<< Пред.           стр. 8 (из 10)           След. >>

Список литературы по разделу

 
 
 Глава 6
 Корреляционные связи и выведение эффективной границы
 
 Мы узнали несколько способов поиска оптимального количества при торговле фьючерсами, акциями и опционами (по отдельности или совместно с другими инструментами), когда существует либо случайная, либо причинная связь между ценами инструментов. Можно определить оптимальный набор, когда коэффициент линейной корреляции двух любых элементов портфеля равен 1, - 1 или 0. Однако связи между двумя элементами портфеля, рассматриваем ли мы корреляцию цен (в немеханической торговой системе) или изменений баланса (в механической системе), редко дают такие удобные значения коэффициентов линейной корреляции. В этой главе описан способ определения эффективной границы портфелей рыночных систем, когда коэффициенты линейной корреляции любых двух компонентов рассматриваемого портфеля принимают произвольные значения между -1 и 1 включительно. Далее описан метод, применяемый профессионалами для расчета оптимальных портфелей акций. В следующей главе мы адаптируем его для использования любых инструментов. Данная глава основана на важном предположении, которое заключается в том, что распределения, генерирующие последовательность сделок (распределения прибылей), имеют конечную дисперсию. Предложенные методы эффективны только тогда, когда используемые входные данные имеют конечную дисперсию1.
 
 Определение проблемы
 На некоторое время оставим саму идею оптимального f (мы вернемся к нему позже). Легче всего понять параметрическое выведение эффективной границы, если рассмотреть портфель акций. Будем исходить из того, что эти акции находятся на денежном счете и полностью оплачены, т.е. они куплены не за счет кредита, полученного от брокерской фирмы (не на маржинальном счете). С учетом этого ограничения мы выведем эффективную границу портфелей, т.е. из предложенных акций создадим комбинацию, которая будет иметь наименьший уровень ожидаемого риска для данного уровня ожидаемого выигрыша. Эти уровни задаются степенью неприятия риска инвестором. Теория Марковица (или Современная теория портфеля) часто называется теорией Е- V (Expected return (ожидаемая прибыль) -Variance of return (дисперсия прибыли)). Отметьте, что входные параметры основаны на данных по прибыли, таким образом, входные данные для выведения эффективной границы - это прибыли, которые мы ожидаем по данной акции, и дисперсия, которая ожидается от этих прибылей. Прибыли по акциям определяются как дивиденды, ожидаемые за определенный период времени, плюс повышение рыночной стоимости акций (или минус уменьшение) за этот же период, выраженные в процентах. Рассмотрим четыре потенциальные инвестиции, три из которых - в акции, а одна - в сберегательный счет с процентной ставкой 8 1/2% в год. Отметьте, что в этом примере продолжительность периода инвестирования (когда мы измеряем прибыли и их дисперсии) - 1 год:
 
 Инвестиция Ожидаемая прибыль Ожидаемая дисперсия прибыли Toxico 9,5% 10% Incubeast Corp. 13% 25% LA Garb 21% 40% Сберегательный счет 8,5% 0%
 Если прибавить к значению ожидаемой прибыли единицу, мы получим HPR. Также мы можем извлечь квадратный корень из значения ожидаемой дисперсии прибыли и получить ожидаемое стандартное отклонение прибыли.
 Используемый временной горизонт не имеет значения при условии, что он одинаковый для всех рассматриваемых компонентов. Если речь идет о прибыли, неважно, что мы используем: год, квартал, 5 лет или день, - пока ожидаемые прибыли и стандартные отклонения для всех рассматриваемых компонентов имеют одни и те же временные рамки.
 
 Инвестиция Ожидаемая прибыль (HPR) Ожидаемое стандартное отклонение прибыли Toxico 1,095 0,316227766 Incubeast Corp. 1,13 0,5 LA Garb 1,21 0,632455532 Сберегательный счет 1,085 0
 Ожидаемая прибыль - это то же самое, что и потенциальная прибыль, а дисперсия (или стандартное отклонение) ожидаемых прибылей ~ то же самое, что и потенциальный риск. Отметьте, что данная модель двумерная. Мы можем сказать, что модель представлена правым верхним квадрантом декартовой системы координат (см. рисунок 6-1), где по вертикали (ось Y) откладывается ожидаемая прибыль, а по горизонтали (ось X) откладывается ожидаемая дисперсия, или стандартное отклонение прибылей.
 
 Рисунок 6-1 Правый верхний квадрант декартовой системы координат
 
 Есть и другие аспекты потенциального риска, такие как потенциальный риск (вероятность) катастрофического убытка, который теория Е - V не рассматривает отдельно от дисперсии прибылей. Мы не будем изучать эту концепцию в данной главе, а будем обсуждать теорию Е - V в классическом варианте. Марковиц также утверждал, что портфель, полученный из теории Е - V, оптимален только в том случае, если полезность, т.е. "удовлетворение" инвестора, является лишь функцией ожидаемой прибыли и дисперсии ожидаемой прибыли. Марковиц указал, что инвестор может использовать и более высокие моменты распределения, а не только первые два (на которых основана теория Е - V), например асимметрию и эксцесс ожидаемых прибылей.
  Потенциальный риск - очень емкое понятие, он является функцией гораздо большего числа переменных и включает более высокие моменты распределений. Тем не менее мы будем определять потенциальный риск как дисперсию ожидаемых прибылей. Не следует, однако, полагать, что этим риск полностью определен. Риск намного шире, и его реальная природа плохо поддается количественной оценке.
  Первое, что должен сделать инвестор, желающий использовать теорию Е - V, это придать количественный смысл своим предположениям относительно ожидаемых прибылей и дисперсий прибылей рассматриваемых ценных бумаг на определенном временном горизонте (периоде удержания). Эти параметры можно получить эмпирически. Инвестор может рассмотреть прошлую историю ценных бумаг и рассчитать прибыли и их дисперсии за определенные периоды. Как уже было отмечено, термин "прибыли" означает не только дивиденды по ценной бумаге, но и любые повышения стоимости ценной бумаги (в процентах). Дисперсия является статистической дисперсией процентных прибылей. Для определения ожидаемой прибыли в период удержания можно использовать линейную регрессию по прошлым прибылям. Дисперсия как входной параметр определяется путем расчета дисперсии каждой прошлой точки данных на основе ее спрогнозированного значения (а не на основе линии регрессии, рассчитанной для прогнозирования следующей ожидаемой прибыли). Вместо того чтобы определять эти значения эмпирическим способом, инвестор может оценить значения будущих прибылей и дисперсий1. Возможно, наилучшим способом нахождения параметров является комбинация обоих подходов. Инвестору следует использовать эмпирический подход (т.е. использовать исторические данные), затем, если это необходимо, можно учесть прогноз относительно будущих значений ожидаемых прибылей и дисперсий. Следующими параметрами, которые должен знать инвестор для использования данного метода, являются коэффициенты линейной корреляции прибылей. Эти параметры можно получить эмпирически, путем оценки или с помощью комбинации обоих подходов.
 При определении коэффициентов корреляции важно использовать точки данных того же временного периода, который был использован для определения ожидаемых прибылей и дисперсий. Другими словами, если вы используете годовые данные для определения ожидаемых прибылей и дисперсии прибылей (т.е. ведете расчеты на годовой основе), следует использовать годовые данные и при определении коэффициентов корреляции. Если вы используете дневные данные для определения ожидаемых прибьыей и дисперсии прибылей (т.е. ведете расчеты на дневной основе), тогда вам следует использовать дневные данные для определения коэффициентов корреляции. Вернемся к нашим четырем инвестициям - Toxico, Incubeast Corp., LA Garb и сберегательному счету. Присвоим им символы Т, 1, L и S соответственно. Ниже приведена таблица их коэффициентов линейной корреляции:
 
 
  I L S Т -0,15 0,05 о I
  0,25 о L
 
  о
 На основе полученных параметров мы можем рассчитать ковариацию между двумя ценными бумагами:
 
 Стандартные отклонения Sa и Sб можно найти, взяв квадратный корень дисперсии ожидаемых прибылей для ценных бумаг а и б. Вернемся к нашему примеру. Мы можем определить ковариацию между Toxico (Т) и Incubeast (I) следующим образом:
 
 Зная ковариацию и стандартные отклонения, мы можем рассчитать коэффициент линейной корреляции:
 
 Отметьте, что ковариация ценной бумаги самой к себе является дисперсией, так как коэффициент линейной корреляции ценной бумаги самой к себе равен 1:
 
 Теперь можно создать таблицу ковариаций для нашего примера с четырьмя инвестиционными альтернативами:
 
  Т I L S Т 0,1 - 0,0237 0,01 0 I - 0,0237 0,25 0,079 0 L 0,01 0,079 0,4 0 S 0 0 0 0
 Мы собрали необходимую параметрическую информацию и теперь попытаемся сформулировать основную проблему. Во-первых, сумма весов ценных бумаг, составляющих портфель, должна быть равна 1, так как операции ведутся на денежном счете, и каждая ценная бумага полностью оплачена:
 
 где N == число ценных бумаг, составляющих портфель;
 Х = процентный вес ценной бумаги L
 Важно отметить, что в уравнении (6.04) каждое значение Х должно быть неотрицательным числом.
  Следующее равенство относится к ожидаемой прибыли всего портфеля - это Е в теории Е - V. Ожидаемая прибыль портфеля является суммой прибылей его компонентов, умноженных на соответствующие веса:
 
 где Е = ожидаемая прибыль портфеля;
 N = число ценных бумаг, составляющих портфель;
 Xi = процентный вес ценной бумаги i;
 Ui= ожидаемая прибыль ценной бумаги i. И наконец, мы подошли к параметру V, т. е дисперсии ожидаемых прибылей:
 
 
 Нашей целью является поиск значений Х (причем их сумма равна единице), которые дают наименьшее значение V для определенного значения Е. Максимизировать (или минимизировать) функцию Н(Х, Y) при наличии условия или ограничения G(X, Y) можно с помощью метода Лагранжа. Для этого зададим функцию Лагранжа F(X, Y, L):
 (6.07) F(X,Y,L) = H(X,Y) + L * G(X,Y)
 Обратите внимание на форму уравнения (6.07). Новая функция F(X,Y,L) равна множителю Лагранжа L (его значение мы пока не знаем), умноженному на ограничительную функцию G(X,Y), плюс первоначальная функция H(X,Y), экстремум которой мы и хотим найти.
  Решение этой системы из трех уравнений даст точки (X1Y1) относительного экстремума:
 FxX,Y,L) = О Fy(X,Y,L) = О FL(X,Y,L) = О
 Допустим, мы хотим максимизировать произведение двух чисел при условии, что их сумма равна 20. Пусть Х и Y два числа. Таким образом, H(X,Y) = Х * Y является функцией, которая должна быть максимизирована при наличии ограничительной функции G(X,Y) = Х + Y - 20 = 0. Зададим функцию Лагранжа:
 F(X,Y,L) = Х * Y + L * (X + Y- 20) Fx(X,Y,L)=Y+L Fy(X,Y,L)=X+L FL(X,Y,L)=
 X +Y-20
 Теперь приравняем F^(X,Y,L) и Fy(X,Y,L) нулю и решим каждое из них для получения L:
 Y+L=0 Y=-L и
 X+L=0 X=-L
 Теперь, приняв FL(X,Y,L) = 0, мы получим Х + Y - 20 = 0. Наконец, заменим Х и Y эквивалентными выражениями, содержащими L:
 (-L) + (-L) - 20 = О 2 * -L - 20 L=-10
 Так как Y = -L, то Y = 10 и Х = 10. Максимальное произведение: 10*10= 100.
 Метод множителей Лагранжа был продемонстрирован для двух переменных и одной 01раничительной функции. Метод можно также применять, когда есть более чем две переменные и более чем одна ограничительная функция. Далее для примера следует форма для поиска экстремума, когда есть три переменные и две ограничительные функции:
 
 В этом случае, чтобы определить точки относительных экстремумов, вам надо решить систему из пяти уравнений с пятью неизвестными. Позже мы покажем, как это сделать.
 Сформулируем проблему несколько иначе: необходимо минимизировать V, т.е. дисперсию всего портфеля, с учетом двух следующих ограничений:
 
 
 где N= число ценных бумаг, составляющих портфель;
 Е = ожидаемая прибыль портфеля;
 Х = процентный вес ценной бумаги i;
 U. = ожидаемая прибыль ценной бумаги i.
 Минимизация ограниченной функции многих переменных может быть проведена путем введения множителей Лагранжа и частного дифференцирования по каждой переменной. Поэтому мы сформулируем поставленную задачу в терминах функции Лагранжа, которую назовем Т:
 
 где V= дисперсия ожидаемых прибылей портфеля из уравнения (6.06);
 N = число ценных бумаг, составляющих портфель;
 Е = ожидаемая прибыль портфеля;
 X. = процентный вес ценной бумаги i;
 U. = ожидаемая прибыль ценной бумаги i;
 L, = первый множитель Лагранжа;
 L = второй множитель Лагранжа.
 Мы получим портфель с минимальной дисперсией (т.е. минимальным риском), приравняв к нулю частные производные функции Т по всем переменньм.
  Давайте снова вернемся к нашим четырем инвестициям: Toxico, Incubeast Corp., LA Garb и сберегательному счету. Если мы возьмем первую частную производную Т по Х1, то получим:
 
 Приравняв это выражение нулю и разделив обе части уравнения на 2, получим:
 
 Таким же образом:
 
 
  Таким образом, проблему минимизации V при данном Е для портфеля с N компонентами можно решить с помощью системы N + 2 уравнений с N + 2 неизвестными. Для случая с четырьмя компонентами обобщенная форма будет иметь следующий вид:
 
 
 
 
 где Е = ожидаемая прибыль портфеля;
 Хi = процентный вес ценной бумаги i;
 Ui = ожидаемая прибыль по ценной бумаге i;
 COV А, Б = ковариация между ценными бумагами А и Б;
 L1 = первый множитель Лагранжа;
 12 = второй множитель Лагранжа.
 Обобщенную форму можно использовать для любого числа компонентов. Например, если речь идет о трех компонентах (т.е. N = 3), система уравнений будет выглядеть следующим образом:
 
 Прежде чем решать систему уравнений, необходимо задать уровень ожидаемой прибыли Е. Решением будет комбинация весов, которая даст искомое Е при наименьшей дисперсии. После того как вы определитесь с выбором Е, у вас будут все входные переменные, необходимые для построения матрицы коэффициентов.
 Переменная Е в правой части первого уравнения - это значение прибыли. для которой вы хотите определить комбинацию ценных бумаг в портфеле. Первое уравнение говорит о том, что сумма всех ожидаемых прибылей, умноженных на
 соответствующие веса, должна равняться заданному Е. Второе уравнение отражает тот факт, что сумма весов должна быть равна 1. Была показана матрица для случая с тремя ценными бумагами, но вы можете использовать обобщенную форму для N ценных бумаг.
  Возьмем ожидаемые прибыли и ковариации из уже известной таблицы ковариаций и подставим коэффициенты в обобщенную форму. Таким образом из коэффициентов обобщенной формы можно создать матрицу. В случае четырех компонентов (N = 4) мы получим 6 рядов (N + 2):
 
 
 
 X1 X2 X3 X4 L1 L2 Ответ 0,095 0,13 0,21 0,085
 
  Е 1 1 1 1
 
  1 0,1 - 0,0237 0,01 0 0,095 1 0 - 0,0237 0,25 0,079 0 0,13 1 0 0,01 0,079 0,4 0 0,21 1 0 0 0 0 0 0,085 1 0
 Отметьте, что мы получили 6 столбцов коэффициентов. Если добавить столбец свободных членов к матрице коэффициентов, мы получим расширенную матрицу.
  Заметьте, что коэффициенты в матрице соответствуют нашей обобщенной форме:
 
 Матрица является удобным представлением этих уравнений. Чтобы решить систему уравнений, необходимо задать Е. Ответы, полученные при решении этой
 системы уравнений, дадут оптимальные веса, минимизирующие дисперсию прибыли всего портфеля для выбранного уровня Е.
  Допустим, мы хотим найти решение для Е = 0,14, что соответствует прибыли в 14%. Подставив в матрицу 0,14 для Е и нули для переменных L1 и L2 в первых двух строках, мы получим следующую матрицу:
 X1 X2 Х3 X4 L1 L2 Ответ 0,095 0,13 0,21 0,085 0 0 0,14 1 1 1 1 0 0 1 0,1 - 0,0237 0,01 0 0,095 1 0 - 0,0237 0,25 0,079 0 0,13 1 0 0,01 0,079 0,4 0 0,21 1 0 0 0 0 0 0,085 1 0
 Необходимо найти N + 2 неизвестных с помощью N + 2 уравнений.
 
 Решение систем линейных уравнений с использованием матриц-строк.
 Многочлен - это алгебраическое выражение, которое является суммой определенного количества элементов. Многочлен с одним элементом называется одночленом, с двумя элементами - двучленом, с тремя - трехчленом и т.д. Выражение 4 * А ^ 3 + А ^ 2 +А+2 является многочленом, имеющим четыре члена. Члены отделены знаком (+).
 Многочлены имеют различные степени. Степень многочлена определяется значением наибольшей степени любого из элементов. Степенью элемента является сумма показателей переменных, содержащихся в элементе. Показанное выше выражение является многочленом третьей степени, так как элемент 4 * А^ 3 имеет третью степень, и это наивысшая степень среди всех элементов многочлена. Если бы элемент был равен 4*A^З*B^62*C, мы бы получили многочлен шестой степени, так как сумма показателей переменных (3+2+1) равна 6.
 Многочлен первой степени называется также линейным уравнением и графически задается прямой линией. Многочлен второй степени называется квадратным уравнением и на графике представляет собой параболу. Многочлены третьей, четвертой и пятой степени называются соответственно кубическим уравнением, уравнением четвертой степени, уравнением пятой степени и т.д. Графики многочленов третьей степени и выше довольно сложны. Многочлены могут иметь любое число элементов и любую степень, мы будем работать только с линейными уравнениями, т.е. многочленами первой степени. Решить систему линейных уравнений можно с помощью процедуры Гаусса-Жордана, или, что то же самое, метода гауссовского исключения. Чтобы использовать этот метод, мы должны сначала создать расширенную матрицу, объединив матрицу коэффициентов и столбец свободных членов. Затем следует произвести элементарные преобразования для получения единичной матрицы. С помощью элементарных преобразований мы получаем более простую, но эквивалентную первоначальной, матрицу. Элементарные преобразования производятся посредством построчных операций (мы опишем их ниже). Единичная матрица является квадратной матрицей коэффициентов, где все элементы равны нулю, кроме диагональной линии элементов, которая начинается в верхнем левом углу. Для матрицы коэффициентов "шесть на шесть" единичная матрица будет выглядеть следующим образом:
 1 0 0 0 0 о 0 1 0 0 0 о 0 0 1 0 0 о 0 0 0 1 0 о 0 0 0 0 1 о 0 0 0 0 о 1
 Матрица, где число строк равно числу столбцов, называется квадратной матрицей. Благодаря обобщенной форме задачи минимизации V для данного Е, мы всегда будем иметь дело с квадратными матрицами коэффициентов. Единичная матрица, полученная с помощью построчных операций, эквивалентна первоначальной матрице коэффициентов. Ответы для нашей системы уравнений можно получить из крайнего правого вектора-столбца. Единица в первой строке единичной матрицы соответствует переменной X,, поэтому значение на пересечении крайнего правого столбца и первой строки будет ответом для X1 Таким же образом на пересечении крайнего правого столбца и второй строки содержится ответ для Х2 так как единица во второй строке соответствует Х2 Используя построчные операции, мы можем совершать элементарные преобразования в первоначальной матрице, пока не получим единичную матрицу. Из единичной матрицы можно получить ответы для весов X1 ... ХN-компонентов портфеля. Найденные веса дадут портфель с минимальной дисперсией V для данного уровня ожидаемой прибыли Е1.
 .
 Можно проводить три типа построчных операций:
 1. Поменять местами любые две строки.
 2. Умножить любую строку на ненулевую постоянную.
 3. Любую строку умножить на ненулевую постоянную и прибавить к любой другой строке.
 С помощью этих трех операций мы попытаемся преобразовать исходную матрицу коэффициентов в единичную матрицу
  В расширенной матрице проведем элементарное преобразование номер 1, используя правило номер 2 построчных операций. Мы возьмем значение на пересечении первой строки и первого столбца (оно равно 0,095) и преобразуем его в единицу. Для этого умножим первую строку на 1/0,095. В результате, значение на пересечении первой строки и первого столбца станет равно единице. Остальные значения в первой сроке изменятся соответствующим образом.
  Проведем элементарное преобразование номер 2. Для этого задействуем правило номер 3 построчных операций (для всех строк, кроме первой). Предварительно для всех строк проведем элементарное преобразование номер 1, преобразовав число, стоящее в первом столбце каждой строки, в единицу. Затем все числа матрицы, кроме чисел первой строки, умножим на -1. После этого можно перейти к непосредственному применению правила номер 3. Для этого прибавим первую строку к каждой строке матрицы: первое число первой строки прибавим к первому числу второй строки, второе число первой строки ко второму числу второй строки и так далее. После этого преобразования мы получим нули в первом столбце (во всех строках, кроме первой).
  Теперь первый столбец уже является столбцом единичной матрицы. С помощью элементарного преобразования номер 3, используя правило номер 2 построчных операций, преобразуем значения на пересечении второй строки и второго столбца в единицу. Посредством элементарного преобразования 4, используя правило номер 3 построчных операций, преобразуем в нули значения второго столбца (для всех строк, кроме второй).
  Таким образом, с помощью правила номер 2 и правила номер 3 построчных операций мы преобразуем значения по диагонали в единицы и получим единичную матрицу. Столбец с правой стороны будет содержать решение.
 
 
 
 
 
 Интерпретация результатов
 После того как найдена единичная матрица, следует интерпретировать полученные результаты. В данном случае при наличии входных данных об ожидаемых прибылях и дисперсии прибылей по всем рассматриваемым компонентам, при наличии коэффициентов линейной корреляции каждой пары компонентов и ожидаемой отдаче 14% наше решение является оптимальным. Слово "оптимальный" означает, что полученное решение дает самую низкую дисперсию при ожидаемой прибыли 14%. Мы можем определить это значение дисперсии, но сначала интерпретируем результаты.
  Первые четыре значения, от X1 до Х4 дают нам веса, т.е. доли инвестируемых средств, для получения оптимального портфеля с 14%-ой ожидаемой прибылью. Нам следует инвестировать 12,391% в Toxico, 12,787% в Incubeast, 38,407% в LA Garb и 36,424% в сберегательный счет. Если мы хотим инвестировать 50 000 долларов, то получим:
 
 Акция Процент (* 50000 =) сумма инвестиций Toxico 0,12391 $6195,50 Incubeast 0,12787 $6393,50 LA Garb 0,38407 $19 203,50 Сберегательный счет 0,36424 $18212,00
 Таким образом, в Incubeast мы бы инвестировали 6393,50 доллара. Теперь допустим, что Incubeast котируется по цене 20 долларов за акцию, т.е. следует купить 319,675 акции (6393,5 / 20). На самом деле мы не можем купить дробное число акций, поэтому купим либо 319, либо 320 акций. Следует также отметить, что небольшой лот из 19 или 20 акций, остающийся после покупки первых 300 акций, будет стоить дороже. Нестандартные, малые лоты обычно стоят несколько дороже, поэтому мы переплатим за 19 или 20 акций, а это коснется ожидаемой прибыли по нашей позиции в Incubeast и в свою очередь затронет оптимальную комбинацию портфеля. В некоторых случаях следует ограничиться только стандартным лотом (в нашем случае - это 300 акций). Как видите, необходимо учитывать некоторый коэффициент ухудшения. Мы можем определить оптимальный портфель с точностью до дробной части акции, но реальная торговля все равно внесет свои коррективы. Естественно, чем больше ваш счет, тем ближе будет реальный портфель к теоретическому. Допустим, вместо 50 000 долларов вы оперируете пятью миллионами долларов. Вы хотите инвестировать 12,787% в Incubeast (если речь идет только об этих четырех инвестиционных альтернативах) и поэтому будете инвестировать 5 000 000*0,12787 =$639 350. При цене 20 долларов за акцию вы бы купили 639350/20=31967,5 акций. Учитывая круглый лот, вы купите 31900 акций, отклоняясь от оптимального значения примерно на 0,2%. Когда для инвестирования у вас есть только 50 000 долларов, вы купите 300 акций вместо оптимального количества 319,675 и таким образом отклонитесь от оптимального значения примерно на 6,5%.
 
 Подставим значения в уравнение (6.06a) (стр. 281):
 Таким образом, при Е = 0,14 самое низкое значение V = 0,0725872809.
 Если мы захотим протестировать значение Е = 0,18, то снова начнем с расширенной матрицы, только на этот раз правая верхняя ячейка будет равна 0.18.
 Xi
  Xj
  COVi, j
  0,12391 * 0,12391 * 0,1 0,0015353688 0,12391 * 0,12787 * -0,0237 -0,0003755116 0,12391 * 0,38407 * 0,01 0,0004759011 0,12391 * 0,36424 * 0 0 0,12787 * 0,12391 * -0,0237 -0,0003755116 0,12787 * 0,12787 * 0,25 0,0040876842 0,12787 * 0,38407 * 0,079 0,0038797714 0,12787 * 0,36424 * 0 0 0,38407 * 0,12391 * 0,01 0,0004759011 0,38407 * 0,12787 * 0,079 0,0038797714 0,38407 * 0,38407 * 0,4 0,059003906 0,38407 * 0,36424 * 0 0 0,36424 * 0,12391 * 0 0 0,36424 * 0,12787 * 0 0 0,36424 * 0,38407 * 0 0 0,36424 * 0,36424 * 0 0
 
 
 
 
  0,0725872809
 
 С помощью построчных операций получим единичную матрицу:
 
 На этот раз в четвертой ячейке столбца ответов мы получили отрицательный результат. Это означает, что нам следует инвестировать отрицательную сумму в размере 9,81% капитала в сберегательный счет. Чтобы решить проблему отрицательного Xi (т.е. когда значение на пересечении строки i и крайнего правого столбца меньшее или равно нулю), мы должны удалить из первоначальной расширенной матрицы строку i + 2 и столбец i и решить задачу для новой расширенной матрицы. Если значения последних двух строк крайнего правого столбца меньше или равны нулю, нам не о чем беспокоиться, поскольку они соответствуют множителям Лагранжа и могут принимать отрицательные значения. Так как отрицательное значение переменной соответствует отрицательному весу четвертого компонента, мы удалим из первоначальной расширенной матрицы четвертый столбец и шестую строку. Затем используем построчные операции для проведения элементарных преобразований, чтобы получить единичную матрицу:
 
 С помощью построчных операций получим единичную матрицу:
 
 Когда вы удаляете строки и столбцы, важно помнить, какие строки каким переменным соответствуют, особенно когда таких строк и столбцов несколько. Допустим, нам надо найти веса в портфеле при Е = 0,1965. Единичная матрица, которую мы сначала получим, будет содержать отрицательные значения для весов Toxico (X1) и сберегательного счета (Х4). Поэтому вернемся к нашей первоначальной расширенной матрице:
 
 Теперь удалим строку 3 и столбец 1 (они относятся к Toxico), а также удалим строку 6 и столбец 4 (они относятся к сберегательному счету):
 
 Итак, мы будем работать со следующей матрицей:
 
 С помощью построчных операций получим единичную матрицу:
 
 Решить матрицу можно также с помощью обратной матрицы коэффициентов. Обратная матрица при умножении на первоначальную матрицу дает единичную матрицу. В матричной алгебре матрица часто обозначается выделенной заглавной буквой. Например, мы можем обозначить матрицу коэффициентов буквой С. Обратная матрица помечается верхним индексом -1. Обратная матрица к С обозначается как С-1.Чтобы использовать этот метод, необходимо определить обратную матрицу для матрицы коэффициентов. Для этого добавим к матрице коэффициентов единичную матрицу. В примере с 4 акциями:
 
 Используя построчные операции, преобразуем матрицу коэффициентов в единичную матрицу. Так как каждая построчная операция, проведенная слева, будет проведена и справа, мы преобразуем единичную матрицу справа в обратную матрицу С-1.
 
 Теперь мы можем умножить обратную матрицу С-1 на первоначальный крайний правый столбец, который в нашем случае выглядит следующим образом:
 
 При умножении матрицы на вектор-столбец мы умножаем все элементы первого столбца матрицы на первый элемент вектора, все элементы второго столбца матрицы на второй элемент вектора, и так далее. Если бы вектор был вектор-строка, мы бы умножили все элементы первой строки матрицы на первый элемент вектора, все элементы второй строки матрицы на второй элемент вектора, и так далее. Так как речь идет о векторе-столбце и последние четыре элемента нули, нам надо умножить первый столбец обратной матрицы на Е (ожидаемая прибыль портфеля) и второй столбец обратной матрицы на S (сумма весов). Мы получим следующий набор уравнений, в которые можно подставить значения Е и S и получить оптимальные веса.
  Матричная алгебра включает в себя гораздо больше тем и приложений, чем было рассмотрено в этой главе. Существуют и другие методы матричной алгебры для решения систем линейных уравнений. Часто вы встретите ссылки на правило Крамера, симплекс-метод или симплексную таблицу. Эти методы сложнее, чем методы, описанные в этой главе. Существует множество применений матричной алгебры в бизнесе и науке, мы же затронули ее настолько, насколько необходимо для наших целей. Для более подробного изучения матричной алгебры и ее применений в бизнесе и науке рекомендую прочитать книгу "Множества, матрицы и линейное программирование" Роберта Л. Чилдресса (Sets, Matrices, and Linear Programming, by Robert L. Childress). Следующая глава посвящена методам, уже рассмотренным в этой главе, применительно к любому торгуемому инструменту с использованием оптимального f и механических систем.
 
 Глава 7
 Геометрия портфелей
 
 Мы уже познакомились с несколькими способами расчета оптимального f для рыночных систем. Также мы знаем, как найти эффективную границу. В этой главе мы покажем, как объединить идею оптимального f и идею эффективной границы для получения действительно эффективного портфеля, геометрический рост которого максимален. Мы также коснемся геометрии портфеля.
 
 Линии рынка капитала (Capital Market Lines - CMLs)
 Из предыдущей главы мы узнали, как параметрически вывести эффективную границу. Мы можем улучшить любой портфель путем инвестирования определенной его доли в наличные (или, что то же самое, в беспроцентный вклад). Рисунок 7-1 демонстрирует эту ситуацию графически.
  На рисунке 7-1 точка А отражает прибыль по безрисковым активам. Мы будем считать, что это прибыль по 91-дневным казначейским обязательствам. Так как риск в данном случае (стандартное отклонение прибылей) отсутствует, точка А находится на нуле по горизонтальной оси.
 
 Рисунок 7-1 Увеличение прибылей с помощью безрисковых активов
 Точка В соответствует касательному портфелю. Это единственный портфель, лежащий на эффективной границе, которого коснется линия, проведенная из точки с координатой: безрисковая ставка прибыли на вертикальной оси и ноль на горизонтальной оси. Любая точка на отрезке АВ соответствует портфелю из точки В в комбинации с безрисковыми активами. В точке В все средства вложены только в портфель, а в точке А только в безрисковые активы. Любая точка между А и В соответствует определенной комбинации, когда часть активов находится в портфеле, а часть в безрисковых активах. Отметьте, что портфель на отрезке АВ более выгоден, чем любой портфель на эффективной границе при том же уровне риска, так как, находясь на отрезке АВ, он имеет более высокую прибыль при том же
 уровне риска. Таким образом, инвестору, который хочет получить менее рискованный портфель, чем портфель В, следует инвестировать средства в портфель В и в безрисковые активы, а не смещаться по эффективной границе в точку с меньшим риском. Линия, выходящая из точки А безрискового уровня на вертикальной оси и нуля на горизонтальной оси и касающаяся в одной точке эффективной границы, называется линией рынка капитала (CML). Справа от точки В линия CML представляет портфели, где инвестор занимает средства для инвестирования в портфель В. Отметьте, что инвестору, который хочет получить большую прибыль, чем дает портфель В, следует поступить именно таким образом, поскольку портфели на линии CML справа от точки В дают более высокую прибыль, чем портфели на эффективной границе при том же уровне риска. Как правило, В - очень хорошо диверсифицированный портфель. Большинство портфелей, расположенных справа сверху и слева снизу на эффективной границе, имеют очень мало компонентов, портфели в середине эффективной границы, где проходит касательная, достаточно хорошо диверсифицированы. Традиционно считается, что все разумные инвесторы хотят получить максимальную прибыль при данном риске и принять наименьший риск при заданной прибыли. Таким образом, все инвесторы хотят быть где-то на линии CML. Другими словами, все инвесторы хотят держать один и тот же портфель, но с различной долей заемных средств. Данное различие между инвестиционным решением и инвестированием с использованием заемных средств известно как теорема разделения. Мы будем исходить из того, что вертикальная шкала (Е в теории Е - V) выражает арифметическое среднее HPR (AHPR) для портфелей, а горизонтальная шкала (V) отражает стандартное отклонение HPR. Для заданной безрисковой ставки мы можем определить, где находится касательный портфель на нашей эффективной границе, так как его координаты (AHPR, V) максимизируют следующую функцию:
 
 (7.0 la) Касательный портфель = MAX{(AHPR - (1 + RFR)) / SD},
 
 где МАХ{} = максимальное значение;
 AHPR =арифметическое среднее HPR, т. е. координата Е данного портфеля на эффективной границе;
 SD = стандартное отклонение HPR, т. е. координата V данного портфеля на эффективной границе;
 RFR== безрисковая ставка (risk-free rate).
 
 В уравнении (7.0la) формула внутри скобок ({}) представляет собой отношение Шарпа. Отношение Шарпа для портфеля - это отношение ожидаемых избыточных значений прибыли к стандартному отклонению. Портфель с наибольшим отношением Шарпа является портфелем, где линия CML касается эффективной границы при данном значении RFR.
  Следующая таблица показывает, как использовать уравнение (7.01а). В первых двух столбцах указаны координаты различных портфелей на эффективной границе. Координаты даны в формате (AHPR, SD), что соответствует осям Y и Х рисунка 7-1. В третьем столбце представлены данные, полученные из уравнения (7.01а), при безрисковой ставке 1,5% (AHPR= 1,015). Мы исходим из того, что HPR имеют квартальные значения, таким образом, квартальная безрисковая ставка 1,5% примерно равна годовой безрисковой ставке 6%. Например, для третьего набора координат (1,002; 0,00013) получим:
 
 Проведем данный расчет для каждой точки на эффективной границе. Максимальное значение уравнения (7.01а) 0,502265 соответствует координатам (1,03;
 0,02986), они задают точку, которая соответствует точке В на рисунке 7-1, где линия CML касается эффективной границы. Точка касания соответствует определенному портфелю на эффективной границе. Отношение Шарпа определяет наклон CML, причем самым крутым наклоном обладает касательная к эффективной границе.
 
 Продолжение AHPR Эффективная граница SD Уравнение (7.01а) Линия CML Процент AHPR 1,00500 0,00083 -12,0543 2,78% 1,0154 1,00600 0,00119 -7,53397 4,00% 1,0156 1,00700 0,00163 -4,92014 5,45% 1,0158 1,00800 0,00212 -3,29611 7,11% 1,0161 1,00900 0,00269 -2,23228 9,00% 1,0164 1,01000 0,00332 -1,50679 11,11% 1,0167 1,01100 0,00402 -0,99622 13,45% 1,0170 1,01200 0,00478 -0,62783 16,00% 1,0174 1,01300 0,00561 -0,35663 18,78% 1,0178 1,01400 0,00650 -0,15375 21,78% 1,0183 1,01500 0,00747 0 25,00% 1,0188 1,01600 0,00849 0,117718 28,45% 1,0193 1,01700 0,00959 0,208552 32,12% 1,0198 1,01800 0,01075 0,279036 36,01% 1,0204 1,01900 0,01198 0,333916 40,12% 1,0210 1,02000 0,01327 0,376698 44,45% 1,0217 1,02100 0,01463 0,410012 49,01% 1,0224 1,02200 0,01606 0,435850 53,79% 1,0231 1,02300 0,01755 0,455741 58,79% 1,0238 1,02400 0,01911 0,470873 64,01% 1,0246 1,02500 0,02074 0,482174 69,46% 1,0254 1,02600 0,02243 0,490377 75,12% 1,0263 1,02700 0,02419 0,496064 81,01% 1,0272 1,02800 0,02602 0,499702 87,12% 1,0281 1,02900 0,02791 0,501667 93,46% 1,0290 1,03000 0,02986 0,502265 (пик) 100,02% 1,0300 1,03100 0,03189 0,501742 106,79% 1,0310
 Продолжение AHPR Эффективная граница SD Уравнение (7.01а) Линия CML Процент AHPR 1,03200 0,03398 0,500303 113,80% 1,0321 1,03300 0,03614 0,498114 121,02% 1,0332 1,03400 0,03836 0,495313 128,46% 1,0343 1,03500 0,04065 0,492014 136,13% 1,0354 1,03600 0,04301 0,488313 144,02% 1,0366 1,03700 0,04543 0,484287 152,13% 1,0378 1,03800 0,04792 0,480004 160,47% 1,0391 1,03900 0,05047 0,475517 169,03% 1,0404 1,04000 0,05309 0,470873 177,81% 1,0417 1,04100 0,05578 0,466111 186,81% 1,0430 1,04200 0,05853 0,461264 196,03% 1,0444 1,04300 0,06136 0,456357 205,48% 1,0458 1,04400 0,06424 0,451416 215,14% 1,0473 1,04500 0,06720 0,446458 225,04% 1,0488 1,04600 0,07022 0,441499 235,15% 1,0503 1,04700 0,07330 0,436554 245,48% 1,0518 1,04800 0,07645 0,431634 256,04% 1,0534 1,04900 0,07967 0,426747 266,82% 1,0550 1,05000 0,08296 0,421902 277,82% 1,0567
 Следующий столбец "Процент" отражает процент активов, которые необходимо инвестировать в касательный портфель, если вы находитесь на линии CML при определенном значении стандартного отклонения. Другими словами, последняя строка в таблице (при стандартном отклонении 0,08296) соответствует наличию 277,82% ваших активов в касательном портфеле (основная сумма инвестиций и заем еще 1,7782 доллара на каждый инвестированный доллар для дальнейшего инвестирования). Процентное значение можно рассчитать, если знать стандартное отклонение касательного портфеля:
 (7.02) P=SX/ST,
 
 где SX = координата стандартного отклонения определенной точки на линии CML;
 ST = координата стандартного отклонения касательного портфеля;
 Р= процент активов, которые необходимо инвестировать в касательный портфель, чтобы быть на линии CML для данного значения SX.
 Таким образом, если значение стандартного отклонения точки на линии CML (0,08296) из последней строки таблицы разделить на значение стандартного отклонения касательного портфеля (0,02986), мы получим 2,7782, что соответствует 277,82%.
  В последнем столбце таблицы показано AHPR линии CML при данной координате стандартного отклонения. Оно рассчитывается следующим образом:
 
 где ACML = AHPR линии CML при данной координате риска, или соответствующем проценте, рассчитанном из (7.02);
  AT =значение AHPR касательной точки, полученное из (7.01а);
  Р= процент в касательном портфеле, рассчитанный из (7.02);
  RFR= безрисковая ставка.
  Стандартное отклонение определенной точки на линии CML для данного AHPR рассчитывается следующим образом:
 (7.04) SD=P*ST,
 где SD = стандартное отклонение в данной точке на линии CML при определенном проценте Р, соответствующем данному AHPR;
  Р = процент в касательном портфеле, рассчитанный из (7.02);
 ST = значение стандартного отклонения касательного портфеля.
 
 Геометрическая эффективная граница
 Особенность рисунка 7-1 состоит в том, что он отображает арифметическое среднее HPR. Если прибыли реинвестируются, то для координаты эффективной границы по оси Y правильнее рассматривать геометрическое среднее HPR. Такой
 подход многое меняет. Формула для преобразования точки на эффективной границе из арифметического HPR в геометрическое такова:
 
 где GHPR = геометрическое среднее HPR;
 AHPR = арифметическое среднее HPR;
 V= координата дисперсии (она равна координате стандартного отклонения в квадрате).
 
 Рисунок 7-2 Эффективная граница с реинвестированием и без реинвестирования
 На рисунке 7-2 показана эффективная граница, соответствующая арифметическим средним HPR, и граница, соответствующая геометрическим средним HPR. Посмотрите, что происходит с эффективной границей при реинвестировании.
 Построив линию GHPR, можно определить, какой портфель является геометрически оптимальным (наивысшая точка на линии GHPR). Вы можете найти этот портфель, преобразовав AHPR и V каждого портфеля на эффективной границе AHPR в GHPR с помощью уравнения (7.05) и выбрав максимальное значение GHPR. Однако, зная AHPR и V портфелей, лежащих на эффективной границе AHPR, можно еще проще определить геометрический оптимальный портфель, он должен удовлетворять следующему уравнению:
 
 (7.06a) AHPR-1-V=0,
 где АН PR = арифметическое среднее HPR, т.е. координата Е данного портфеля на эффективной границе;
 V= дисперсия HPR, т.е. координата V данного портфеля на эффективной границе. Она равна стандартному отклонению в квадрате.
 Уравнение (7.06a) также можно представить следующим образом:
 (7.06б) AHPR - 1 = V
 (7.06в) AHPR-V=1
 (7.06г) AHPR=V+1
 Необходимо сделать небольшое замечание по геометрическому оптимальному портфелю. Дисперсия в портфеле в общем случае имеет положительную корреляцию с наихудшим проигрышем. Более высокая дисперсия обычно соответствует портфелю с более высоким возможным проигрышем. Так как геометрический оптимальный портфель является портфелем, для которого Е и V равны (при E=AHPR- 1), мы можем допустить, что геометрический оптимальный портфель будет иметь высокие проигрыши. Фактически, чем больше GHPR геометрического оптимального портфеля (т.е. чем больше зарабатывает портфель), тем больше может быть его текущий проигрыш (откат по балансу счета), так как GHPR положительно коррелирован с AHPR. Здесь мы видим некий парадокс. С одной стороны нам следует использовать геометрический оптимальный портфель, с другой - чем выше среднее геометрическое портфеля, тем большими будут откаты по балансу счета в процентном выражении. Мы знаем также, что при диверсификации следует выбирать портфель с наивысшим средним геометрическим, а не с минимальным проигрышем, но эти величины стремятся в противоположных направлениях! Геометрический оптимальный портфель - это портфель, который расположен в точке, где линия, прочерченная из (0, 0) с наклоном 1, пересекает эффективную границу AHPR.
 Рисунок 7-2 показывает эффективные границы на основе одной сделки. Мы можем преобразовать геометрическое среднее HPR в TWR с помощью уравнения:
 (7.07) GTWR = GHPR^ N,
 где GTWR = значение вертикальной оси, соответствующее данному GHPR после N сделок;
 N - число сделок, которые мы хотим использовать.
 
 
 Рисунок 7-3 Эффективная граница с реинвестированием и без реинвестирования
 
 Рисунок 7-4 Эффективная граница с реинвестированием и без реинвестирования
 
 Пусть нашей целью будет AHPR при значении V, которое соответствует геометрическому оптимальному портфелю. В знаменателе (2.09а) мы используем среднее геометрическое геометрического оптимального портфеля. Теперь мы можем определить, сколько сделок необходимо для того, чтобы привести наш геометрический оптимальный портфель к одной сделке арифметического портфеля:
 
 N=ln(l,031)/ln(l,01542) =0,035294/0,0153023 = 1,995075
 Таким образом, можно ожидать, что через 1,995075, или приблизительно через 2 сделки, оптимальное GHPR достигнет соответствующего (при том же V) AHPR для одной сделки. Здесь возникает проблема, которая заключается в том, что ATWR должно отражать тот факт, что прошли две сделки. Другими словами, когда GTWR приближается к ATWR, ATWR двигается вверх, хотя и с постоянной скоростью (в отличие от GTWR, которое ускоряется). Можно решить эту проблему с помощью уравнений (7.07) и (7.08) для расчета геометрического и арифметического TWR:
 
 Так как мы знаем, что, когда N = 1, G всегда меньше А, можно перефразировать вопрос: "При скольких N G будет равно А?" Математически это будет выглядеть таким образом:
 
 что можно представить следующим образом:
 
 или
 
 или
 
 N в уравнениях с (7.10а) по (7. 10г) представляет собой количество сделок, которое необходимо для того, чтобы геометрическое HPR стало равно арифметическому. Все три уравнения эквивалентны. Решение можно получить методом итераций. Зная для нашего геометрического оптимального портфеля GHPR= 1,01542 и соответствующее AHPR= 1,031 и решая любое уравнение с (7.10а) по (7. 10г), мы находим, что N = 83,49894. Таким образом, после того, как пройдет 83,49894 сделки, геометрическое TWR догонит арифметическое. Полученный результат справедлив для тех TWR, которые соответствуют координате дисперсии геометрического оптимального портфеля.Так же, как и AHPR, GHPR имеет свою линию CML. Рисунок 7-5 показывает как AHPR, так и GHPR с линиями CML, рассчитанными на основе безрисковой ставки.
 
 Рисунок 7-5 AHPR, GHPR и их линии CML
 Зная CML для AHPR, можно рассчитать CML для GHPR следующим образом:
 
 CMLG = координата Е (по вертикали) линии CML для GHPR при данной координате V, соответствующей Р;
 CMLA= координата Е (по вертикали) линии CML для AHPR при данной координате V, соответствующей Р;
 Р = процент в касательном портфеле, рассчитанный из (7.02);
 VT = координата дисперсии касательного портфеля.
 Следует иметь в виду, что для данной безрисковой ставки касательный портфель и геометрический оптимальный портфель в общем случае не одинаковы. Портфели будут идентичными при выполнении следующего равенства:
 (7.12) RFR=GHPROPT-1,
 где RFR = безрисковая ставка;
 GHPROPT = среднее геометрическое HPR геометрического оптимального портфеля, т.е. координата Е портфеля на эффективной границе.
 Только когда разность GHPR геометрического оптимального портфеля и единицы равна безрисковой ставке, геометрический оптимальный портфель и касательный портфель будут одинаковыми. Если RFR > GHPROPT - 1, тогда геометрический оптимальный портфель будет слева (т.е. иметь меньшую дисперсию, чем касательный портфель). Если RFR < GHPROPT - 1, тогда касательный портфель будет слева (т.е. иметь меньшую дисперсию, чем геометрический оптимальный портфель). Во всех случаях касательный портфель, конечно же, никогда не будет иметь более высокое GHPR, чем геометрический оптимальный портфель.
 Отметьте также, что точки касания CML к GHPR и CML к AHPR имеют одну координату SD. Мы можем использовать уравнение (7.01а) для поиска касательного портфеля GHPR, заменив в (7.01а) AHPR на GHPR. В результате получится следующее уравнение:
 
 где МАХ{}= максимальное значение;
 GHPR = геометрическое среднее HPR, т.е. координата Е данного портфеля на эффективной границе;

<< Пред.           стр. 8 (из 10)           След. >>

Список литературы по разделу