замещающую нуклеотид молекулу. Заместитель не образует связи со следующим нуклеотидом в последовательности, необходимой для создания всей ДНК, так что цепь обрывается на нем.
Приведем пример. На рис. 4.9 верхняя молекула имеет атом кислорода, связанный с атомом водорода в положении 3' (атомы углерода в кольце нумеруются цифрами 1', 2', 3', 4' и 5'), тогда как у атома водорода в положении 4' атом кислорода отсутствует (отсюда приставка дезокси-). У нижней молекулы атом водорода отсутствует на позициях 3' и 4', поэтому ее название начинается с приставки дидезокси-. Из-за такой разницы в строении, когда при сборке молекулы ДНК в нее встраивается дидезоксидное основание, она уже не связывается с другим нуклеотидным основанием (в позиции 5'), и цепь ДНК обрывается в этом месте.
Рис. 4.9. Дезокситимидинтрифосфат (дТТФ) и дидезокситимидинтрифосфат (ддТТФ)
То же происходит с другими основаниями ДНК (аденином, гуанином и цитозином). В итоге можно получать ДНК различной длины (на изображениях молекул пустые углы на кольцах соответствуют атомам углерода).
Сенгеровский метод обрыва цепи дидезоксидными основаниями для секвенирования ДНК начинается с того, что посредством рестрикционных ферментов расщепляют подвергаемую секвенированию ДНК на меньшие участки, а ДНК нагревают до полного разделения обеих ее нитей. Затем к этим однонитевым участкам ДНК добавляют трифосфаты с дидезоксидным основанием, после чего вводится белковый фермент ДНК полимераза, который приступает к сборке копий исходной ДНК. Из-за дидезоксидных оснований собранные молекулы представляют собой не копии исходной ДНК, а смесь из полученных прежде участков ДНК. Предварительно дидезоксидные основания помечаются (маркируются) либо радиоактивным изотопом фосфора, либо чувствительным к ультрафиолетовому свету красителем, так что конец каждой оборванной цепи становится видимым.
Затем эту смесь цепей ДНК помещают в лунки пластины геля и дают электрическое напряжение. Более короткие участки испытывают меньшее сопротивление среды (обычно желе из водоросли агароза, схожее с желатином "Джелло" *** вещество, с той лишь разницей, что молекулы там образуют дополнительные связи, делая гель прочным) и поэтому движутся быстрее. Часто в качестве образца в одну из лунок помещают цепи известной длины. После достижения наиболее короткими цепями края пластины геля напряжение снимают. По радиоактивным или флуоресцентным маркерам определяют нуклеотидное основание в конце каждой молекулярной цепи. Поскольку электрофорез распределяет молекулы в соответствии с возрастанием длины цепи, при просмотре виден порядок расположения парных оснований нуклеотидов в исходной ДНК.
Данный метод широко применялся до середины 1980-х годов, и работа над диссертацией у многих аспирантов заканчивались участием в многолетнем проекте по секвенированию определенной части ДНК одного из модельных организмов. Приходилось брать пробы у организма, очищать, смешивать с химическими реактивами, выращивать, помещать в гель и проводить исследование, после чего собирать и толковать данные. Работа была тяжелой и продвигалась медленно. Обычно в ходе написания диссертации удавалось выстроить участок в 40 тыс. парных оснований ДНК.
Секвенирование генома человека
Озвучивая мнения многих влиятельных биологов, в номере Science за 7 марта 1986 года Ренато Дульбекко, глава Института биологических исследований им. Солка†††, призвал к претворению в жизнь грандиозной программы по расшифровке генома человека. Он доказывал, что столь огромные усилия необходимы для понимания роли генов в развитии рака. Некоторые биологи, вроде Уолтера Гилберта (известного гипотезой РНК-мира), с радостью восприняли это предложение. Гилберт сказал: "Полный геном человека - Грааль генетики человека" (подробнее об этом сравнении далее).
Другие выразили озабоченность, что подобный гигантский проект исказит биологию до неузнаваемости. Расшифровка 3 млрд. пар азотистых оснований с помощью имеющихся на тот час средств потребует 15-летней непрерывной работы 10 тыс. аспирантов и обойдется примерно в 3 млрд. долларов. При таких затратах человеческих и денежных ресурсов ничего не останется на все остальные биологические проекты.
Луч надежды блеснул с появлением автоматизированных устройств секвенирования. Центр исследования человеческого генома [ныне Национальный институт генома человека], подразделение [сети институтов, объединенных общим названием] Национального института здоровья (НИЗ), официально приступил к работе в октябре 1990 года под руководством Джеймса Уотсона - да, самого Джеймса Уотсона. Данный проект задумывался как международный: большинство работ поручалось различным государственным лабораториям и университетам в США, и около трети приходилось на долю Великобритании, Франции, Германии и Японии.
Все усилия были сосредоточены на создании устройств автоматизированного секвенирования, что привело к наплыву в биологию приборостроителей. В конце 1986 года биохимик, доктор медицины Лерой Худ и биохимик-технолог Майкл Ханкапиллер создали компанию Applied Biosystems Inc. (ABI) и разработали устройство, способное секвенировать в день 12 тыс. парных оснований нуклеотидов. В начале 1987 года лаборатория молекулярной биологии, возглавляемая Дж. Крейгом Вентером, испытала секвенатор ABI 375A Sequencer вместе с рабочей станцией по катализу АВ1 800 Catalyst для приготовления проб. Лаборатория Вентера занималась секвенированием двух участков, которые, как считалось, содержали гены, ответственные за крайне важные наследственные заболевания. Несмотря на отменную работу самих устройств, гены, поиском которых занимался Вентер, найдены не были. К тому же программное обеспечение выявило значительное число ошибочных результатов, так что многое пришлось сверять вручную.
Вентеру слишком уж не терпелось пролистать длинные последовательности из генетических букв в поисках немногих нужных генов или участков генома, где закодированы белки. И его осенило, как нарастить усилия. Чтобы отыскать активные гены в определенной клетке, он сначала извлекал из клетки РНК. Раз РНК строится прежде всего на основе ДНК, она содержит последовательность парных оснований нуклеотидов, относящуюся к активным частям (генам) исходной ДНК. Затем исследователи преобразовывали РНК в более устойчивую ДНК (именуемую комплиментарной ДНК - кДНК) и для хранения присоединяли ее к хромосоме какой-нибудь бактерии, используя прием резания и склеивания с помощью рестрикционных ферментов. Комплиментарной ДНК пользуются в биологических лабораториях по всему миру, так что недостатка в ней нет. Следующий шаг связан с секвенированием кДНК и сравнением ее с другими секвенированными генами. Данный подход, названный экспрессируемыми ярлыкам臇‡, был не нов для Вентера. О нем впервые написал химик-биолог Пол Шиммел в 1983 году, а известный генетик Сидни Бреннер и другие ученые широко использовали в конце 1980-х. Но благодаря АВ1 Sequencer и электронно-вычислительным рабочим станциям по возможностям секвенирования лаборатории Вентера не было равных.
В июне 1991 года Вентер написал, что при секвенировании посредством экспрессируемых ярлыков он определил около 330 активных генов в человеческом мозге. Одним словом, Вентер определил и расшифровал более 10% известных миру человеческих генов - и все это за несколько месяцев. Со свойственной ему прямотой Вентер заявил, что "усовершенствования в технике секвенирования ДНК теперь сделали, по существу, доступным полное обследование хромосомного набора организма по экспрессируемому гену".
Следующая статья Вентера, опубликованная в журнале Nature, еще больше подогрела недовольство некоторых биологов. В этой статье он сообщал об очередных 2375 человеческих генах, выявленных в мозге, что в 2 раза превышало число генов, расшифрованных к тому времени остальным научным сообществом. Ученые опасались, что секвенирование кДНК начнут финансировать вентеровским методом экспрессируемых ярлыков как более дешевой альтернативы расшифровке всего человеческого генома. Данный подход избегал бы искусных приемов экспрессии генов вроде lac-оператора, поскольку места соединения активаторов и репрессоров не будут секвенироваться.
Угроза патентования
Причиной дополнительных беспокойств стало патентование метода экспрессируемых ярлыков. Служба передачи технологии НИЗ подала заявку на патентование первых 330 генов еще до первой публикации Вентера в Science и присовокупила к патентованию еще 2421 ген до появления статьи в Nature. Поднялся шум, не утихающий доныне. Французский министр по науке Юбер Курьян сказал, что "нельзя предоставлять патент на то, что является нашим общим достоянием". Джеймс Уотсон, глава международного консорциума Human Genome Project, заявил, что метод экспрессируемых ярлыков "доступен обезьянам".
Однако глава НИЗ Бернадин Хили посчитала, что патентная заявка была законной, и отмела обвинения ученых, представив их "бурей в стакане воды". Она наказала Уотсону не нападать на Вентера публично и попросила Вентера советоваться с ней по поводу исследований генома человека. Уотсон уволился в апреле 1992 года, заявив о "непримиримости" своей позиции. Тем временем Вентер попросил 10 млн долларов для расширения своей работы по секвенированию, но ему было решительно отказано на основе данного его же коллегами в НИЗ заключения. Вентер уволился из НИЗ в июле 1992 года и основал Институт исследований генома (TIGR). Начав с 30 секвенаторов ABI 373A, 17 рабочих станций ABI Catalist и ЭВМ SPARCenter 2000 фирмы Sun, оснащенной соответствующими программными средствами базы данных, Вентер начал наращивать секвенирование на основе "экспрессируемых ярлыков" последовательности генов у модельных организмов. При стоимости одного устройства 100 тыс. долларов для финансирования такого предприятия нужны были толстосумы.
Финансирование обеспечил наплыв в биологию предпринимателей, Уоллис Стайнберг, глава компании Health Care Investition Corporation, и изобретатель зубной щетки Рич вложили в проект 70 млн долларов. Таким образом, Вентер мог спокойно претворять в жизнь свои идеи. Была создана как дочернее предприятие компания Human Genome Sciences (HGS) для коммерческого использования результатов исследований генома человека. Вентер был доволен и заявил: "Каждый ученый мечтает о благодетеле, согласившемся вложить средства в его идеи, чаяния и способности". Единственное условие - предоставление полученных данных в распоряжение компании на 6-12 месяцев, прежде чем их можно будет обнародовать. Его научные коллеги восторгались значительно меньше. Некоторые даже окрестили его Дартом Вентером [намекая на Дарта Вейдера из фильма "Звездные войны", рыцаря, переметнувшегося на сторону зла].
Тем временем НИЗ назначил нового руководителя Центра по исследованию генома человека. Известный генетик из Мичиганского университета Фрэнсис КОЛЛИНЗ стал вторым руководителем центра. В ходе работы этот финансируемый государством консорциум обнародовал ряд выдающихся результатов. В 1996 году усилиями более чем сотни лабораторий Европы, США, Канады и Японии удалось завершить составление генома пивных дрожжей. Этот эукариотный одноклеточный организм содержит в своей ДНК 6 тыс. генов, собранных из 12 млн пар оснований нуклеотидов. К середине отпущенного на проект генома человека срока было расшифровано менее 3% генома, а затраты консорциума уже превысили оговоренные суммы. Коллинз призвал к ускорению работ и выдвижению свежих идей, но это мало помогло делу.
Секвенирование дроблением
Когда международный консорциум пытался ускорить свою работу, лаборатория Вентера TIGR решила прибегнуть к новой тактике: секвенированию дроблением. Сотрудник Университета Джонса Хопкинса и Нобелевский лауреат Хамилтон Смит, открывший 20 лет назад рестрикционные ферменты (рестриктазы), выдвинул поразительную идею: сначала ультразвуком посечь ДНК на тысячи кусочков произвольной величины, а затем на устройствах-роботах ABI произвести отдельно секвенирование всех кусочков. Заложить полученные данные в ЭВМ, и пусть специальные программы отыскивают перекрывающиеся участки, чтобы тем самым можно было "сшить" математически кусочки, создавая одну непрерывную ДНК. Данный прием оказался результативным при моделировании, и Вентер не побоялся рискнуть. TIGR расшифровала весь геном бактерии Haemophilus influenzae за 13 месяцев, затратив в два раза меньше средств по сравнению с проектом генома человека. Вскоре TIGR завершила составление последовательности нуклеотидов Mycoplasma genitalium, мельчайшего из известных самостоятельных живых организмов, а также генома нескольких архей. После предоставления для всеобщего пользования своих ценных сведений Вентер вырос в глазах своих ученых собратьев.
Метод секвенирования дроблением работал в ситуациях с бактериями, но оказался не слишком скор, чтобы можно было вовремя завершить проект генома человека. В конце 1997 года отношения между лабораторией Вентера TIGR и ее дочерним предприятием HGS полностью расстроились. Несмотря на задолженность HGS его лаборатории 38 млн долларов, Вентер освободил HGS от данного обязательства и получил возможность более быстрого предоставления сведений о секвенировании, поскольку отпадала необходимость давать их на просмотр HGS.
Вентер между тем вынашивал еще более грандиозные замыслы, связанные с именем Майка Ханкапиллера. После создания вместе с Лероем Худом первого устройства по секвенированию, ABI 373A, Ханкапиллер не только внес несколько усовершенствований, но и значительно изменил сам процесс. Вместо пропускания отрезков ДНК вдоль пластины геля посредством электрофореза для их разделения Ханкапиллер разработал способ, при котором ДНК пропускалась сквозь тонкие, заполненные жидкостью капиллярные трубки. Наличие многих трубок при одном прогоне, как и другие усовершенствования в новом устройстве, ABI PRISM 3700, дало восьмикратное повышение скорости по сравнению с существующими устройствами. После показа опытного образца Ханкапиллер предложил Вентеру объединиться с ним для расшифровки всего генома человека. После некоторых раздумий Вентер согласился. Нужно было кое-что доделать, ведь методы, столь хорошо показавшие себя при работе с бактериями, нельзя использовать для изучения тысячекратно более сложного гена человека.
Вентер любил испытывать себя. После переговоров, больше напоминавших предостережение, с руководителем проекта генома человека Коллинзом Вентер объявил о создании новой компании и ее главной цели: расшифровке всего генома человека всего за три года, что существенно опережало сроки проекта генома человека. Его новое детище носило название "Силер" (от лат. celeris- быстрый). Девизом компании стали слова "Поспешай, открытия не ждут".
Вентеру опять все удалось. Научный мир был посрамлен, но теперь успехи Вентера вынуждали критиков проявлять осторожность: может, ему и впрямь удастся задуманное. Вентер понимал, что рискует. У него был лишь проверенный опытный образец устройства секвенирования, но отсутствовало программное обеспечение, поскольку старые методы не годились для нового генома. Следующим ходом Вентера было решение допустить в биологию программистов ЭВМ, которых называл учеными по алгоритмам. "Сшивание" перекрывающихся последовательностей пар оснований нуклеотидов для получения всего генома представлялось трудной вычислительной задачей, но значительные средства, вкладывавшиеся Вентером в новейшее вычислительное оборудование и специалистов, окупились сторицей. К 1998 году его сотрудники создали казавшуюся работоспособной программу.
Для опытной проверки Вентер провел секвенирование излюбленного в биологии модельного организма - Drosophila melanogaster, плодовой мушки. Состоящую из 165 млн пар нуклеотидных оснований, 13 600 генов ДНК установили менее чем за четыре месяца, как раз вовремя, чтобы записать ее на диски CD-ROM, которыми снабдили все места на одном научном совещании за день до выхода статьи о геноме в журнале Science.
Международный консорциум "Проект генома человека" не сидел сложа руки. С получением дополнительных средств, особенно от британского благотворительного фонда Уэллкома (Wellcome Trust) §§§, удалось обзавестись новыми устройствами секвенирования (от ABI и конкурентов Майкла Ханкапиллера) и нарастить свои усилия, сжав тем самым сроки. Гонка продолжалась.
Соревнующиеся стороны временами вступали в переговоры, но напряжение в отношениях нагнетали средства массовой информации, особенно если учесть резкость Вентера и непреклонную учтивость Коллинза. С приближением окончания гонки слухи о непростых отношениях между двумя коллективами достигли Белого дома. На одном из совещаний президент Билл Клинтон передал записку своему советнику по науке Нилу Лейну с лаконичным приказом: "Разберись - сделай так, чтобы эти ребята работали вместе". Улаживать все выпало [главе Службы биологических и экологических исследований] Аристиду Патриносу, руководителю проекта генома человека от Министерства энергетики США. Весной 2000 года он пригласил Коллинза и Вентера к себе домой в Роквилл, штат Мэриленд, на дружеское чаепитие. Там они пришли к соглашению, что сообщение о расшифровке генома человека будет обнародовано ими совместно 26 июня 2000 года. В разговоре по спутниковой связи с премьер-министром Великобритании Тони Блэром президент Клинтон сказал: "Современная наука подтвердила то, что мы впервые узнали из верований предков. Самое важное свидетельство жизни на этой земле - это наша человеческая общность".
План на вторую половину игры