<< Пред.           стр. 10 (из 10)           След. >>

Список литературы по разделу

 где f = f (от 0 до 1), используемое в уравнении (8.04а) или (8.046);
 N = общее число рыночных систем в портфеле;
 W. = вес компонента i в портфеле (из единичной матрицы);
 f i = фактор f (от 0 до 1) компонента i в портфеле.
 Можно сказать, что при торговле на основе динамического дробного f мы проводим страхование портфеля. При этом минимально допустимый уровень стоимости портфеля равен: первоначальный неактивный баланс плюс стоимость проведения страхования. Далее для простоты будем считать, что нижняя граница счета равна первоначальному неактивному балансу.
  Обратите внимание, что уравнения (8.04а) и (8.046) позволяют получить дельту моделируемого колл-опциона. Разделение счета на неактивный и активный подсчета (для использования стратегии динамического дробного f) эквивалентно покупке пут-опциона, цена исполнения которого больше текущей стоимости базового актива, а дата истечения наступает не скоро. Мы можем также сказать, что торговля с использованием стратегии динамического дробного f аналогична покупке колл-опциона, цена исполнения которого меньше текущей стоимости базового актива. Данное свойство страхования портфеля справедливо для любой стратегии динамического дробного f, независимо от того, используем мы усреднение по акциям, планирование сценария или полезность инвестора.
  Можно использовать страхование портфеля в качестве метода переразмещения. Сначала следует определить значение минимального ценового уровня, затем для выбранной модели опциона вы должны определить дату истечения, уровень волатильности и другие входные параметры, которые позволят рассчитать дельту. После того как будет найдена дельта, вы можете определить величину активного баланса. Так как дельта для счета (переменная Н в уравнении (8.04а)) равна дельте моделируемого колл-опциона, мы можем заменить Н в уравнении (8.04а) на D:
 D=f*A/E
 или
 (8.06) D / f= А / Е, если D < f (в противном случае А / Е = 1),
 где D = коэффициент хеджирования моделируемого опциона;
 f = f (от 0 до 1) из уравнения (8.05);
 А = активная часть средств счета;
 Е = общий баланс счета.
 Так как отношение А/Е равно доле активного счета, можно сказать, что отношение активного баланса к общему балансу равно отношению дельты колл-опциона к f из уравнения (8.05). Заметьте, если D > f, тогда предполагается, что вы размещаете больше 100% баланса счета в активный баланс. Так как это невозможно, для активного баланса существует верхняя граница - 100%. Вы можете использовать уравнение (5.05) для поиска дельты колл-опциона на акции или уравнение (5.08) для поиска дельты колл-опциона на фьючерсы.
  Проблема использования страхования портфеля в качестве метода переразмещения состоит в том, что переразмещение уменьшает эффективность стратегии динамического дробного f, которая асимптотически способна дать большую прибыль, чем стратегия статического дробного f. Таким образом, страхование портфеля как стратегия переразмещения на основе динамического дробного f является не самым лучшим подходом
  Теперь рассмотрим реальный пример страхования портфеля. Вспомним геометрический оптимальный портфель Toxico, Incubeast и LA Garb, который достигается при V= 0,2457. Преобразуем дисперсию портфеля в значение волатильности для модели ценообразования опционов. Волатильность задается годовым стандартным отклонением. Уравнение (8.07) показывает зависимость между дисперсией портфеля и оценочной волатильностью для опциона по портфелю:
 (8.07) OV=V'0.5)*ACTV*YEARDAYS^0.5,
 где OV = волатильность для опциона по портфелю;
 V = дисперсия портфеля;
 ACTV = текущая активная часть баланса счета;
 YEARDAYS = число рыночных дней в году.
 Если мы исходим из того, что в году 251 рыночный день и доля активного баланса равна 100% (1,00), то:
 OV= (0,2457 ^ 0,5) * 1 * 251 ^ 0,5 = 0,4956813493 * 15,84297952 = 7,853069464
  Полученное значение соответствует волатильности свыше 785%! Поскольку речь идет о торговле на уровне оптимального f при 100% активном балансе, значение волатильности настолько велико. Так как мы собираемся использовать страхование портфеля в качестве метода переразмещения, то ACTV= 1,00.
 Уравнение (5.05) позволяет рассчитать дельту колл-опциона:
 (5.05) Дельта колл-опциона = N(H) Значение Н для (5.05) найдем из уравнения (5.03):
 
 
 где U = цена базового инструмента;
 Е = цена исполнения опциона;
 Т = доля года, оставшаяся до истечения срока исполнения, выраженная десятичной дробью;
 V = годовая волатильность в процентах;
 R = безрисковая ставка;
 1n() = функция натурального логарифма;
 N() = кумулятивная нормальная функция распределения вероятностей, задаваемая уравнением (3.21).
 Отметьте, что мы используем модель ценообразования фондовых опционов. Для волатильности будем использовать значение OV. Если безрисковая ставка R = 6% и доля года, оставшаяся до истечения срока, Т = 0,25, то из (5.03) получим:
 
 Полученное значение подставим в уравнение (5.05). Теперь для расчета дельты колл-опциона решим уравнение (3.21):
 
 
 Подставим значения Y и N'(1,967087528) в уравнение (3.21) для получения дельты колл-опциона, в соответствии с уравнением (5.05):
 
 
 Таким образом, когда цена портфеля равна 100, цена исполнения 100, доля года, оставшаяся до истечения срока исполнения, составляет 0,25, безрисковая ставка равна 6%, а волатильность портфеля 785,3069464%, дельта нашего гипотетического колл-опциона равна 0,9754135259. Сумма весов геометрического оптимального портфеля, состоящего из Toxico, Incubeast и LA Garb, найденная из уравнения (8.05), составляет 1,9185357. Таким образом, принимая во внимание уравнение (8.06), при страховании портфеля мы можем переразмещать до 50,84156244% (0,9754135359/ /1,9185357). Во сколько обходится страхование? Все зависит от волатильности в течение срока действия смоделированного опциона. Например, если за время действия смоделированного опциона баланс на счете не колеблется (волатильность равна 0), цена смоделированного опциона, т.е. стоимость страхования, равна нулю. В этом заключается большое преимущество страхования портфеля по сравнению с реальной покупкой пут-опциона (если этот пут-опцион по портфелю существует). Мы платим теоретическую цену опциона, исходя из той волатильности, которой реально подвержен портфель, а не той, которая существовала на рынке до открытия позиции, как бывает при покупке пут-опциона. Кроме того, реальная покупка пут-опциона (опять же, если пут-опцион по нашему портфелю существует) влечет за собой расходы, связанные со спредом покупки/продажи. При моделировании опциона таких расходов не возникает.
 Необходимые залоговые средства
 Мы видели, что при добавлении рыночной системы портфель улучшается, если коэффициент линейной корреляции изменений дневного баланса между этой рыночной системой и другой рыночной системой в портфеле меньше +1, поскольку в этом случае повышается среднее геометрическое дневных HPR. Таким образом, логично использовать как можно больше рыночных систем. Естественно, на каком-то этапе может возникнуть проблема с залоговыми средствами. Проблема, связанная с нехваткой залоговых средств, может возникнуть даже в том случае, если вы используете только одну рыночную систему. Как правило, оптимальное долларовое f меньше первоначальных залоговых требований для данного рынка. Если же доля f очень высока (неважно, используете вы стратегию статического или динамического дробного f), вы можете столкнуться с требованием довнесения залога (margin call), в противном случае позиция будет принудительно закрыта. Если вы используете портфель рыночных систем, требование дополнительного внесения залога становится еще более вероятным. В неограниченном портфеле сумма весов часто значительно больше 1. Когда вы используете только одну рыночную систему, вес де-факто равен единице. Если сумма весов рыночных систем равна, например, трем, тогда вероятность требования внесения залога в три раза выше, чем в случае торговли только на одном рынке. Оптимальный портфель следует создавать с учетом минимально необходимых залоговых средств для компонентов портфеля. Это достаточно легко сделать: надо определить, какую долю f вы можете использовать в качестве верхней границы U; ее можно найти с помощью уравнения (8.08):
 
 где U = верхняя граница дробного f, при которой можно торговать оптимальным портфелем без риска получения требования довнесения залога;
 f$= оптимальное долларовое f для рыночной системы i;
 margin $ = первоначальный залог для рыночной системы i;
 N = общее число рыночных систем в портфеле.
 Если U больше единицы, то приравняйте U к единице. Например, у нас есть портфель из трех рыночных систем со следующими оптимальными долларовыми f и первоначальными минимальными залоговыми требованиями (примечание: f$ являются оптимальными долларовыми f для каждой рыночной системы портфеля, они представляют собой оптимальные f рыночных систем, деленные на соответствующие веса в портфеле):
 
 
 Рыночная система f$ Первоначальный залог А $2500 $2000 В $2000 $2000 С $3000 $2000 Суммы $7500 $6000
 В соответствии с уравнением (8.08) мы возьмем сумму всех f$ (7500 долларов) и разделим ее на сумму первоначальных залоговых требований (6000 долларов), умноженную на число рынков N:
 U = $7500 / ($6000 * 3) =7500/18000 =0,4167
 
 Таким образом, доля f не должна превышать 41,67% (если мы применяем стратегию динамического дробного f), т. е. следует производить переразмещение, когда отношение активного баланса к общему балансу больше или равно 0,4167.
 Если вы все-таки применяете стратегию статического дробного f (несмотря на все ее недостатки), тогда максимальное значение используемой доли должно быть равно 0,4167. Такой подход сместит вас по геометрической эффективной границе портфелей с неограниченной суммой весов влево от оптимального портфеля, но вы будете настолько близко к нему, насколько только возможно, чтобы не столкнуться при этом с требованием довнесения залога. Для примера рассмотрим счет в 100 000 долларов. Если доля f равна 0,4167, то для каждой рыночной системы получим:
 Рыночная система f$ /0,4167= Новое И А $2500
  $6000 В $2000
  $4800 С $3000
  $7200
 При счете в 100 000 долларов мы будем торговать 16 контрактами рыночной системы А (100 000/6000), 20 контрактами рыночной системы В (100 000/4800) и 13 контрактами рыночной системы С (100 000/7200). Итоговое требование к залогу для такого портфеля равно:
 16 * $2000 = $32 000 20 * 2000 = 40 000 13 * 2000 = 26 000
 Первоначальное требование залога $98 000
 Отметьте, что с помощью формулы (8.08) вы получите максимально допустимую долю f (без риска сразу же столкнуться с требованием довнесения залога), при этом отношения рыночных систем друг к другу останутся без изменений. Следовательно, уравнение (8.08) задает разбавленный неограниченный оптимальный портфель, в котором отсутствует риск получения требования довнесения залога. Заметьте, если торговать на основе стратегии дробного f, значение, полученное из уравнения (8.08), является максимальной долей f, которую вы можете использовать (без риска сразу же столкнуться с требованием довнесения залога). Вернемся к нашему счету в 100 000 долларов. Предположим, когда вы открыли счет, на нем было 70 000 долларов. Далее, из этих первоначальных 70 000 долларов вы отвели 58 330 долларов под неактивный счет. Таким образом, вы начали торговлю с отношения между неактивным и активным балансом приблизительно 83 к 17 и далее торговали активной частью при полных значениях оптимального f. Теперь, когда счет равен 100 000 долларов, а неактивный баланс - 58 330 долларам, активный счет составляет 41 670 долларов, т.е. 0,4167 от общего баланса. Полученное значение задает максимальную долю, которую вы можете использовать (максимальное отношение активного баланса к общему балансу), без риска столкнуться с требованием довнесения залога. Вспомните, что вы торгуете полным f, т.е. 16 контрактами рыночной системы А (41 670/2500), 20 контрактами рыночной системы В (41 670/2000) и 13 контрактами рыночной системы С (41 670/3000). Итоговое требование залога для такого портфеля составляет:
 
 16 * $2000 = $32 000 20 * 2000 = 40 000 13 * 2000 = 26000 Первоначальное требование залога $98 000
 
 Как мы уже знаем (см. главу 2), добавление рыночных систем увеличивает среднее геометрическое по портфелю в целом. Однако возникает проблема:
 каждая следующая рыночная система вносит все меньший и меньший вклад в среднее геометрическое и все больше ухудшает его, понижая эффективность из-за одновременных, а не последовательных результатов. Поэтому не следует торговать слишком большим числом рыночных систем. Более того, реальное применение теоретически оптимальных портфелей осложняется из-за залоговых требований. Другими словами, вам лучше торговать 3 рыночными системами при полном оптимальном f, чем 300 рыночными системами при значительно пониженных уровнях, согласно уравнению (8.08). Скорее всего вы придете к выводу, что оптимальное число рыночных систем для торговли должно быть невелико. Особенно это обстоятельство важно, когда у вас много ордеров к исполнению и увеличивается вероятность ошибок. Если одна или несколько рыночных систем в портфеле имеют оптимальные веса больше единицы, может возникнуть еще одна проблема. Рассмотрим рыночную систему с оптимальным f=0,8 и наибольшим проигрышем, составляющим 4000 долларов. Для этой рыночной системы f$ = 5000 долларов. Давайте предположим, что оптимальный вес данного компонента в портфеле равен 1,25, поэтому вы будете торговать одной единицей компонента на каждые 4000 долларов ($5000/1,25) баланса счета. Как только компонент столкнется с наибольшим проигрышем, весь активный баланс на счете будет обнулен, если прибылей в других рыночных системах не хватит для сохранения активного баланса. Рассмотренная проблема наиболее актуальна для систем, которые редко генерируют сделки. Если бы у нас были две рыночные системы с отрицательной корреляцией и положительным ожиданием, необходимо было бы открывать бесконечное количество контрактов на рынке. Когда один из компонентов проигрывает, другой выигрывает равную или большую сумму. Таким образом, мы получаем прибыль в каждой игре, однако только в том случае, когда рыночные системы ведут игру одновременно. Рассматриваемая же торговля аналогична гипотетической ситуации, когда один из компонентов в игре не активен, но используется другая рыночная система с бесконечным числом контрактов. Проигрыш может быть катастрофическим. Проблему можно решить следующим образом: разделите единицу на наибольший вес компонента портфеля и используйте полученное значение в качестве верхней границы активного баланса, если оно меньше, чем значение, найденное из уравнения (8.08). В таком случае, если в будущем произойдет проигрыш той же величины, что и наибольший проигрыш (на основе которого рассчитано f), мы не потеряем все деньги. Например, наибольший вес компонента в нашем портфеле составляет 1,25. Если значение из уравнения (8.08) будет больше 1 / 1,25 = 0,8, следует использовать 0,8 в качестве верхней границы для доли активного баланса. Если первоначальная доля активного баланса небольшая, вышеописанная проблема может и не возникнуть, однако более агрессивному трейдеру следует всегда принимать ее во внимание. Альтернативное решение состоит в введении дополнительных ограничений в матрице портфеля (например, для каждой рыночной системы можно ограничить максимальные веса единицей и ввести дополнительные ограничения по залоговым средствам). Подобные дополнительные ограничения линейного программирования могут помочь агрессивному трейдеру. но решить такую матрицу будет достаточно сложно. Для заинтересованных читателей делаю ссылку на Чилдресса.
 
 Ротация рынков
 Профессиональные трейдеры, как правило, отслеживают большое количество рынков, выбирая те, которые, по их мнению, являются в настоящий момент наиболее подходящими для данных систем. Например, некоторые трейдеры отслеживают волатильность по всем фьючерсным рынкам и торгуют только на тех, где волатильность превышает некоторое значение. Иногда имеет смысл торговать на нескольких рынках, иногда вообще прекратить торговлю. Рынки постоянно изменяются, что создает дополнительные проблемы для портфельных менеджеров. Каким образом можно реагировать на эти изменения, сохраняя ваш портфель оптимальным? Ответ, на самом деле, довольно прост: каждый раз, когда рынок добавляется в портфель или удаляется из него, необходимо рассчитывать новый неограниченный геометрический оптимальный портфель (алгоритм расчета показан в этой главе). Также необходимо принимать во внимание любые изменения размеров существующих позиций и учитывать новые добавленные или удаленные рыночные системы. Таким образом, следует использовать портфель, в котором компоненты постоянно меняются. Целью портфельного менеджера в этом случае будет создание неограниченного геометрического оптимального портфеля и поддержка постоянной величины неактивного баланса. Именно такой подход будет оптимальным в асимптотическом смысле. Если вы используете подобную технику, может возникнуть еще одна проблема. Возьмем два высоко коррелированных рынка, например золото и серебро. Теперь представьте, что ваша система торгует так редко, что сделок на двух рынках в один и тот же день не происходит. Когда вы будете определять коэффициенты корреляции дневных изменений баланса, может оказаться, что коэффициент корреляции между золотом и серебром близок к нулю. Однако если в будущем вы будете торговать на обоих рынках одновременно, они, скорее всего, будут иметь высокую положительную корреляцию. Для решения вышеописанной проблемы следует корректировать коэффициенты корреляции, причем их следует изменять в большую, а не меньшую сторону Допустим, вы получили коэффициент корреляции между облигациями и соевыми бобами, равный нулю, но чувствуете, что он должен быть ниже (например - 0,25). Не следует уменьшать коэффициенты корреляции, так как более низкие значения приводят к увеличению размера позиции. Одним словом, если уж ошибаться в коэффициентах корреляции, то в большую сторону Ошибка, связанная с увеличением коэффициентов корреляции, сместит портфель влево от пика кривой f, в то время как уменьшение сместит его вправо. Некоторые трейдеры в своих рыночных системах используют фильтры, благодаря которым в определенный момент сделки совершаются только на одном рынке. Если фильтр работает и понижает проигрыш на основе одной единицы, тогда f (оптимальное для отфильтрованных сделок) для всей серии сделок до фильтрования будет выше (a f$ ниже). Если трейдер использует оптимальное f, полученное по неотфильтрованным сделкам, для отфильтрованных сделок, он окажется на уровне дробного f по отфильтрованным сериям и, следовательно, не сможет получить геометрический оптимальный портфель. С другой стороны, если трейдер применяет оптимальное f по отфильтрованным сериям, он может получить геометрический оптимальный портфель, но столкнуться с проблемой больших проигрышей при оптимальном f.
  С точки зрения управления капиталом фильтры не всегда эффективны. Фильтры работают (уменьшают проигрыш на основе одной единицы) только потому, что они позволяют трейдеру находиться на уровне дробного оптимального f.
  Можно утверждать, что фильтры дают преимущество, если ответ из фундаментального уравнения торговли по отфильтрованным сделкам с использованием оптимального f, полученного по всем сделкам, больше значения, полученного по всем сделкам с использованием того же оптимального f; при этом следует иметь в виду, что отфильтрованных сделок меньше (N меньше), чем неотфильтрованных.
 Резюме
 Торговля фиксированной долей счета дает наибольшую отдачу в асимптотическом смысле, т.е. максимизирует отношение потенциальной прибыли к потенциальному убытку Когда известно значение оптимального f, можно преобразовать дневные изменения баланса на основе одной единицы в HPR, определить арифметическое среднее HPR и стандартное отклонение полученных HPR, а также рассчитать коэффициенты корреляции HPR между любыми двумя рыночными системами. Далее мы должны использовать эти параметры для определения оптимальных весов оптимального портфеля (когда используется рычаг (leverage), вес и количество не одно и то же). Затем значения f следует разделить на соответствующие веса. В результате, мы получаем новые значения f, которые позволяют добиться наибольшего геометрического роста, принимая во внимание веса и взаимные корреляции рыночных систем. Наибольший геометрический рост достигается при использовании весов, сумма которых не ограничена, причем разность среднего арифметического HPR и стандартного отклонения HPR, возведенного в квадрат, должна быть равна единице [Уравнение (7.06в)]. Вместо "разбавления" (которое сдвигает нас влево на неограниченной эффективной границе), как в случае стратегии статического дробного f, можно использовать портфель при полном f, задей-ствуя только часть средств счета. Такой метод называется стратегией динамического дробного f. Оставшаяся часть средств (неактивный баланс) в торговле не используется. Так как торговля активной частью происходит на оптимальных уровнях f, активный баланс может довольно сильно колебаться. В результате, при некотором значении баланса или в некоторый момент времени, вы, вероятно, захотите (возможно, просто под воздействием эмоций) переразместить средства между активной и неактивной частями. Мы рассмотрели четыре метода переразмещения, хотя, конечно же, могут использоваться и другие методы, возможно, более подходящие для вас:
 1. Полезность инвестора.
 2. Планирование сценариев.
 3. Усреднение.
 4. Страхование портфеля.
 
 Четвертый метод, страхование портфеля, или динамическое хеджирование, присущ любой стратегии динамического дробного f, но его можно также использовать и как метод переразмещения.
  При торговле неограниченным геометрическим оптимальным портфелем можно столкнуться с требованием довнесения залога. Подобную проблему можно решить, задав верхний предел отношения используемого активного баланса к общему балансу счета.
 
 Несколько слов о торговле акциями
 Методы, описанные в этой книге, могут использоваться не только фьючерсными трейдерами, но и трейдерами, работающими на любом рынке. Даже тем, кто торгует голубыми фишками, принципы, рассмотренные в этой книге, будут весьма полезны. Мы знаем, что для портфеля голубых фишек существует оптимальный рычаг, когда отношение потенциальных выигрышей к потенциальным проигрышам максимально, правда, при этом падения баланса могут быть довольно значительными, поэтому портфель необходимо разбавлять, используя стратегию динамического дробного f. Для того чтобы использовать методы, описанные в этой книге, в торговле акциями, мы будем считать, что акция является фьючерсной рыночной системой. Предположим, текущая цена Toxico равна 40 долларам. Следовательно, стоимость 100 акций Toxico составляет 4000 долларов. Лот из 100 акций можно считать 1 контрактом рыночной системы Toxico. Таким образом, если работать с наличным счетом, то в уравнении (8.08) следует заменить переменную залогi $ на цену 100 акций Toxico (в нашем случае 4000 долларов). Далее, мы можем определить верхнюю границу доли f. Помните, что мы моделируем ситуацию с рычагом, но на самом деле не занимаем и не ссужаем денежные средства, поэтому в любых формулах, где есть RFR (например, отношение Шарпа), следует использовать RFR = 0. Если в случае с Toxico используется маржевой счет и первоначальный залог составляет 50%, то в уравнении (8.08) залог$ = $2000. Традиционно управляющие фондами акций использовали портфели, в которых сумма весов ограничена единицей. Состав портфеля выбирался таким образом, чтобы при данном уровне арифметической прибыли дисперсия была минимальной. Получившийся в результате портфель задавался весами или долями торгового счета для каждого компонента портфеля.
 Сняв ограничение по сумме весов и выбрав геометрически оптимальный портфель, мы получим оптимальный портфель с рычагом. Здесь веса и количества отличаются. Разделим оптимальное количество для финансирования одной единицы каждого компонента на его соответствующий вес и получим оптимальный рычаг для каждого компонента портфеля. Теперь разбавим портфель, включив в него безрисковый актив. Можно разбавить портфель до точки, где рычаг как бы исчезает, т.е. рычаг применяется к активной части портфеля, но активный баланс портфеля в действительности использует беспроцентные деньги из неактивной части баланса. Таким образом мы получим портфель, в котором регулируются позиции при изменении баланса счета, что позволяет получить наибольший геометрический рост. Предложенный метод максимизирует отношение потенциального геометрического роста к потенциальному проигрышу и допускает заранее известный максимальный проигрыш. Для управления портфелем ценных бумаг описанный метод является наилучшим. Наиболее распространенный в настоящее время метод выведения эффективной границы в действительности не позволяет получить эффективную границу и, тем более, геометрический оптимальный портфель (геометрический оптимальный портфель всегда находится на эффективной границе), который можно найти только с помощью оптимального f. Кроме того, традиционный метод позволяет получить портфель на основе статического f, а не динамического f, которое в асимптотическом смысле предпочтительнее.
 Заключительный комментарий
 В настоящее время исследования, подобные изложенным в этой книге, представляют большой интерес. С середины 1950-х годов постоянно появляются новые концепции. Много замечательных идей, основанных на модели Е - V, пришло к нам из академического сообщества. Среди предложенных концепций есть, например, модель Е - S, где риск измеряется не дисперсией, а полудисперсией. Полудисперсия - это дисперсия некоторого уровня прибыли, который может
 быть ожидаемой прибылью, нулевой прибылью или любым другим фиксированным уровнем прибыли. Когда заданный уровень прибьши равен ожидаемой прибыли и распределение прибылей симметрично (без асимметрии), эффективная граница Е - S совпадает с эффективной границей Е - V.
  Существуют модели портфелей, использующие вместо дисперсии прибылей другие способы выражения риска, а также более высокие моменты распределения прибылей. Большой интерес в этом отношении представляют методы стохастического доминирования, которые учитывают все распределения прибылей и могут считаться предельным случаем многомерного анализа портфеля, когда число используемых моментов стремится к бесконечности. Подобный подход может быть особенно полезен в том случае, когда дисперсия прибылей бесконечна или не определена.
  И снова повторюсь - я не академик - это ни хвастовство, ни извинение, я такой же академик, как чревовещатель или телевизионный проповедник. Академикам необходима модель для объяснения того, как работают рынки, мне же не так важно, как они работают. Многие представители академического сообщества утверждают, что гипотеза об эффективной границе неверна, так как не существует понятия "рациональный инвестор". Сторонники такого подхода утверждают, что люди не ведут себя рационально, поэтому традиционные модели портфелей, такие как теория Е - V (и ее варианты) и модель оценки доходности финансовых активов, являются неудовлетворительными моделями работы рынков. Я согласен, что инвесторы не всегда ведут себя рационально, но это не означает, что нам следует вести себя подобным образом. Нельзя утверждать, что мы не можем получить выгоду из рационального поведения. Когда дисперсия прибылей конечна, мы можем получить преимущество, находясь на эффективной границе.
  В последнее время традиционные модели портфелей подвергаются серьезной критике, поскольку считается, что ценовые изменения лучше всего описываются распределением Парето с бесконечной (или неопределенной) дисперсией. Однако многие исследования доказывают, что рынки в последние годы стали ближе к нормальному распределению (т.е. к ограниченной дисперсии и независимости результатов), на чем и основаны критикуемые модели портфелей. В моделях портфелей используется распределение прибылей, а не распределение изменений цен. Несмотря на то что распределение прибылей является трансформированным распределением изменений цены (в результате закрытия проигрышных сделок и максимально долгого удержания выигрышных позиций), эти распределения, как правило, отличаются. Распределение прибылей не обязательно относится к классу распределений Парето, поэтому в главе 4 мы моделировали распределение P&L с помощью регулируемого распределения. Более того, существуют производные инструменты, например, опционы, которые имеют ограниченную полудисперсию или дисперсию. Например вертикальный опционный спред в дебете гарантирует ограниченную дисперсию прибылей. Я не пытаюсь оспаривать разумную критику современных моделей портфелей. Модели следует использовать при условии, что мы осознаем их недостатки. Разумеется, необходимы более совершенные модели портфелей. Я не заявляю, что современные модели адекватны, а говорю лишь о том, что входные данные для моделей портфелей, нынешних или будущих, должны основываться на торговле одной единицей на оптимальном уровне - или на том уровне, который, как мы полагаем, будет оптимальным. Например, если мы применяем теорию Е - V (модель Марковица), входными данными являются ожидаемая прибыль, дисперсия прибылей и корреляции прибылей между рыночными системами. Входные данные должны определяться на основе торговли одной единицей по каждой рыночной системе на уровне оптимального f. Модели портфелей, отличные от Е - V, могут потребовать других входных параметров, но и их для каждой рыночной системы все равно следует рассчитывать на основе торговли одной единицей на уровне оптимального f. Модели портфелей являются лишь одной составляющей управления капиталом, и эта книга не может ответить на все вопросы. Кроме того, постоянно появляются новые, усовершенствованные модели. Скорее всего, мы никогда не получим абсолютно совершенной модели, но это только будет стимулировать дальнейшие поиски.
 
 1 Это правило применимо к торговле только в одной рыночной системе. Когда вы начинаете торговать более чем в одной рыночной системе, то вступаете в иную среду. Например, можно включить рыночную систему с отрицательным математическим ожиданием для одного из рынков и в действительности получить более высокое математическое ожидание, чем просто математическое ожидание группы до включения системы с отрицательным ожиданием! Более того, возможно, что математическое ожидание для группы с включением рыночной системы с отрицательным математическим ожиданием будет выше, чем математическое ожидание любой отдельной рыночной системы! В настоящее время мы рассматриваем только одну рыночную систему, и для того, чтобы методы управления деньгами работали, необходимо иметь положительное математическое ожидание.
 
 1 Для процесса зависимых испытаний, как и для процесса независимых испытаний, ставка части вашего общего счета также максимально использует положительное математическое ожидание. Однако при зависимых испытаниях ставки будут меняться; точная доля каждой отдельной ставки будет определяться вероятностями и выигрышами по каждой отдельной ставке.
 
 1 Многие ошибочно используют среднее арифметическое HPR в уравнении HPR ^ N. Как здесь показано, это не даст истинное TWR после N игр. Вы должны использовать геометрическое, а не арифметическое среднее HPR ^ N. Это даст истинное TWR. Если стандартное отклонение HPR равно 0, тогда арифметическое среднее HPR и геометрическое среднее HPR эквивалентны, и не имеет значения, какое из них вы используете.
 
 1 Здесь есть еще один плюс, который сразу может быть и не виден. Он состоит в том, что мы заранее знаем проигрыш худшего случая. Учитывая, насколько чувствительно уравнение оптимального f к наибольшему проигрышу, такая стратегия может приблизить нас к пику кривой f и показать, каким может быть наибольший проигрыш. Во-вторых, проблема проигрыша в 3 стандартных отклонениях (или больше) с более высокой вероятностью, чем подразумевает нормальное распределение, будет устранена. Именно гигантские проигрыши более 3 стандартных отклонений разоряют большинство трейдеров. Опционные стратегии могут полностью упразднить такие проигрыши.
 1 Именно в этом случае использование опционов в торговой стратегии столь полезно. Покупка пут или колл-опциона в обратном направлении от позиции по базовому инструменту для ограничения проигрыша либо торговля опционами вместо базового инструмента дадут вам заранее известный максимальный проигрыш, что очень пригодится в управлении деньгами, особенно при оптимальном f. Более того, если вы знаете заранее, каким будет ваш максимальный проигрыш (например, при дневной торговле), тогда вы всегда сможете точно определить величину f в долларах для каждой сделки как следующую дробь: риск в долларах на единицу/оптимальное f. Например, дневной трейдер знает, что его оптимальное f =0,4. Его стоп (stop-loss) сегодня на основе 1 единицы равен 900 долларам. Поэтому оптимально торговать 1 единицей на каждые 2250 долларов ($900 / 0,4) на балансе счета.
 
 1 Разумный подход требует, чтобы мы использовали наибольший проигрыш, по крайней мере, такой же величины, как и в прошлом. С течением времени мы получаем все большее количество данных и большие периоды проигрышей. Например, если бросить монету 100 раз, она может 12 раз подряд выпасть на обратную сторону. Если бросить ее 1000 раз, то, вероятно, можно получить еще больший период, когда монета выпадет обратной стороной. Тот же принцип работает и в торговле. Мы не только должны ожидать более длинные полосы проигрышных сделок в будущем, следует также ожидать большую проигрышную сделку наихудшего случая.
 
 1 Уравнения риска разорения, хотя они напрямую и не упомянуты в этой книге, должны также изменяться при использовании приведенных данных. Вообще в качестве вводных данных для уравнений риска разорения используют необработанные данные P&L. Однако когда вы используете приведенные данные, новый поток процентных выигрышей и проигрышей должен умножаться на текущую цену базового инструмента, и далее надо использовать именно этот получившийся поток. Таким образом, при текущей цене инструмента 100 долларов поток процентных выигрышей и проигрышей 0,1; -0,15; 0,2; -0,1 преобразуется в поток 10; -15; 20; -10. Этот новый поток и следует использовать для уравнений риска разорения.
 
 1 Хотя эмпирические тесты показывают, что бросок монеты не является истинно случайной последовательностью из-за некоторого несовершенства используемой монеты, мы будем считать, что монета идеальная с точным шансом 0,5 выпадения на лицевую или обратную сторону.
 
 2 Отметьте, что в уравнении (2.13) ни К, ни (N - К) не могут быть равными 0. Мы можем вычислить вероятности, соответствующие К = 0 и К = N, если вычтем сумму вероятностей от К = 1 до К = N - 1 из единицы. Разделив полученное значение на 2, мы получим вероятность при К = 0 и К = N.
 
 1 Под самым длительным проигрышем здесь подразумевается измеряемое в сделках время между моментом достижения пика баланса и моментом, когда этот пик снова достигнут или превзойден.
 1 Область больших отклонении. - Прим. ред
 1 На самом деле, интеграл плотности нормального распределения вероятности нельзя
 pассчитать точно, но его можно с большой степенью точности получить с помощью
 уравнения (3.21).
 1 Предположение, что самой низкой ценой, по которой может торговаться инструмент, является ноль, не всегда верно. Например, во время краха фондового рынка в 1929 году и последующего медвежьего рьшка акционеры многих обанкротившихся банков понесли ответственность перед вкладчиками этих банков. Акционеры таких банков не только потеряли инвестированные в акции деньги, но также понесли убытки сверх этого
 1 Различие между десятичным и натуральным логарифмом следующее. Десятичный логарифм - это логарифм, который имеет в основании 10, в то время как натуральный логарифм имеет в основании число е, где е = 2,7182818285. Десятичный логарифм Х математически обозначается log(X), в то время как натуральный логарифм обозначается 1п(Х). Натуральный логарифм может быть преобразован в десятичный путем умножения натурального логарифма на 0,4342917. Таким же образом мы можем преобразовать десятичный логарифм в натуральный путем умножения десятичного логарифма на 2,3026.
 
 2 Здесь мы говорим о формулах Келли в единственном числе, хотя, фактически, есть две версии формулы Келли: одна для случая, когда отношение выигрыша к проигрышу составляет 1:1, а другая для случая, когда отношение выигрыша к проигрышу произвольно. В этой главе мы исходим из отношения 1:1, поэтому не имеет значения, какую именно формулу Келли мы используем.
 
 1 Интеграл функции, описывающей нормальное распределение, в действительности нельзя точно рассчитать, но его можно получить с большой степенью точности с помощью уравнения (3.21), чего нельзя сказать о многих других распределениях
 1 В некоторых случаях лучшим выбором будет именно наибольшее арифметическое математическое ожидание, а не геометрическое. Например, когда трейдер торгует постоянным количеством контрактов и желает перейти к работе "фиксированной долей" в какой-то благоприятной точке в будущем. Эта благоприятная точка - порог геометрической торговли, где арифметическая средняя сделка, которая используется в качестве входного данного, рассчитывается как арифметическое математическое ожидание (сумма результатов каждого сценария, умноженных на вероятность их появления), поделенное на сумму вероятностей всех сценариев. Так как сумма вероятностей всех сценариев обычно равна 1, мы можем говорить, что арифметическая средняя сделка равна арифметическому математическому ожиданию
 1 Позднее в этой главе мы увидим, что базовые инструменты идентичны колл-опционам с неограниченным сроком истечения. Поэтому, если у нас открыта длинная позиция по базовому инструменту, мы можем сказать, что проигрыш наихудшего случая является полной стоимостью инструмента. В большинстве случаев проигрыш такой величины и является катастрофическим проигрышем. Короткая позиция по базовому инструменту аналогична короткой позиции по колл-опциону с неограниченным сроком истечения, и в такой ситуации ответственность действительно не ограничена.
 1 Чаще всего только рыночные дни используются при расчете этой переменной. Число рабочих дней в году (григорианское) можно определить следующим образом: 365,2424 / 7*5= 260,8875. Из-за выходных реальное число торговых дней в году обычно составляет от 250 до 252. Поэтому, если мы используем 252-дневный год и осталось 50 торговых дней до истечения срока, то доля года, выраженная десятичной дробью, т.е. Т, будет 50 / /252=0,1984126984
 1 При торговле фьючерсами не требуется немедленной уплаты денежных средств за базовый актив, хотя необходимо уплатить залог. Кроме того, все прибыли и убытки реализуются немедленно, даже когда позиция не ликвидирована. Эти пункты находятся в прямом противоречии с механизмом сделок по акциям. При торговле акциями покупка требует полной и немедленной оплаты, а прибыли (или убытки) не реализуются, пока позиция не ликвидирована.
 
 1 Тот факт, что распределение изменений волатильности логарифмически нормально, не так часто принимается во внимание. Чрезвычайная чувствительность цен опционов к волатильности базового инструмента делает покупку опциона (пут-опциона или колл-опциона) еще более привлекательной в смысле математического ожидания.
 
 1 Уравнение (5.11) не учитывает разницу между фондовыми опционами и товарными опционами. Согласно общепринятому подходу, в цену фондового опциона включается доход по простой бескупонной облигации, которая будет погашена в момент истечения срока опциона и номинал которой равен цене исполнения. Опционы на товарные фьючерсы, как считается, имеют процентную ставку 0. Мы же не учитываем это обстоятельство. Если ценная бумага и товар имеют абсолютно одинаковое распределение ожидаемых результатов, т.е. их арифметические математические ожидания равны, то разумный инвестор выберет более дешевый инструмент. Эту ситуацию хорошо иллюстрирует пример, когда вы рассматриваете покупку одного из двух одинаковых домов, и один из них оценен выше только потому, что продавец платил более высокую процентную ставку по ипотечному кредиту
 
 2 Распределение Стьюдента далеко не лучшая модель, описывающая распределение изменений цены. Однако, так как единственным параметром, кроме волатильности (годового стандартного отклонения), который необходимо рассматривать при использовании распределения Стьюдента, является число степеней свободы, а ассоциированные вероятности легко находятся (см. приложение В), мы будем использовать распределение Стьюдента для наглядности.
 
 1 Для получения дополнительной информации прочитайте Fama, Eugene E, "Portfolio Analysis in a Stable Paretian Market", Management Science 11, pp. 404 - 419, 1965. Фама продемонстрировал параметрические методы поиска эффективной границы для стабильно распределенных ценных бумаг (распределения которых обладают одинаковым характеристическим показателем А), когда прибыли компонентов зависят от одного индекса основного рынка. Существует и другая работа, посвященная выведению эффективной границы в условиях бесконечной дисперсии прибылей компонентов портфеля. Эти методы не рассматриваются в данной книге, но для заинтересованных читателей есть ссылки на соответствующие статьи. О распределении Парето вы сможете узнать из приложения В. Несколько слов о бесконечной дисперсии сказано в разделе "Распределение Стьюдента" в приложении В.
 
 1 Расчет дисперсии может оказаться довольно сложным. Более легким способом является расчет среднего абсолютного отклонения, которое следует умножить на 1,25 для получения стандартного отклонения. Если возвести это значение в квадрат, мы получим оценку дисперсии.
 
 1 Веса, при которых мы получаем портфель с минимальным V для данного Е, будут точны настолько, насколько точны значения входных данных Е и V компонентов и коэффициенты линейной корреляции каждой возможной пары компонентов
 1 Таким образом, мы можем утверждать, что геометрический оптимальный портфель - это портфель, в котором второй множитель Лагранжа равен 0, когда сумма весов ограничена единицей, а в том случае, когда сумма весов не ограничена, первый множитель Лагранжа равен - 2. Такой портфель, при снятии ограничений на сумму весов, также будет иметь второй множитель Лагранжа, равный 0.
 ??
 
 ??
 
 ??
 
 ??
 
 

<< Пред.           стр. 10 (из 10)           След. >>

Список литературы по разделу