<< Пред.           стр. 6 (из 12)           След. >>

Список литературы по разделу

 2100
  4200
 1066
 6400
 1200
  2100
  250
  4000
 
 При подключении различных устройств, внешних относительно материнской платы или компьютера в целом, находит применение несколько разных внешних интерфейсных соединений (внешних интерфейсов).
  Параллельный интерфейс IDE (Imbedded Drive Electronics – «встроенная электроника дисковода»), имеющий также название АТА (Attachment Advanced Technology – «технология подключения устройств к PC AT») предназначен исключительно для обеспечения работы дисковых накопителей информации.
 Первый стандарт АТА обеспечивал скорость обмена данными с НЖМД от 2 до 3 Мбайт/с, поддерживал только два НЖМД, емкость каждого из которых не могла превышать 504 Мбайт. Малые скорости обмена данными и существенные ограничения интерфейса АТА требовали усовершенствования этого интерфейса. В 1993 году был разработан новый интерфейс АТА-2, называемый также EIDE (Enhanced IDE – «усовершенствованный IDE»). В отличие от АТА интерфейс стандарта АТА-2 допускал увеличение емкости диска свыше 504 Мбайт, что стало возможным благодаря применению метода логической адресации блоков. АТА-2 поддерживал подключение не только НЖМД, но и других устройств: накопителей на оптических дисках, накопителей на магнитных лентах. Контроллер АТА-2 имел два канала (primary – «первичный» и secondary – «вторичный»), к каждому из которых можно подключить до двух устройств (то есть всего четыре). Последующая модификация интерфейса Ultra АТА/33, называемая также ATA-33, включала режим прямого доступа к памяти Ultra DMA/33 (Direct Memory Access – «прямой доступ к памяти») и обеспечивала передачу данных со скоростью до 33 Мбайт/с.
 Интерфейс Ultra АТА/66 (АТА-66) по сравнению с Ultra АТА/33 удваивает скорость передачи данных до 66 Мбайт/с за счет увеличения частоты тактового сигнала. Для обеспечения целостности данных предусмотрен новый 80-жильный шлейфовый кабель, который подключается к стандартному 40-контактному разъему. В новом кабеле сигнальные линии разделены линиями «заземления», которые играют роль экрана. Последним развитием интерфейса Ultra АТА/66 являются протоколы Ultra АТА/100 и Ultra АТА/133, обеспечивающие передачу данных со скоростями 100 Мбайт/с и 133 Мбайт/с соответственно. Ultra АТА/100 и Ultra АТА/133 поддерживают все предыдущие интерфейсы.
  Другой параллельный внешний интерфейс SCSI (Small Computer System Interface – «интерфейс малых вычислительных систем») также реализован в виде кабельного шлейфа и с внутренними шинами связывается через так называемый хост-адаптер (Host Adapter). К настоящему времени разработано несколько спецификаций (стандартов) интерфейса SCSI. Максимальная пропускная способность этого интерфейса составляет 320 Мбайт/с для стандарта Ultra320 SCSI. Область применения SCSI шире, чем интерфейсов IDE/ATA. SCSI используется не только для подключения дисковых накопителей информации, но и различных периферийных устройств (чаще всего сканеров) с большим объемом передаваемых данных. Интерфейс SCSI является более дорогим в реализации, чем IDE/ATA. На смену параллельному интерфейсу Ultra 320 SCSI Интерфейс SCSI (Small Computer System Interface – интерфейс малых вычислительных систем) также реализован в виде кабельного шлейфа и с внутренними шинами связывается через так называемый хост-адаптер (Host Adapter).
 Как уже было отмечено, IDE и SCSI относятся к классу параллельных интерфейсов. При таком подходе на высоких скоростях передачи данных начинают проявляться электромагнитные помехи от соседних проводов, что вызывает ошибки чтения/записи. Использование дополнительных экранирующих проводников (как в 80-жильном шлейфе IDE-интерфейса) имеет определенные пределы и исчерпывает себя уже при скорости около 150 Мбайт/с. Кроме того, использование широких шлейфов загромождает внутреннее пространство системного блока ПК и существенно снижает возможности его эффективной вентиляции. Перечисленные причины привели к разработке современных последовательных интерфейсов Serial ATA и Serial Attached SCSI, приходящих на смену традиционным параллельным интерфейсам АТА и SCSI.
 Последовательный интерфейс Serial ATA обеспечивает теоретическую скорость передачи данных до 150 Мбайт/с и реализуется посредством семижильного кабеля (два провода – для передачи данных, два – для приема и три провода заземления), что упрощает конструкцию, снижает цену кабелей, облегчает монтаж проводов в корпусе ПК и улучшает охлаждение системного блока. Длина кабеля Serial ATA может достигать одного метра, что позволяет без проблем размещать накопители в любом месте крупногабаритного корпуса ПК и, в принципе, использовать их как внешние устройства. Кроме этого, Serial ATA обеспечивает «горячее» (т.е. без отключения питания) подключение накопителей, поэтому такие НЖМД удобны в качестве переносных ЗУ. Спецификация второй версии последовательного дискового интерфейса Serial ATA-II обеспечивает скорость передачи данных до 300 Мбайт/с и полную обратную совместимость с первой версией Serial ATA.
  Преимущественная область применения последовательного интерфейса Serial Attached SCSI – высокопроизводительные дисковые накопители серверных систем.
 В состав современного ПК входит несколько традиционных интерфейсов для работы с внешними устройствами. Прежде всего это последовательный интерфейс PS/2 для подключения клавиатуры и мыши. Начиная с первых моделей в ПК имеется последовательный интерфейс, выполненный по стандарту RS–232C и предназначенный для обмена информацией с небольшими скоростями на расстоянии нескольких метров. Это так называемый COM-порт (Communication Port – «коммуникационный порт»), название которого указывает на его основное назначение – подключение коммуникационного оборудования (чаще всего модемов). К COM-портам также могут быть подключены различные манипуляторы (например, мышь), печатающие устройства, электронные ключи, различные измерительные комплексы, устройства управления блоков бесперебойного питания и другие устройства. В современных спецификациях традиционные COM-порты не рекомендованы, но еще разрешены для использования, если они обеспечивают пропускную способность до 115,2 Кбит/с.
  Параллельный внешний интерфейс первоначально был введен в ПК для подключения принтера – поэтому исторически он носит название LPT-порт (Line PrinTer – «построчный принтер»), хотя к этому порту подключаются не только «построчные», но и другие современные типы принтеров. Для стандартного LPT-порта реализуется протокол передачи данных Centronics с пропускной способностью до 200 Кбайт/с. Разработано и реализовано несколько спецификаций так называемого «улучшенного» параллельного порта. К LPT-портам, кроме принтеров, подключают сканеры, коммуникационные устройства, электронные ключи, некоторые устройства хранения данных (например, накопители на магнитной ленте и сменных магнитных дисках). В современных спецификациях LPT-порт пока разрешен, однако рекомендован перевод устройств, подключаемых к LPT-порту, на современные скоростные последовательные интерфейсы.
 Отметим мало распространенные в России, но присутствующие на современных материнских платах интерфейсы, такие как AMR, CNR, ACR. Интерфейс (разъем) AMR (Audio-Modem Riser – «разъем аудио-модем») предназначен для подключения специальных дочерних плат, объединяющих обработку звука и функции связи (модем, факс, телефония). Интерфейс (разъем) CNR (Communication Network Riser – «коммуникационный сетевой разъем») является расширением AMR с целью возможности подключения сетевых плат и обеспечения таким образом работы в компьютерных сетях. Интерфейс (разъем) ACR (Advanced Communication Riser – «усовершенствованный коммуникационный разъем») служит для подключения так называемых «облегченных» (за счет микросхем материнской платы) сетевых, аудио- и модемных плат.
 Внешний последовательный интерфейс USB (Universal Serial Bus – «универсальная последовательная шина») относится к классу современных высокоскоростных последовательных интерфейсов и в отличие от устаревших COM- и LPT-портов позволяет (благодаря своей шинной архитектуре) подключать к каждому USB-порту (USB-разъему) последовательно до 127 разнообразных внешних устройств, удовлетворяющих спецификации USB. Современные операционные системы легко распознают добавленные USB-устройства, реализуя технологию Plug&Play. При использовании USB имеется возможность изменения конфигурации компьютера включением или отключением внешних устройств без перезапуска системы. Последовательное подключение устройств, характерное для USB, позволяет отказаться от большого количества соединительных кабелей, используемых для устаревших интерфейсов. К настоящему времени USB-подключение является стандартным для большинства выпускаемых периферийных устройств, таких как сканеры, принтеры, манипуляторы, цифровые камеры и т. д.
  Еще один современный последовательный высокоскоростной интерфейс имеет название FireWire («огненный провод»), которое было дано ему разработчиком – фирмой Apple. Вначале этот интерфейс позиционировался как скоростной вариант SCSI. В 1990 году под эгидой IEEE (Institute of Electrical and Electronic Engineers – Институт инженеров электротехники и электроники) было опубликовано техническое описание этой интерфейса, получившего наименование IEEE 1394 (стандарт IEEE 1394). Как и USB, интерфейс FireWire (IEEE 1394) обеспечивает внешнее подключение периферийных устройств к компьютеру и возможность переконфигурирования аппаратных средств компьютера без его выключения. В отличие от интерфейса USB, предназначенного в основном для подключения устройств ввода/вывода и аудио/видеоустройств, интерфейс IEEE 1394 ориентирован на высокоскоростные устройства хранения данных и новую цифровую видеоэлектронику, где этот интерфейс имеет название i.Link (торговая марка корпорации Sony).
  Характеристики основных внешних интерфейсов обобщены в таблице 5.2.
 
 Таблица 5.2
  Характеристики внешних интерфейсов
 
 
 Наименование
 интерфейса Пропускная способность,
  Мбайт/с
 
 ATA 133
 Ultra320 SCSI
  Fibre Channel
  Serial ATA
  Serial ATA-II
 Serial Attached SCSI
 USB 2.0
 FireWire (IEEE 1394)
  133
 320
 200
 150
 300
  300
  60 (480 Мбит/с)
  50 (400 Мбит/с)
 
 
 
 Резюме
 
  Взаимные коммуникации функциональных устройства ВМ обеспечиваются системой внутренних и внешних шин. Внешние шины обычно именуются внешними интерфейсами. В зависимости от способа передачи информации по шине различают шины последовательные и параллельные. Основными характеристиками шин являются их разрядность и пропускная способность. Современные ВМ содержат несколько различных шин, каждая из которых оптимизирована под определенный вид коммуникаций. Операции на шине называют транзакциями. Основные виды транзакций – транзакции чтения и транзакции записи.
  В общем случае все сигнальные линии параллельной шины делятся на три группы: шину адреса, шину данных и шину управления. В некоторых шинах линии адреса и данных объединены в единую мультиплексируемую группу линий, которая функционирует в режиме разделения времени.
  При обмене информацией по шине между двумя устройствами одно из них долж­но инициировать обмен и управлять им. Такое устройство является ведущи­м. Устройство, не обладающее возможностями инициирования транзакции, носит название ведомого устройства. К шине может быть подключено несколько потенциальных ведущих устрой­ств, но в любой момент времени активным может быть только одно из них. Для предотвращения одновременной активности нескольких ведущих устрой­ств в любой шине предусматривается процедура допуска к управлению ши­ной только одного из претендентов. Такая процедура называется арбитражом.
  Некоторые шины допускают широковещательный режим записи, когда информация одного веду­щего устрой­ства передается сразу нескольким ведомым устрой­ствам, и в этом случае арбитраж не требуется. Арбитраж запросов обычно строится на основе механизмов статических или динамических приоритетов претендентов. Недостатком механизма статических приоритетов является возможность полного блокирования доступа к шине уст­ройств с низким уровнем приоритета со стороны устройств, имею­щих более высокий приоритет. При использовании динамических приоритетов реализуется принцип рав­нодоступности. Среди механизмов динамических приоритетов наибольшее распространение получили алгоритмы простой циклической смены приоритетов, циклической смены приоритетов с учетом последнего запроса, смены приоритетов по случайному закону, схема равных приоритетов, алгоритм «наиболее давнего» использования.
  Арбитраж запросов на управление шиной может быть организован по централизо­ванной или децентрализованной схеме. При централизованном арбитраже в системе имеется специальное устройство – центральный арбитр, которое ответственно за предоставление доступа к шине только одному из запросивших доступ ведущих устройств. В зависимости от того, каким образом веду­щие устройства подключены к центральному арбитру, возможны параллельные и последователь­ные схемы центра­лизованного арбитража. При децентрализованном арбитраже единый арбитр отсут­ствует, а каждый ведущий содержит блок управления доступом к шине, и при совместном использовании шины такие блоки взаимодействуют друг с дру­гом, разделяя между собой ответственность за доступ к шине. Существенное влияние на производительную работу шин оказывают физические эффекты, связанные с процессами передачи информации по шинам.
  Существует несколько приемов, позволяющих повысить производительность шин. К ним, прежде всего, следует отнести пакетный режим, конвейеризацию и расщеп­ление транзакций.
  В вычислительных машинах используется несколько различных по характеристикам шин. Их развитие и совершенствование непрерывно продолжается.
 
 Контрольные вопросы и задания
 
 1. Дайте определения понятиям «внутренняя шина» и «внешний интерфейс».
 2. Чем отличаются последовательные и параллельные шины?
 3. Что такое «пропускная способность шины» и в каких единицах она измеряется для последовательных и параллельных шин?
 4. Назовите основные типы подшин и укажите их функциональное назначение и характеристики.
 5. Дайте определению понятию «шинная транзакция».
 6. В чем отличие ведущего устройства от ведомого?
 7. Для каких целей применяется механизм арбитража шин?
 8. Каковы недостатки статических схем назначения приоритетов претендентам на управление шиной?
 9. Перечислите основные алгоритмы динамического изменения приоритетов.
  Назовите их относительные преимущества и недостатки.
 10. Охарактеризуйте способ централизованного арбитража шин и представьте
  известные схемы его реализации.
 11. Как организуется децентрализованный арбитраж шин?
 12. Опишите физические аспекты передачи информации по шинам.
 13. Дайте характеристику син­хронным и асинхронным протоколам шины.
 14. Применение каких способов позволяет повысить эффективность шин?
 15. Охарактеризуйте методы конвейеризации и расщеп­ления шинных тран-
  закций.
 16. Какие приемы, способствующие расширению полосы пропускания шины, являются наиболее эффективными?
 17. Охарактеризуйте эволюцию внутренних шин персональных компьютеров.
 18. Перечислите основные параметры шины PCI.
 19. Каковы назначение и характеристики системной шины ПК?
 20. Опишите назначение и параметры «шинного» стандарта AGP.
 21. Укажите основные характеристики современных и перспективных шин семейств PCI-X и PCI-Express.
 22. Охарактеризуйте современные последовательные версии интерфейсов
  Serial ATA и Serial Attached SCSI.
 23. Каково назначение традиционных последовательных COM-портов?
 24. Какие внешние периферийные устройства подключают к параллельному
  LPT- интерфейсу и каковы его перспективы?
 25. Опишите особенности реализации и основные характеристики интерфей-
  сов USB и FireWire.
  6. Основные понятия вычислительных сетей
 
 6.1. Классификация вычислительных сетей
 
  Наиболее распространенным и эффективным классом многомашинных вычислительных систем являются ВС распределенного типа или так называемые вычислительные (компьютерные) сети. В компьютерных сетях автономность отдельных вычислительных модулей проявляется в наибольшей степени – основными компонентами сети являются, как правило, стандартные ВМ, физическая связь между которыми осуществляется с помощью специальных сетевых коммуникационных устройств и относительно протяженных линий связи. Каждая ВМ в сети работает под управлением собственной операционной системы, а информационное взаимодействие между отдельными ВМ происходит посредством передачи по сети блоков информации – так называемых сообщений (message). Наряду с термином «сообщение», существуют и другие термины, применяемые для обозначения единиц данных в процедурах обмена: кадр (frame), пакет (packet), дейтаграмма (datagram), сегмент (segment). Конфигурация и размеры этих единиц данных определяются стандартизованными правилами – сетевыми коммуникационными протоколами.
  Основной классифицирующей характеристикой вычислительных сетей является их масштабная (территориальная) характеристика. В зависимости от охватываемой территории и протяженности вычислительные сети исторически чаще всего подразделяют на локальные (ЛВС или LAN – Local Area Network), региональные или городские (РВС или MAN – Metropolitan Area Network) и глобальные (ГВС или WAN – Wide Area Network).
  Обычно под локальной сетью понимают вычислительную сеть, абоненты которой размещены на относительно небольшой территории, например в пределах одной или нескольких комнат одного помещения или нескольких близко расположенных зданий. В настоящее время не существует четких ограничений на территориальный охват ЛВС. Как правило, локальная сеть привязана к конкретной организационной структуре, и тогда говорят об ЛВС офиса, фирмы, учреждения, предприятия.
  Глобальные сети объединяют абонентов, удаленных на значительные расстояния и часто расположенных в разных городах, странах и даже континентах. Одним из характерных, но не единственным примером глобальной вычислительной сети является сеть Интернет.
  Так называемые региональные сети связывают абонентов района, города, области и таким образом занимают некоторую промежуточную позицию между сетями локальными и глобальными. Точную границу региональных сетей чаще всего установить затруднительно.
  В настоящее время основным отличием локальных сетей от глобальных принято считать качественный уровень линий передачи данных. Однако интенсивное развитие технических средств связи приводит к взаимному проникновению и сближению технологий и принципов передачи данных в локальных и глобальных сетях.
  Другим популярным классифицирующим признаком является деление сетей по масштабу подразделения или предприятия (учреждения) в целом, в пределах которого функционирует сеть. По этому признаку чаще всего выделяют сети отделов, кампусов и корпораций.
  Сети отделов расположены в пределах одного структурного подразделения, сотрудники которого решают, как правило, некие однотипные задачи.
  Так называемые сети кампусов (от campus – «студенческий городок») изначально преследовали цель объединения нескольких мелких локальных сетей (университетских центров) в одну. При этом технологии глобальных соединений в сетях кампусов обычно не используются.
  Корпоративные сети объединяют отдельные ВМ и локальные сети в рамках одного предприятия (корпорации). Такие сети крупных транснациональных корпораций могут охватывать огромные территории вплоть до нескольких стран и континентов и очень часто, по сути, являются глобальными сетями. Корпоративные сети, использующие инфраструктуру глобальной сети Интернет, называют сетями интранет (intranet).
  При современном уровне развития вычислительных сетей локальные сети, как правило, входят в качестве отдельных компонентов в состав региональной сети, а РВС объединяются в составе глобальной сети. В результате образуются мощные распределенные структуры, охватывающие большие территории и включающие в свой состав миллионы компьютеров. Объединение локальных, региональных и глобальных вычислительных сетей приводит к созданию так называемых многосетевых иерархий, которые обеспечивают доступ практически к неограниченным объемам мировых информационных ресурсов и осуществляют их эффективную обработку.
  Сети классифицируются также по такому важнейшему признаку, как «сетевая технология». Под сетевой технологией понимается согласованный набор стандартных правил и реализующих их аппаратно-программных средств, достаточных для построения вычислительной сети. Часто сетевые технологии называют базовыми технологиями, подразумевая, что на их основе строится базис вычислительной сети.
  Вычислительные сети различаются по так называемым показателям качества, которые данная сеть может обеспечить. К таким показателям относятся:
  – полнота выполняемых функций по доступу к ресурсам, по совместимости работы отдельных элементов, по реализации правил и стандартов работы;
  – производительность, характеризующаяся средним количеством запросов пользователей сети, исполняемых за единицу времени;
  – пропускная способность, определяющаяся количеством данных, передаваемых по линиям связи сети за единицу времени;
  – надежность сети, характеризующаяся надежностью работы ее отдельных элементов, их средним временем так называемой «наработки на отказ», возможностью оперативного дублирования этих элементов в случае их отказа;
  – достоверность и сохранность информации в сети, способность сети обеспечивать защиту информации от несанкционированного доступа;
  – управляемость, характеризующаяся возможностью управляющего воздействия на любой из элементов сети и устранения возникающих при их работе проблем;
  – возможность расширяемости сети и возможность масштабируемости сети как расширения сети без существенного снижения ее производительности;
  – интегрируемость (универсальность) сети, характеризующаяся возможностью подключения к сети разнообразных и разнотипных аппаратно-программных средств.
 6.2. Основные понятия многоуровневого сетевого взаимодействия
 
  Для решения сложнейших задач взаимодействия различных сетевых компонентов при организации вычислительных сетей используется универсальный принцип декомпозиции, согласно которому решение сложной задачи может быть представлено совокупностью решений нескольких более простых задач – модулей. При этом определяются конкретные функции каждого модуля, решающего какую-либо отдельную задачу, и интерфейсы взаимодействия между этими модулями. В результате логически упрощается решение общей задачи и становится возможной модификация отдельных модулей фактически без изменения остальных.
  При декомпозиции часто используют многоуровневый подход. Он заключается в следующем. Все множество модулей разбивают на уровни. Уровни образуют иерархию, то есть имеются вышележащие и нижележащие уровни. Множество модулей, составляющих каждый уровень, формируется таким образом, что для выполнения своих задач они обращаются с запросами только к модулям непосредственно примыкающего нижележащего уровня. С другой стороны, результаты работы всех модулей, принадлежащих некоторому уровню, могут быть переданы только модулям соседнего вышележащего уровня. Такая иерархическая декомпозиция задачи предполагает четкое определение функции каждого уровня и интерфейсов между уровнями. Интерфейс определяет набор функций, которые нижележащий уровень предоставляет вышележащему. В результате иерархической декомпозиции достигается относительная независимость уровней, а значит, и возможность их легкой модификации или замены.
  Многоуровневое представление средств сетевого взаимодействия имеет свою специфику, связанную с тем, что в процессе обмена сообщениями участвуют как минимум две вычислительных машины (узла сети), то есть в данном случае необходимо организовать согласованную работу двух «иерархий». При передаче сообщений оба участника сетевого обмена должны принять множество соглашений. Например, они должны согласовать уровни и форму электрических сигналов, способ определения длины сообщений, договориться о методах контроля достоверности и т. п. Другими словами, соглашения должны быть приняты для всех уровней, начиная от самого низкого уровня – уровня передачи битов – до самого высокого уровня, который реализует прикладной сервис для пользователей сети.
 
  Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называют в сетевых спецификациях протоколом. Модули, реализующие протоколы соседних уровней и находящиеся в одном узле, также взаимодействуют друг с другом в соответствии с четко определенными правилами и с помощью стандартизованных форматов сообщений. Совокупность этих правил в сетевых спецификациях принято называть интерфейсом. Интерфейс определяет набор сервисов, предоставляемый данным уровнем соседнему уровню. В сущности, протокол и интерфейс выражают одно и то же понятие, но традиционно в сетях за ними закрепили разные области действия: протоколы определяют правила взаимодействия модулей одного уровня в разных узлах, а интерфейсы – модулей соседних уровней в одном узле. Средства каждого уровня должны отрабатывать, во-первых, свой собственный протокол, а во-вторых, интерфейсы с соседними уровнями.
  Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком коммуникационных протоколов.
  Коммуникационные протоколы могут быть реализованы как программно, так и аппаратно. Протоколы нижних уровней обычно реализуются комбинацией программных и аппаратных средств, а протоколы верхних уровней – как правило, чисто программными средствами.
  Общепринято называть «протоколом» сам программный модуль, реализующий данный протокол как формально определенную процедуру. Каждый протокол может иметь несколько вариантов программной реализации. Поэтому при сравнении и выборе протоколов учитывается как логика их работы, так и качество программной реализации. Естественно, что качество всей совокупности протоколов (стека) оказывает решающее влияние на эффективность взаимодействия всех сетевых устройств, реализующих те или иные наборы протоколов.
  При практической реализации сетей используются некоторые стандартизованные протоколы. От степени соответствия принятым стандартам зависит не только совместимость отдельного оборудования, но и в целом работоспособность всей сети.
  Наиболее популярны две модели многоуровневого подхода к разработке средств сетевого взаимодействия. Одной из этих моделей является традиционно описываемая в литературе семиуровневая модель взаимодействия открытых систем OSI (Open System Interconnection) или в русскоязычном варианте – эталонная модель взаимодействия открытых систем (ЭМВОС). Другой моделью является четырехуровневая модель взаимодействия открытых систем DoD (Department of Defence – Министерство Обороны США), которая использована при разработке реально действующего и самого распространенного на сегодняшний день стека протоколов TCP/IP (см. далее в разделе 11), обеспечивающего на практике работу сети Интернет.
  Модель OSI была разработана рядом международных организаций по стандартизации, такими как ISO (International Standards Organization), ITU (International Telecommunication Union) и другими, и предложена в 1984 году в качестве стандартизованной единой модели протокольного стека, получившего наименование «X.200». Модель OSI определяет различные уровни взаимодействия открытых систем, дает им стандартные имена и указывает, какие функции должен выполнить каждый уровень. В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с одним определенным аспектом взаимодействия сетевых устройств. Однако необходимо отметить, что модель OSI носит исключительно концептуальный, а не практический характер. Хорошо известно, что в соответствии с моделью OSI не было реализовано ни одного практически применяемого протокола, а наиболее распространенные стеки протоколов (в частности, TCP/IP и протоколы телефонных сетей) не соответствуют модели OSI и не содержат значительной части ее уровней или содержат эти уровни лишь в вырожденном виде. Причиной такого положения вещей является то, что архитектура стека OSI была разработана в тот период времени, когда еще не было достаточного опыта построения и эксплуатации крупномасштабных вычислительных сетей, а соответственно во многом были неясны практические требования к таким сетям и проблемы, возникающие при их реализации. Кроме этого, при создании модели OSI не был должным образом учтен опыт разработчиков одной из первых реально функционирующих вычислительных сетей, а именно сети ARPANet (Advanced Research Project Agency Net – сеть Агенства перспективных исследовательских программ). При этом даже предпринятые в 1994 году попытки пересмотра (с учетом накопленного опыта) ряда концепций модели OSI по существу не исправили искусственности построения этой модели и даже ее некоторой неадекватности реально существующим сетям.
  Модель, известная как модель DoD или ARM (ARPANet Referenc Model – эталонная модель сети ARPANet), в момент ее разработки представляла собой описание фактически существовавшей и исторически сложившейся архитектуры сети ARPANet. Согласованность моделей OSI и DoD отмечается лишь относительно нижних четырех уровней, которые как раз и присутствуют в модели DoD.
 В связи с вышесказанным, дальнейшее изложение будем вести в терминах гибридной модели, соответствующей четырем уровням модели DoD, но с разделением уровня передачи данных модели DoD на два – канальный и физический, как это сделано в модели OSI.
 Таким образом, рассматриваемая далее пятиуровневая модель сетевого взаимодействия включает прикладной, транспортный, сетевой, канальный и физический уровни.
 Физический уровень имеет дело с передачей битов по физическим линиям связи, таким, например, как электрические или волоконно-оптические кабели. К этому уровню имеют отношение характеристики физических сред передачи данных. На этом же уровне определяются характеристики электрических сигналов, передающих дискретную информацию. На физическом уровне осуществляется установление, поддержка и расторжение соединения с физическим каналом. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта. Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.
  Канальный уровень определяет правила совместного использования физического уровня узлами связи. Главными его функциями являются, во-первых, управление передачей данных по информационному каналу (генерация стартового сигнала и организация начала передачи информации, передача информации по каналу, проверка получаемой информации и исправление ошибок, отключение канала при его неисправности и последующее восстановление передачи информации, генерация сигнала окончания передачи и перевода канала в пассивное состояние), а, во-вторых, управление доступом к передающей среде, т. е. реализация выбранного метода доступа к общесетевым ресурсам. На канальном уровне биты группируются в наборы, называемые кадрами. Канальный уровень обеспечивает корректность передачи каждого кадра.
  В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, делает он это только в сети с совершенно определенной топологией связей, а именно той топологией, для которой он и был разработан. В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень часто обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи.
 В целом канальный уровень представляет собой весьма мощный и законченный набор функций по пересылке сообщений между узлами сети. В некоторых случаях протоколы канального уровня оказываются самодостаточными транспортными средствами и могут допускать работу поверх них непосредственно протоколов прикладного уровня или приложений без привлечения средств сетевого и транспортного уровней.
 Сетевой уровень служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать совершенно различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей. Как было указано выше, протоколы канального уровня локальных сетей обеспечивают доставку данных между любыми узлами только в сети с соответствующей типовой топологией. Сетевой уровень как раз и призван с одной стороны сохранить простоту процедур передачи данных для типовых топологий, а с другой допустить использование произвольных топологий.
 Сетевой уровень решает также задачи согласования разных технологий, упрощения адресации в крупных сетях. Сообщения сетевого уровня принято называть пакетами.
 Транспортный уровень обеспечивает связь между коммуникационной подсетью и верхним уровнем, отделяет пользователей от физических и функциональных аспектов сети. Главная его задача – управление трафиком в сети. При этом выполняются такие функции, как деление сообщений, поступающих от верхнего уровня, на пакеты данных (при передаче информации) и формирование первоначальных сообщений из набора пакетов, полученных через канальный и сетевой уровни, исключая их потери или смешение (при приеме информации). Транспортный уровень является границей, ниже которой пакет данных является единицей информации, управляемой сетью. Выше этой границы в качестве единицы информации рассматривается только сообщение. Транспортный уровень обеспечивает приложениям (или верхнему уровню – прикладному) передачу данных с той степенью надежности, которая им требуется. Транспортный уровень предоставляет несколько классов сервиса, которые отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное – способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов. Выбор класса сервиса транспортного уровня определяется, с одной стороны, тем, в какой степени задача обеспечения надежности решается самими приложениями и протоколами прикладного уровня, а с другой стороны, этот выбор зависит от того, насколько надежной является система транспортировки данных в сети, обеспечиваемая уровнями, расположенными ниже транспортного – сетевым, канальным и физическим.
 Протоколы нижних четырех уровней обобщенно называются сетевым транспортом или транспортной подсистемой, так как они полностью решают задачу транспортировки сообщений с заданным уровнем качества в составных сетях с произвольной топологией и различными технологиями.
 Прикладной уровень занимается поддержкой прикладного процесса пользователя и имеет дело с семантикой данных. Он является границей между процессами сети и прикладными (пользовательскими) процессами. На этом уровне выполняются вычислительные, информационно-поисковые и справочные работы, осуществляется логическое преобразование данных пользователя. Прикладной уровень – это набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением.
 
 Функции всех уровней могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.
 Три нижних уровня – физический, канальный и сетевой – являются сетезависимыми, то есть протоколы этих уровней тесно связаны с технической реализацией сети и используемым коммуникационным оборудованием. Верхний уровень – прикладной – ориентирован на приложения и мало зависит от технических особенностей построения сети. На протоколы прикладного уровня не влияют какие бы то ни было изменения в топологии сети, замена оборудования или переход на другую сетевую технологию.
 6.3. Общие сведения о телекоммуникационных системах
 
  Телекоммуникационные системы представляют собой системы передачи информации от источника к потребителю на основе совокупности специализированных аппаратно-программных средств. Источник и потребитель информации непосредственно в систему передачи не входят – они являются ее абонентами. Абонентами компьютерной системы передачи информации являются компьютеры, а в конечном итоге пользователи этих компьютеров.
 Основными элементами системы передачи информации являются передатчик информации, канал передачи (линия связи), приемник информации.
 Передатчик служит для преобразования поступающего от абонента сообщения в сигнал, передаваемый по линии связи; приемник – для обратного преобразования сигнала в сообщение, поступающее абоненту. Передатчик и приемник представляют собой так называемую аппаратуру передачи данных (АПД), которая связывает компьютеры или отдельные локальные сети пользователей с физической средой передачи данных. АПД работает на физическом уровне, отвечая за передачу (и прием) сигнала нужной формы и мощности в физическую среду (линию связи). Примерами АПД могут служить модемы, терминальные адаптеры, сетевые адаптеры и тому подобные устройства.
 В составе системы передачи большой протяженности может использоваться дополнительная аппаратура для улучшения качества сигнала («усиления» сигнала) и для формирования непрерывного физического или логического канала между абонентами. В качестве такой аппаратуры выступают повторители, коммутаторы, концентраторы, маршрутизаторы, мультиплексоры (см. далее в разделах 8, 9, 10, 11, 12)
  Линия связи – это физическая среда, по которой передаются информационные сигналы. В одной линии связи может быть организовано несколько каналов связи путем временного, частотного, волнового и других видов разделения (см. раздел 7, 8) – тогда говорят о логических (виртуальных) каналах. Если канал полностью монополизирует линию связи, то он может называться физическим каналом и в этом случае совпадает с линией связи.
  По форме представления передаваемой информации каналы связи делятся на аналоговые и цифровые. По аналоговым каналам передается информация, представленная в непрерывной форме, то есть в виде непрерывного ряда значений какой-либо физической величины. По цифровым каналам передается информация, представленная в виде цифровых (дискретных, импульсных) сигналов той или иной физической природы.
  В зависимости от возможных направлений передачи информации по линиям связи различают следующие способы передачи информации:
  симплексный – передача осуществляется по линии связи только в одном направлении;
  полудуплексный – передача ведется в обоих направлениях, но попеременно во времени;
  дуплексный – передача ведется одновременно в двух противоположных направлениях.
  Каналы связи могут быть коммутируемыми и некоммутируемыми. Коммутируемые каналы создаются из отдельных участков (сегментов) только на время передачи по ним информации; по окончании передачи такой канал ликвидируется (разъединяется). Некоммутируемые (выделенные) каналы создаются на длительное время и имеют постоянные характеристики по длине, пропускной способности, помехозащищенности.
 
  Резюме
 
  Вычислительные (компьютерные) сети являются наиболее распространенными и эффективными вычислительными системами распределенного типа. Основной классифицирующей характеристикой вычислительных сетей является их масштабная (территориальная) характеристика. В зависимости от охватываемой территории и протяженности вычислительные сети подразделяют на локальные, региональные (или городские) и глобальные сети.
  Развитие технических средств связи приводит в последнее время к интенсивному взаимному проникновению и сближению технологий и принципов передачи данных в локальных и глобальных сетях.
  Вычислительные сети также классифицируют по масштабу подразделения или предприятия (учреждения) в целом, в пределах которого функционирует сеть. По этому признаку чаще всего выделяют сети отделов, кампусов и корпораций.
  Объединение локальных, региональных и глобальных вычислительных сетей приводит к созданию многосетевых иерархий
  Сети классифицируются по такому важнейшему признаку, как «сетевая технология». Под сетевой технологией понимается согласованный набор стандартных правил и реализующих их аппаратно-программных средств, достаточных для построения вычислительной сети.
  Вычислительные сети различаются по показателям качества, к которым относятся полнота выполняемых сетью функций, производительность и пропускная способность сети, надежность сети, достоверность и сохранность информации в сети, способность сети обеспечивать защиту информации от несанкционированного доступа, управляемость сети, возможность расширяемости и масштабируемости сети, универсальность сети.
  Для решения задач взаимодействия различных сетевых компонентов при организации вычислительных сетей используется многоуровневый подход. При этом определяются конкретные функции каждого модуля, решающего какую-либо отдельную задачу, и интерфейсы взаимодействия между этими модулями.
  Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, называют протоколами. Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называют стеком коммуникационных протоколов. При практической реализации сетей используются стандартизованные протоколы.
  Наиболее популярны две модели многоуровневого сетевого взаимодействия: традиционно описываемая в литературе теоретическая семиуровневая модель взаимодействия открытых систем OSI и четырехуровневая модель взаимодействия открытых систем DoD, которая использована при разработке реально действующего и самого распространенного на сегодняшний день стека протоколов TCP/IP, обеспечивающего на практике работу сети Интернет.
  Телекоммуникационные системы представляют собой системы передачи информации от источника к потребителю на основе совокупности специализированных аппаратно-программных средств. Линия связи является физической средой, по которой передаются информационные сигналы в аналоговой или цифровой форме представления. В одной линии связи может быть организовано несколько каналов связи. В зависимости от возможных направлений передачи информации различают симплексный, полудуплексный и дуплексный способы передачи информации по линиям связи.
 
 Контрольные вопросы и задания
 
 1. Приведите классификацию вычислительных сетей по территориальному признаку.
 2. Какие вычислительные сети принято называть корпоративными?
 3. Что понимается под термином «сетевая технология»?
 4. Перечислите основные показатели качества вычислительных сетей.
 5. Дайте определение показателю «производительность» сети.
 6. Что такое «пропускная способность сети»?
 7. Что понимается под термином «управляемость сети»?
 8. Какие преимущества имеет сеть с высоким показателем интегрируемости?
 9. Поясните значение показателя «масштабируемость» сети».
 10. В чем заключается многоуровневый подход к решению задач взаимодействия сетевых компонентов?
 11. Дайте определение понятиям «сетевой протокол» и «сетевой интерфейс».
 12 Для чего необходима стандартизация коммуникационных протоколов?
 13. Охарактеризуйте модели взаимодействия открытых систем OSI и DoD.
 14. Перечислите уровни модели взаимодействия открытых систем DoD и
  опишите их основные функции.
 15. Какие главные задачи решают протоколы нижних уровней модели DoD?
 16. Объясните понятие «сетезависимости» функций нижних уровней моделей
  взаимодействия открытых систем.
 17. Дайте определение понятию «телекоммуникационная система».
 18. Опишите основные элементы системы передачи информации.
 19. Представьте отличие понятий «линия связи» и «канал связи».
 20. Чем различается форма представления информации, передаваемой по аналоговым и цифровым каналам связи?
 21. Как именуются способы передачи информации по линиям связи в зависимости от возможных направлений передачи информации?
 
 7. Физический уровень сетевых телекоммуникаций
 7.1. Общие понятия
 
 Передача информации на физическом уровне в общем случае может осуществляться либо механическим способом посредством переноса материальных носителей информации, либо посредством акустических (звуковых) колебаний среды, либо посредством электромагнитных волн (электромагнитных колебаний).
 В современных телекоммуникационных системах информация передается именно посредством колебаний электромагнитного поля различной природы и частоты – электрических, световых или радиосигналов.
 В зависимости от типа физической среды передачи информации линии связи могут быть либо кабельными (проводными), использующими для передачи сигналов различные проводники или кабели, либо беспроводными, использующими для передачи сигналов свободно распространяемые электромагнитные волны.
 7.2. Кабельные линии связи
 
 Кабельные линии связи до настоящего времени наиболее распространены. Исторически первыми и самыми простыми по конструктивному исполнению являются традиционные телефонные кабели на основе параллельных нескрученных проводников. Такие кабели имеют низкие скоростные качества и слабую помехозащищенность, однако в силу развитой телефонной инфраструктуры и при отсутствии других возможностей телефонные кабели по-прежнему используются для передачи компьютерных данных.
 Более высокими эксплуатационными характеристиками по сравнению с телефонными кабелями обладают так называемые коаксиальные кабели. Коаксиальный кабель (coaxial – «соосный) имеет несимметричную конструкцию. В центре коаксиального кабеля находится жесткий медный проводник, окруженный слоем изоляционного материала. Второй проводник сделан в виде оплетки поверх изоляции. Весь кабель помещается во внешнюю пластиковую оболочку. Существует большое количество типов коаксиальных кабелей, используемых в сетях различного типа – телефонных, телевизионных и компьютерных. В компьютерных сетях нашли применение два типа коаксиального кабеля, известные под наименованиями «толстый» и «тонкий», которые характеризуют относительную величины диаметра центрального проводника. «Толстый» коаксиальный кабель имеет внутренний проводник диаметром 2,17 мм и наружный диаметр 12,5 мм. «Тонкий» коаксиальный кабель – внутренний проводник диаметром 0,89 мм и наружный диаметр от 5 до 6 мм. «Толстый» кабель обеспечивает лучшие механические и электрические характеристики, а «тонкий» кабель имеет гораздо большую гибкость, что удобно при монтаже. На сегодняшний день коаксиальные кабели считаются морально устаревшими.
 Современным типом кабеля является скрученная пара медных проводов, называемая витой парой проводников (twisted pair). Скручивание проводов с определенным шагом «скрутки» снижает влияние внешних и взаимных помех на сигналы, передаваемые по кабелю. Применяются неэкранированные (Unshielded Twisted Pair – UTP) и экранированные (Shielded Twisted Pair – STP) витые пары, которые различаются наличием в последних дополнительного защитного экранного слоя.
 Медный неэкранированный кабель UTP в зависимости от электрических и механических характеристик до последнего времени разделялся на семь категорий (category 1 – category 7). Кабели категорий 1–4 определяются как устаревшие. Кабели категории 5 были специально разработаны для поддержки высокоскоростной передачи данных, а категорий 6 и 7 – сверхвысокоскоростной передачи данных. Современные кабели UTP выпускаются в 4-х парном исполнении. Для соединения кабелей с оборудованием используются вилки и розетки типа RJ-45, представляющие собой восьмиконтактные разъемы.
  Экранированная витая пара STP хорошо защищает передаваемые сигналы от внешних помех. Наличие заземляемого экрана удорожает кабель и усложняет его прокладку, так как требует выполнения качественного заземления. Основным стандартом, определяющим параметры экранированной витой пары, является фирменный стандарт IBM, в котором кабели делятся не на категории, а на типы (tуре). Электрические параметры кабеля tуре 1 примерно соответствуют параметрам кабеля UTP категории 5.
 Наиболее перспективными и эффективными являются волоконно-оптические кабели. Они состоят из тонкого гибкого центрального стеклообразного волокна (проводника света – сердцевины) и стеклообразной оболочки, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света (световые сигналы) не выходят за ее пределы, отражаясь от покрывающего сердцевину слоя оболочки. В зависимости от режима изменения показателя преломления и от величины диаметра сердечника различают многомодовое волокно со ступенчатым изменением показателя преломления, мноогомодовое волокно с плавным изменением показателя преломления и одномодовое волокно. Понятие «мода» (mode) описывает режим распространения световых лучей во внутреннем сердечнике кабеля и характеризуется углами отражения лучей от оболочки.
 В одномодовом кабеле (Single Mode Fiber – SMF) используется центральный проводник очень малого диаметра, соизмеримого с длиной волны света – от 5 до 10 мкм. При этом практически все лучи света распространяются вдоль оптической оси сердцевины, не отражаясь от внешнего проводника. Изготовление тонких качественных волокон для одномодового кабеля представляет сложный технологический процесс, что делает одномодовый кабель достаточно дорогим. Кроме того, в волокно такого маленького диаметра достаточно сложно направить пучок света, не потеряв при этом значительную часть его энергии.
 В многомодовых кабелях (Multi Mode Fiber – MMF) используются центральные проводники с относительно большим диаметром. Их изготовление технологически проще и дешевле. В стандартах определены два наиболее употребительных типоразмера многомодовых кабелей: 62,5/125 мкм и 50/125 мкм, где 62,5 мкм и 50 мкм – это диаметр центрального проводника, а 125 мкм – диаметр внешнего проводника. В многомодовых кабелях во внутреннем проводнике одновременно существует несколько световых лучей, отражающихся от оболочки под разными углами. Интерференция лучей с разными углами отражения ухудшает качество передаваемого сигнала и приводит к искажениям передаваемых импульсов. Характеристики многомодовых кабелей существенно хуже, чем одномодовых. В связи с этим многомодовые кабели используются в основном для передачи данных на небольшие расстояния (до 300–2000 м) при скоростях не более 1 Гбит/с, а одномодовые – для передачи данных со скоростями 10–100 Гбит/с и выше на расстояния до 10–100 Км и более.
  В качестве источников излучения света в волоконно-оптических кабелях применяются светодиоды и полупроводниковые лазеры. Для одномодовых кабелей применяются только полупроводниковые лазеры, так как при малом диаметре оптического волокна световой поток, создаваемый светодиодом, невозможно без больших потерь направить в волокно. Для многомодовых кабелей используются более дешевые светодиодные излучатели. Светодиоды излучают свет с длиной волны 0,85 мкм и 1,3 мкм. Излучатели с длиной волны 0,85 мкм существенно дешевле, чем излучатели с длиной волны 1,3 мкм, но характеристики сигнала при этом значительно хуже. Лазерные излучатели работают на длинах волн 1,3 мкм и 1,55 мкм. Они создают когерентный поток света, за счет чего потери в оптических волокнах меньше, чем при использовании некогерентного светового потока светодиодов. Использование только нескольких длин волн для передачи информации в оптических волокнах связанно с тем, что именно при указанных значениях длин волн наблюдаются ярко выраженные максимумы передачи мощности сигнала, тогда как для других значений затухание сигнала существенно выше.
  Волоконно-оптические кабели обладают хорошими электромагнитными и механическими характеристиками (хорошо гнутся, а в соответствующей изоляции обладают хорошей механической прочностью). Однако серьезным недостатком этих кабелей является сложность соединения волокон с разъемами и между собой при необходимости наращивания длины кабеля. Сама стоимость волоконно-оптических кабелей ненамного превышает стоимость кабелей на витой паре, однако проведение монтажных работ с оптоволокном обходится намного дороже из-за трудоемкости операций и высокой стоимости применяемого монтажного оборудования. Так, присоединение оптического волокна к разъему требует проведения высокоточной обрезки волокна в плоскости, строго перпендикулярной оси волокна, а также выполнения соединения путем сложной операции склеивания, а не обжатия, как это делается для витой пары. Выполнение же некачественных соединений резко ухудшает характеристики передачи сигналов по волоконно-оптическому кабелю.
 7.3. Беспроводные линии связи
 
  Беспроводные линии связи чаще всего реализуются посредством передачи радиосигналов в различных диапазонах радиоволн.
  Диапазоны длинных (3–300 КГц), средних (300–3000 КГц) и коротких (3–30 МГц) радиоволн обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы ультракоротких волн (30–3000 МГц) и микроволн или субмиллиметровых волн (3–6000 ГГц). В диапазонах микроволн (или СВЧ – сверхвысоких частот) для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Беспроводная передача информации на таких частотах осуществляется на основе спутниковых или радиорелейных каналов, обеспечивающих выполнение требуемых условий.
  Для телекоммуникационных систем обычно используются диапазоны радиочастот 902–928 МГц и 2,4–2,484 ГГц.
  Традиционные радиоканалы имеют плохую помехозащищен-ность, но обеспечивают пользователю мобильность и опера-тивность связи. В вычислительных сетях беспроводные каналы связи используются в тех случаях, когда применение кабельных каналов является затруднительным или слишком дорогостоящим из-за больших расстояний.
  Инфракрасная (ИК) технология беспроводной передачи данных использует часть электромагнитного спектра между видимым светом и самыми короткими микроволнами. ИК-передача может осуществляться посредством прямого и рассеянного (отраженного) излучения. Для прямой инфракрасной передачи требуется наличие прямой видимости между источником и приемником ИК-излучения (такая передача используется, например, в пультах дистанционного управления телевидеоаудиотехники, ИК-клавиатурах, беспроводных манипуляторах-указателях типа «мышь» и т.п.). Рассеянное ИК-излучение предполагает прием ИК-приемником отраженных сигналов, например, от окружающих стен или потолка, и не требует расположения приемников и излучателей в зоне прямой видимости. В таком случае для устойчивой передачи сигналов требуется существенное повышение мощности ИК-излучателей, однако и при этом зона действия рассеивающих ИК-систем обычно не превышает 30 м.
  Наиболее высокоскоро­стной является лазерная технология бес­проводной связи. В качестве основных преимуществ лазерных систем связи, на основе которых обеспечивается весьма существенное повы­шение безопасности и надежности информационного обмена, можно выделить прак­тически абсолютную защищенность канала от несанкционированного доступа и, как следствие, высокий уровень помехоустойчи­вости и помехозащищенности. Это обеспечи­вает возможность устойчивого криптографирования, а также отсутствие ярко выраженных демас­кирующих признаков (в основном побочных электромагнитных излучений) и возмож­ность дополнительной маскировки (позволя­ющей скрыть не только передаваемую ин­формацию, но и сам факт информационного обмена), а также принципиальную простоту по­строения и функционирования лазерных систем. Кроме того, эти системы безопасны для человека, так как средняя плотность мощности излучения в лазерных системах различного назначе­ния в десятки тысяч раз меньше мощнос­ти солнечной радиации. К недостаткам использования лазеров можно отнести их относительно высокие показатели удельной стоимости и потребляемой энергии, а также использова­ние видимой части спектра, что приводит к потенциальной угрозе затухания сигнала из-за влияния атмосферных помех.
 Лазерные системы беспроводной связи развиваются в направлении повышения скорости обмена и дальности связи. В последнее время наблюдается тенденция к удешевлению этих систем. Защищен­ность системы лазерной связи от ошибок составляет 99,99%, а при использовании резервных систем радиосвязи – еще выше.
 7.4. Характеристики линий связи
 
  Характеристики линий связи могут быть разделены на две группы. К первой группе относятся так называемые параметры распространения, которые характеризуют процесс распространения полезного сигнала в зависимости от собственных параметров линии связи, на­пример, погонной индуктивности медного кабеля. Ко второй группе относятся параметры влияния, описывающие степень влияния на полезный сигнал других сигналов, внешних помех, наводок, например, от соседних проводников в медном кабеле. В свою очередь, в каждой из этих групп можно выделить первичные и вторичные параметры. Первичные – характеризуют физическую природу линии связи: например, погонное активное сопротивление, погонную индуктивность, погонную емкость и погонную проводимость изоляции медного кабеля или зависимость коэффициента преломления оптического волокна от расстояния от оптической оси. Вторичные параметры выражают некоторый обобщенный результат процесса распространения сигнала по линии связи и не зависят от ее природы: например, степень ослабления мощности сигнала при прохождении им определенного расстояния вдоль линии связи. Для медных кабелей важен такой вторичный параметр влияния, как степень ослабления помехи от соседнего проводника.
 Вторичные параметры определяются по отклику линии связи на некоторые эталонные воздействия. Подобный подход позволяет достаточно просто и однотипно определять характеристики линий связи любой природы, не прибегая к сложным теоретическим исследованиям и построению аналитических моделей. Для исследования реакции линий связи чаще всего в качестве эталонных используются синусоидальные сигналы различных частот.
  Как известно, любой периодический процесс может быть представлен в виде серии синусоидальных колебаний различных частот и амплитуд. Структуру сложного сигнала принято интерпретировать с помощью так называемого спектра, показывающего частоты и амплитуды синусоид, составляющих реальный сигнал. Спектр простого одночастотного сигнала отображается одной точкой (или вертикальной линией) в координатах амплитуда–частота. Спектр сложного сигнала состоит из множества точек, представляющих некоторую кривую, координатами которой являются значения частот и амплитуд (гармоник), составляющих сложный сигнал. Набор всех гармоник называют спектральным разложением исходного сигнала. Для последовательности прямоугольных импульсов одинаковой длительности и амплитуды спектр легко вычисляется на основании формул Фурье, причем по мере увеличения числа членов ряда Фурье результирующий сигнал все более приближается к прямоугольной форме. Искажение передающим каналом синусоиды какой-либо частоты приводит, в конечном счете, к искажению передаваемого сигнала любой формы, особенно если синусоиды различных частот искажаются неодинаково. Если это аналоговый сигнал, передающий речь, то изменяется тембр голоса за счет искажения обертонов боковых частот. При передаче импульсных сигналов, характерных для вычислительных сетей, искажаются низкочастотные и высокочастотные гармоники, в результате фронты импульсов теряют свою прямоугольную форму. Вследствие этого на приемном конце линии сигналы могут плохо распознаваться.
  Канал связи искажает передаваемые сигналы из-за того, что его физические параметры отличаются от идеальных параметров. Так, например, медные провода всегда представляют собой некоторую распределенную по длине комбинацию активного сопротивления, емкостной и индуктивной нагрузки. В результате для синусоид различных частот линия будет обладать различным полным сопротивлением, а значит, и передаваться они будут по-разному. Волоконно-оптический кабель также имеет отклонения, мешающие идеальному распространению света. Если линия связи включает промежуточную аппаратуру, то она также может вносить дополнительные искажения, так как невозможно создать устройства, которые бы одинаково хорошо передавали весь спектр синусоид от нуля до бесконечности.
  Кроме искажений сигналов, вносимых внутренними физическими параметрами линии связи, существуют и внешние помехи, которые вносят свой вклад в искажение формы сигналов на выходе линии. Эти помехи создают различные электрические двигатели, электронные устройства, атмосферные явления и т. д.
  Степень искажения синусоидальных сигналов каналами связи оценивается с помощью таких характеристик, как амплитудно-частотная характеристика, полоса пропускания и затухание на определенной частоте.
 Амплитудно-частотная характеристика показывает, как затухает амплитуда синусоиды на выходе канала связи по сравнению с амплитудой на его входе для всех возможных частот передаваемого сигнала. Вместо амплитуды в этой характеристике часто используют также такой параметр сигнала, как его мощность.
 Знание амплитудно-частотной характеристики реального канала позволяет определить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду составляющих его гармоник в соответствии с амплитудно-частотной характеристикой, а затем найти форму выходного сигнала, сложив преобразованные гармоники.
 Несмотря на полноту информации, предоставляемой амплитудно-частотной характеристикой о линии связи, ее использование осложняется тем обстоятельством, что получить эту характеристику затруднительно. Для этого нужно провести тестирование линии связи эталонными синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. Причем менять частоту входных синусоид желательно с малым шагом, а значит требуется большое количество экспериментов. Поэтому на практике вместо амплитудно-частотной характеристики применяются такие упрощенные характеристики, как полоса пропускания и затухание.
 Полоса пропускания (bandwidth) - это непрерывный диапазон частот, для которого отношение амплитуд выходного сигнала к входному превышает некоторый заданный предел, обычно 0,5. То есть полоса пропускания определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений. Знание полосы пропускания позволяет получить с некоторой степенью приближения тот же результат, что и знание амплитудно-частотной характеристики. Ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по каналу связи. Именно этот факт нашел отражение в английском эквиваленте рассматриваемого термина (width - ширина).
  Затухание (attenuation) определяется как относительное уменьшение амплитуды или мощности сигнала определенной частоты при передаче его по линии связи. Таким образом, затухание представляет собой одну точку из амплитудно-частотной характеристики линии связи. Часто при эксплуатации линии связи заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по каналу связи сигналов. Более точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.
  Таким образом, амплитудно-частотная характеристика, полоса пропускания и затухание являются универсальными характеристиками, позволяющими судить о том, как по линии связи будут передаваться полезные сигналы.
  Пропускная способность (throughput) линии связи характеризует максимально возможную скорость передачи данных по ней. Пропускная способность измеряется в битах в секунду (бит/с), а также в производных единицах: килобит в секунду (Кбит/с), мегабит в секунду (Мбит/с), гигабит в секунду (Гбит/с) и т. д. При этом в сетевых технологиях такие единицы измерения, как килобит, мегабит или гигабит строго соответствуют степеням числа 10 (то есть килобит – это 1000 бит, а мегабит – это 1 000 000 бит), а не близкими к ним величинами числа 2 в соответствующей степени, как это принято в программировании и при описании характеристик аппаратных устройств ВМ, когда приставка «кило» равна 2 в степени 10 (1024), а приставка «мега» – 2 в степени 20 (1 048 576).
  Пропускная способность линии связи зависит не только oт ее характеристик, но и от спектра передаваемых сигналов. Если значимые гармоники сигнала (то есть те гармоники, амплитуды которых вносят основной вклад в результирующий сигнал) попадают в полосу пропускания линии, то такой сигнал будет хорошо передаваться данной линией связи и приемник сможет правильно распознать информацию, отправленную по линии передатчиком. Если же значимые гармоники выходят за границы полосы пропускания линии связи, то сигнал будет значительно искажаться, приемник будет ошибаться при распознавании информации, а значит, информация не сможет передаваться с заданной пропускной способностью.
  Представление дискретной информации в том или ином виде сигналов, подаваемых на линию связи, называется физическим (или линейным) кодированием. От выбранного способа кодирования зависит спектр сигналов и, соответственно, пропускная способность линии. Таким образом, при разных способах кодирования линия связи может обладать разными значениями пропускной способности.
  Согласно теории информации любое различимое и непредсказуемое изменение принимаемого сигнала несет в себе информацию. В соответствии с этим прием синусоиды, у которой амплитуда, фаза и частота остаются неизменными, информации не несет, так как изменение сигнала хотя и происходит, но является хорошо предсказуемым. Аналогично, не несут в себе информации импульсы на тактовой шине компьютера, так как их изменения также постоянны во времени. А вот импульсы на шине данных предсказать заранее нельзя, поэтому они переносят информацию между отдельными устройствами.
  Большинство способов кодирования используют изменение какого-либо параметра периодического сигнала – частоты, амплитуды и фазы синусоиды или знака потенциала последовательности импульсов. Периодический сигнал, параметры которого изменяются, называют несущим сигналом или несущей частотой, если в качестве такого сигнала используется синусоида. Если сигнал изменяется так, что можно различить только два его состояния, то любое его изменение будет соответствовать наименьшей единице информации – биту. Если же сигнал может иметь более двух различимых состояний, то любое его изменение будет нести несколько бит информации. Количество изменений информационного параметра несущего периодического сигнала в секунду измеряется в бодах (baud). Период времени между соседними изменениями информационного сигнала называется тактом работы передатчика.
  Пропускная способность линии в «битax в секунду» в общем случае не совпадает с числом бод. Она может быть как выше, так и ниже числа бод, и это соотношение зависит от способа кодирования. Если сигнал имеет более двух различимых состояний, то пропускная способность в битах в секунду будет выше, чем число бод. При использовании сигналов с двумя различимыми состояниями может наблюдаться и обратная картина. Это часто происходит потому, что для надежного распознавания приемником пользовательской информации каждый бит в последовательности кодируется с помощью нескольких изменений информационного параметра несущего сигнала. Например, при кодировании единичного значения бита импульсом положительной полярности, а нулевого значения бита – импульсом отрицательной полярности физический сигнал дважды изменяет свое состояние при передаче каждого бита. При таком кодировании пропускная способность линии в два раза ниже, чем число бод, передаваемое по линии.
  На пропускную способность линии оказывает влияние не только физическое, но и логическое кодирование. Логическое кодирование выполняется до физического кодирования и подразумевает замену бит исходной информации новой последовательностью бит, несущей ту же информацию, но обладающей, кроме этого, дополнительными свойствами, например возможностью для приемной стороны обнаруживать ошибки в принятых данных. Сопровождение каждого байта исходной информации одним битом четности – это пример очень часто применяемого способа логического кодирования при передаче данных с помощью модемов. Другим примером логического кодирования может служить шифрация данных, обеспечивающая их конфиденциальность при передаче через общественные линии связи. При логическом кодировании чаще всего исходная последовательность бит заменяется более длинной последовательностью, поэтому пропускная способность канала по отношению к полезной информации при этом уменьшается.
  Чем выше частота несущего периодического сигнала, тем больше информации в единицу времени передается по линии и тем выше пропускная способность линии при фиксированном способе физического кодирования. Однако с увеличением частоты периодического несущего сигнала увеличивается и ширина спектра этого сигнала, то есть разность между максимальной и минимальной частотами того набора синусоид, которые в сумме дадут выбранную для физического кодирования последовательность сигналов. Линия передает этот спектр синусоид с теми искажениями, которые определяются ее полосой пропускания. Чем больше несоответствие между полосой пропускания линии и шириной спектра передаваемых информационных сигналов, тем больше сигналы искажаются и тем вероятнее ошибки в распознавании информации принимающей стороной, а значит, скорость передачи информации на самом деле оказывается меньше, чем можно предположить.
  Помехоустойчивость линии связи определяет ее способность уменьшать на внутренних проводниках уровень помех, создаваемых во внешней среде. Помехоустойчивость линии зависит от типа используемой физической среды, а также собственных средств самой линии, экранирующих и подавляющих помехи. Наименее помехоустойчивыми являются радиолинии, хорошей помехоустойчивостью обладают все кабельные линии и, особенно, волоконно-оптические линии, на которые не влияет внешнее электромагнитное излучение. Параметры, характеризующие помехоустойчивость, относятся к параметрам влияния линии связи. Существует несколько различных параметров, определяющих степень устойчивости кабеля к наведенным сигналам (наводкам).
  Перекрестные наводки на ближнем конце (Near End Cross Talk – NEXT) определяют помехоустойчивость кабеля к внутренним источникам помех, когда электромагнитное поле сигнала, передаваемого выходом передатчика по одной паре проводников, наводит на другую пару проводников сигнал помехи. Если ко второй паре будет подключен приемник, то он может принять наведенную внутреннюю помеху за полезный сигнал. Чем меньше значение NEXT, тем лучше кабель. Показатель NЕХТ обычно используется применительно к кабелю, состоящему из нескольких витых пар, так как в этом случае взаимные наводки одной пары на другую могут достигать значительных величин. Для одинарного коаксиального кабеля (то есть состоящего из одного экранированного проводника) этот показатель не имеет смысла, а для двойного коаксиального кабеля он также не применяется вследствие высокой степени защищенности каждого проводника. Оптические волокна также не создают сколько-нибудь заметных помех друг для друга. В связи с тем, что в некоторых новых технологиях используется передача данных одновременно по нескольким витым парам, в последнее время стал применяться показатель PowerSUM, являющийся модификацией показателя NEXT и отражающий суммарную мощность перекрестных наводок от всех передающих пар в кабеле.
  Достоверность передачи данных характеризует вероятность искажения для каждого передаваемого бита данных. Иногда этот же показатель называют интенсивностью битовых ошибок (Bit Error Rate – BER). Искажения бит происходят как из-за наличия помех на линии, так и по причине искажений формы сигнала в виду ограниченной полосы пропускания линии. Поэтому для повышения достоверности передаваемых данных нужно повышать степень помехозащищенности линии, снижать уровень перекрестных наводок в кабеле, а также использовать линии связи с более широкой полосой пропускания.
  При выборе физической среды передачи данных важно знать, какие диапазоны характеристик линии связи она обеспечивает. Например, физическая среда передачи данных в виде кабеля – это достаточно сложное изделие, состоящее из проводников, слоев экрана и изоляции. В некоторых случаях в состав кабеля входят разъемы, с помощью которых кабели присоединяются к оборудованию. Кроме этого, для обеспечения быстрой перекоммутации кабелей и оборудования используются различные электромеханические устройства, называемые кроссовыми секциями, кроссовыми коробками или кроссовыми шкафами. В вычислительных сетях применяются кабели, удовлетворяющие определенным стандартам, что позволяет строить кабельную систему сети из кабелей и соединительных устройств разных производителей. В стандартах кабелей оговаривается достаточно много характеристик. Кроме перечисленных выше, отметим также еще некоторые характеристики.
  Импеданс (волновое сопротивление) – это полное (активное плюс реактивное) сопротивление в электрической цепи. Импеданс измеряется в Омах и является относительно постоянной величиной для кабельных систем. Например, для коаксиальных кабелей импеданс кабеля составляет, как правило, 50 Ом, для неэкранированной витой пары – 100 и 120 Ом. В области высоких частот (100–200 МГц) импеданс зависит от частоты.
  Активное сопротивление – это сопротивление постоянному току в электрической цепи. Активное сопротивление не зависит от частоты и возрастает с увеличением длины кабеля.
  Уровень внешнего электромагнитного излучения или «электрический шум» – это нежелательное переменное напряжение в проводнике. Электрический шум бывает двух типов: фоновый и импульсный. Электрический шум можно также разделить на низко-, средне- и высокочастотный. Источниками фонового электрического шума в диапазоне до 150 кГц являются линии электропередачи, телефоны, лампы дневного света; в диапазоне от 150 кГц до 20 МГц – компьютеры, принтеры, копиры; в диапазоне от 20 МГц до 1 ГГц - теле- и радиопередатчики, микроволновые печи. Основными источниками импульсного электрического шума являются электромоторы, переключатели и сварочные агрегаты. Электрический шум измеряется в милливольтах.
  Приведенный перечень характеристик далеко не полон. В нем представлены только электромагнитные характери­стики, но его можно дополнить механическими и конструктивными характеристиками, определяющимися типами изоляции, конструкциями разъемов и т. п. Помимо универсальных характеристик (таких, напри­мер, как затухание), которые применимы для всех типов кабелей, су­ществуют характеристики, которые применимы только к определенному типу кабеля. Например, параметр шаг скрутки проводов используется только для характеристики витой пары, а параметр NEXT применим только к многопарным кабелям на основе витой пары.
 7.5. Методы передачи дискретных данных на физическом уровне
 
  Для передачи дискретных данных по линиям связи с узкой полосой частот применяется аналоговая модуляция. Типичным представителем таких линий является линия связи тональной частоты, предоставляемая в распоряжение пользователям общественных телефонных сетей. Эта линия связи передает аналоговые сигналы в диапазоне частот от 300 до 3400 Гц (таким образом полоса пропускания линии равна 3100 Гц). Строгое ограничение полосы пропускания линий связи в данном случае связано с использованием аппаратуры уплотнения и коммутации каналов в телефонных сетях.
  Устройство, которое выполняет функции модуляции несущей синусоиды на передающей стороне и демодуляции на приемной стороне, носит название модем (модулятор-демодулятор).
 Аналоговая модуляция является таким способом физического кодирования, при котором информация кодируется изменением амплитуды, частоты или фазы синусоидального сигнала несущей частоты. При амплитудной модуляции для логической единицы выбирается один уровень амплитуды синусоиды несущей частоты, а для логического нуля - другой. Этот способ редко используется на практике в чистом виде из-за низкой помехоустойчивости, но часто применяется в сочетании с другими видами модуляции. При частотной модуляции значения 0 и 1 исходных данных передаются синусоидами с разной частотой. Этот способ модуляции не требует сложных электронных схем в модемах и обычно применяется в низкоскоростных модемах, работающих на скоростях 300 или 1200 бит/с. При фазовой модуляции значениям данных 0 и 1 соответствуют сигналы одинаковой частоты, но с различной фазой, например 0 и 180 градусов или 0, 90, 180 и 270 градусов. В скоростных модемах часто используются комбинированные методы модуляции, как правило, амплитудная в сочетании с фазовой. Для повышения скорости передачи данных используют комбинированные методы модуляции. Наиболее распространенными являются методы квадратурной амплитудной модуляции (Quadrature Amplitude Modulation - QAM). Эти методы основаны на сочетании фазовой модуляции с 8 значениями величин сдвига фазы и амплитудной модуляции с 4 уровнями амплитуды. Однако из возможных 32 комбинаций сигнала используются далеко не все. Такая избыточность кодирования требуется для распознавания модемом ошибочных сигналов, являющихся следствием искажений из-за помех, которые на телефонных каналах (особенно коммутируемых) весьма значительны по амплитуде и продолжительны по времени.
  При цифровом кодировании дискретной информации применяют потенциальные и импульсные коды. В потенциальных кодах для представления логических единиц и нулей используется только значение потенциала сигнала, а его перепады, формирующие законченные импульсы, во внимание не принимаются. Импульсные коды позволяют представить двоичные данные либо импульсами определенной полярности, либо частью импульса - перепадом потенциала определенного направления.
  При использовании прямоугольных импульсов для передачи дискретной информации необходимо выбрать такой способ кодирования, который одновременно достигал бы нескольких целей: имел при одной и той же битовой скорости наименьшую ширину спектра результирующего сигнала; обеспечивал синхронизацию между передатчиком и приемником; обладал способностью распознавать ошибки; обладал низкой стоимостью реализации.
  Более узкий спектр сигнала позволяет на одной и той же линии (с одной и той же полосой пропускания) добиваться более высокой скорости передачи данных. Синхронизация передатчика и приемника нужна для того, чтобы приемник точно знал, в какой момент времени необходимо считывать новую информацию с линии связи. Эта проблема в сетях решается сложнее, чем при обмене данными между близко расположенными устройствами, например между устройствами внутри компьютера или же между компьютером и принтером. На небольших расстояниях хорошо работает схема, основанная на отдельной тактирующей линии связи, и информация снимается с линии данных только в момент прихода тактового импульса. В сетях использование этой схемы вызывает трудности из-за неоднородности характеристик проводников в кабелях. На больших расстояниях неравномерность скорости распространения сигнала может привести к тому, что тактовый импульс придет настолько позже или раньше соответствующего сигнала данных, что бит данных будет пропущен или считан повторно. Другой причиной, по которой в сетях отказываются от использования тактирующих импульсов, является экономия проводников в дорогостоящих кабелях. Поэтому в сетях применяются так называемые самосинхронизирующиеся коды, сигналы которых несут для передатчика указания о том, в какой момент времени нужно осуществлять распознавание очередного бита (или нескольких бит, если код ориентирован более чем на два состояния сигнала). Любой резкий перепад сигнала - так называемый фронт - может служить хорошим указанием для синхронизации приемника с передатчиком. При использовании синусоид в качестве несущего сигнала результирующий код обладает свойством самосинхронизации, так как изменение амплитуды несущей частоты дает возможность приемнику определить момент появления входного кода.
  Распознавание и коррекцию искаженных данных сложно осуществить средствами физического уровня, поэтому чаще всего эту работу берут на себя протоколы, лежащие выше: канальный, сетевой, транспортный или прикладной. С другой стороны, распознавание ошибок на физическом уровне экономит время, так как приемник не ждет полного помещения кадра в буфер, а отбраковывает его сразу при распознавании ошибочных бит внутри кадра.
  Требования, предъявляемые к методам кодирования, являются взаимно противоречивыми, поэтому каждый из рассматриваемых ниже популярных методов цифрового кодирования обладает своими преимуществами и своими недостатками по сравнению с другими.
  Одним из простейших методов потенциального кодирования является униполярный потенциальный код, называемый также кодированием без возвращения к нулю (Non Return to Zero - NRZ) (рис.7.1.а). Последнее название отражает то обстоятельство, что при передаче последовательности единиц сигнал не возвращается к нулю в течение такта. Метод NRZ обладает хорошей распознаваемостью ошибок (из-за двух резко отличающихся потенциалов), но не обладает свойством самосинхронизации. При передаче длинной последовательности единиц или нулей сигнал на линии не изменяется, поэтому приемник не имеет возможность определять по входному сигналу моменты времени, когда нужно в очередной раз считывать данные. Даже при наличии высокоточного тактового генератора приемник может ошибиться с моментом съема данных, так как частоты двух генераторов практически никогда не бывают полностью идентичными. Поэтому при высоких скоростях обмена данными и длинных последовательностях единиц или нулей небольшое рассогласование тактовых частот может привести к ошибке в целый такт и, соответственно, считыванию некорректного значения бита.
 
  Рис. 7.1. Методы кодирования двоичных данных: а -униполярный потен-
  циальный код; б - биполярный потенциальный код; в - униполярный им-
  пульсный код; г - биполярный импульсный код; д - «манчестерский» код;
  е - потенциальный код с четырьмя уровнями сигнала.
 
  Другим серьезным недостатком метода NRZ является наличие низкочастотной составляющей, которая приближается к нулю при передаче длинных последовательностей единиц или нулей. Из-за этого многие линии связи, не обеспечивающие прямого гальванического соединения между приемником и источником, этот вид кодирования не поддерживают. В результате в чистом виде код NRZ в сетях не используется, но используются его различные модификации, в которых устраняют как плохую самосинхронизацию кода NRZ, так и наличие постоянной составляющей.
  Одной из модификаций метода NRZ является метод биполярного потенциального кодирования с альтернативной инверсией (Bipolar Alternate Mark Inversion - AMI). В этом методе (рис. 7.1.б) используются три уровня потенциала - отрицательный, нулевой и положительный. Для кодирования логического нуля используется нулевой потенциал, а логическая единица кодируется либо положительным потенциалом, либо отрицательным (при этом потенциал каждой новой единицы противоположен потенциалу предыдущей). Код AMI частично ликвидирует проблемы постоянной составляющей и отсутствия самосинхронизации, присущие коду NRZ. Это происходит при передаче длинных последовательностей единиц. В этих случаях сигнал на линии представляет собой последовательность разнополярных импульсов с тем же спектром, что и у кода NRZ, передающего чередующиеся нули и единицы, то есть без постоянной составляющей и с основной гармоникой N/2 Гц (где N - битовая скорость передачи данных). Длинные же последовательности нулей также опасны для кода AMI, как и для кода NRZ - сигнал вырождается в постоянный потенциал нулевой амплитуды. В целом, для различных комбинаций бит на линии, использование кода AMI приводит к более узкому спектру сигнала, чем для кода NRZ, а значит, и к более высокой пропускной способности линии. Например, при передаче чередующихся единиц и нулей основная гармоника f0 имеет частоту N/4 Гц. Код AMI предоставляет также некоторые возможности по распознаванию ошибочных сигналов. Так, нарушение строгого чередования полярности сигналов говорит о ложном импульсе или исчезновении с линии корректного импульса. Сигнал с некорректной полярностью называется запрещенным сигналом (signal violation). Так как в коде AMI используются не два, а три уровня сигнала на линии, то дополнительный уровень требует увеличения мощности передатчика для обеспечения той же достоверности приема бит на линии, что является общим недостатком кодов с несколькими состояниями сигнала по сравнению с кодами, которые различают только два состояния.
  Наиболее простыми методами импульсного кодирования являются униполярный импульсный код, в котором единица представлена импульсом, а ноль - его отсутствием (рис. 7.1в), и биполярный импульсный код, в котором единица представлена импульсом одной полярности, а ноль - другой (рис. 7.1г). Каждый импульс длится половину такта. Биполярный импульсный код обладает хорошими самосинхронизирующими свойствами, но постоянная импульсная составляющая может присутствовать, например, при передаче длинной последовательности единиц или нулей. Кроме того, спектр у него шире, чем у потенциальных кодов. Так, при передаче всех нулей или единиц частота основной гармоники кода будет равна N Гц, что в два раза выше основной гармоники кода NRZ и в четыре раза выше основной гармоники кода AMI при передаче чередующихся единиц и нулей. Из-за слишком широкого спектра биполярный импульсный код используется редко.
 В локальных сетях до недавнего времени самым распространенным методом кодирования был так называемый «манчестерский код» (рис. 7.1д). В манчестерском коде для кодирования единиц и нулей используется перепад потенциала, то есть фронт импульса. При манчестерском кодировании каждый такт делится на две части. Информация кодируется перепадами потенциала, происходящими в середине каждого такта. Единица кодируется перепадом от низкого уровня сигнала к высокому, а ноль - обратным перепадом. В начале каждого такта может происходить служебный перепад сигнала, если нужно представить несколько единиц или нулей подряд. Так как сигнал изменяется по крайней мере один раз за такт передачи одного бита данных, то манчестерский код обладает хорошими самохронизирующими свойствами. Полоса пропускания манчестерского кода уже, чем у биполярного импульсного. У него также нет постоянной составляющей, а основная гармоника в худшем случае (при передаче последовательности единиц или нулей) имеет частоту N Гц, а в лучшем (при передаче чередующихся единиц и нулей) она равна N/2 Гц, как и у кодов AMI или NRZ. В среднем ширина полосы манчестерского кода в полтора раза уже, чем у биполярного импульсного кода, а основная гармоника колеблется около значения 3N/4. Еще одним преимуществом манчестерского кода является то, что он только два уровня сигнала, а биполярный импульсный код – три.
  Существуют также потенциальные коды с большим числом уровней сигналов для кодирования данных. В качестве примера показан (рис 7.1е) потенциальный код 2В1Q с четырьмя уровнями сигнала для кодирования данных. В этом коде каждые два бита передаются за один такт сигналом, имеющим четыре состояния. Паре бит «00» соответствует потенциал -2,5 В, паре бит «01» - потенциал -0,833 В, паре бит «11» - потенциал +0,833 В, а паре бит «10» - потенциал +2,5 В. В этом способе кодирования требуются дополнительные меры по борьбе с длинными последовательностями одинаковых пар бит, так как тогда сигнал превращается в постоянную составляющую. При случайном чередовании бит спектр сигнала в два раза уже, чем у кода NRZ (при той же битовой скорости длительность такта увеличивается в два раза). Таким образом, с помощью представленного кода 2В1Q можно по одной и той же линии передавать данные в два раза быстрее, чем с помощью кода AMI. Однако для его реализации мощность передатчика должна быть выше, чтобы четыре уровня четко различались приемником на фоне помех.
  Для улучшения потенциальных кодов типа AMI и 2B1Q используется логическое кодирование. Логическое кодирование призвано заменять длинные последовательности бит, приводящие к постоянному потенциалу, вкраплениями единиц. Для логического кодирования характерны два метода - избыточные коды и скремблирование.
  Избыточные коды основаны на разбиении исходной последовательности бит на порции, которые часто называют символами. Затем каждый исходный символ заменяется на новый, который имеет большее количество бит, чем исходный. Например, логический код 4В/5В заменяет исходные символы длиной в 4 бита на символы длиной в 5 бит. Так как результирующие символы содержат избыточные биты, то общее количество битовых комбинаций в них больше, чем в исходных. Так, в коде 4В/5В результирующие символы могут содержать 32 битовых комбинации, в то время как исходные символы - только 16. Поэтому в результирующем коде можно отобрать 16 таких комбинаций, которые не содержат большого количества нулей, а остальные считать запрещенными кодами (code violation). Кроме устранения постоянной составляющей и придания коду свойства самосинхронизации, избыточные коды позволяют приемнику распознавать искаженные биты. Если приемник принимает запрещенный код, значит, на линии произошло искажение сигнала. Код 4В/5В передается по линии с помощью физического кодирования по одному из методов потенциального кодирования, чувствительному только к длинным последовательностям нулей. Символы кода 4В/5В длиной 5 бит гарантируют, что при любом их сочетании на линии не могут встретиться более трех нулей подряд. Буква B в названии кода означает, что элементарный сигнал имеет 2 состояния (от английского binary – двоичный). Имеются также коды и с тремя состояниями сигнала, например, в коде 8В/6Т для кодирования 8 бит исходной информации используется код из 6 сигналов, каждый из которых имеет три состояния. Избыточность кода 8В/6Т выше, чем кода 4В/5В, так как на 256 исходных кодов приходится 729 (3 в степени 6) результирующих символов. Использование таблицы перекодировки является очень простой операцией, поэтому этот подход не усложняет сетевые адаптеры и интерфейсные блоки коммутаторов и маршрутизаторов (см. разделы 9,11).
  Для обеспечения заданной пропускной способности линии передатчик, использующий избыточный код, должен работать с повышенной тактовой частотой. Так, для передачи кодов 4В/5В со скоростью 100 Мбит/с передатчик должен работать с тактовой частотой 125 МГц. При этом спектр сигнала на линии расширяется по сравнению со случаем, когда по линии передается чистый, не избыточный код. Тем не менее спектр избыточного потенциального кода оказывается уже спектра манчестерского кода, что оправдывает дополнительный этап логического кодирования, а также работу приемника и передатчика на повышенной тактовой частоте.
  Другой способ логического кодирования основан на предварительном «перемешивании» исходной информации таким образом, чтобы вероятности появления единиц и нулей на линии становились близкими. Устройства, или блоки, выполняющие такую операцию, называются скрэмблерами (scramble - свалка, беспорядочная сборка). При скремблировании используется известный алгоритм, поэтому приемник, получив двоичные данные, передает их на дескрэмблер, который восстанавливает исходную последовательность бит. Избыточные биты при этом по линии не передаются. Улучшенные потенциальные избыточные и скрэмблированные коды применяются в современных высокоскоростных сетевых технологиях вместо «манчестерского» и биполярного импульсного кодирования.
 
 7.6. Технологии мультиплексирования линий связи
 
  Для мультиплексирования («уплотнения») линий связи используется несколько технологий. Технология частотного мультиплексирования (Frequency Division Multiplexing - FDM) первоначально была разработана для телефонных сетей, но применяется и для других видов сетей, например сетей кабельного телевидения. Эта технология предполагает перенос сигналов каждого абонентского канала в свой собственный диапазон частот и одновременную передачу сигналов нескольких абонентских каналов в одной широкополосной линии связи. Например, на входы FDM-коммутатора поступают исходные сигналы от абонентов телефонной сети. Коммутатор выполняет перенос частоты каждого канала в свой диапазон частот. Обычно высокочастотный диапазон делится на полосы, которые отводятся для передачи данных абонентских каналов. В линии связи между двумя FDM-коммутаторами одновременно передаются сигналы всех абонентских каналов, но каждый из них занимает свою полосу частот. Выходной FDM-коммутатор выделяет модулированные сигналы каждой несущей частоты и передает их на соответствующий выходной канал, к которому непосредственно подключен абонентский телефон. FDM-коммутаторы могут выполнять как динамическую, так и постоянную коммутацию. При динамической коммутации один абонент инициирует соединение с другим абонентом, посылая в сеть номер вызываемого абонента. Коммутатор динамически выделяет данному абоненту одну из свободных полос. При постоянной коммутации полоса закрепляется за абонентом на длительный срок. Принцип коммутации на основе разделения частот остается неизменным и в сетях другого вида, меняются только границы полос, выделяемых отдельному абонентскому каналу, а также их количество.
  Технология мультиплексирования с разделением времени (Time Division Multiplexing - TDM) или временного мультиплексирования основана на использовании TDM-аппаратуры (мультиплексоров, коммутаторов, демультиплексоров), работающей в режиме разделения времени, поочередно обслуживая в течение цикла все абонентские каналы. Каждому соединению выделяется один квант времени цикла работы аппаратуры, называемый также тайм-слотом. Длительность тайм-слота зависит от числа абонентских каналов, обслуживаемых аппаратурой. Сети TDM могут поддерживать режимы либо динамической, либо постоянной коммутации, а иногда и оба эти режима.
 Сети с динамической коммутацией требуют предварительной процедуры установления соединения между абонентами. Для этого в сеть передается адрес вызываемого абонента, который проходит через коммутаторы и настраивает их на последующую передачу данных. Запрос на установление соединения маршрутизируется от одного коммутатора к другому и в конце концов достигает вызываемого абонента. Сеть может отказать в установлении соединения, если емкость требуемого выходного канала уже исчерпана. Для FDM-коммутатора выходная емкость равна количеству частотных полос, а для TDM-коммутатора - количеству тайм-слотов, на которые делится цикл работы канала. Сеть отказывает в соединении также в том случае, если запрашиваемый абонент уже установил соединение с кем-нибудь другим. В первом случае говорят, что занят коммутатор, а во втором - абонент. Возможность отказа в соединении является недостатком метода коммутации каналов. Если соединение может быть установлено, то ему выделяется фиксированная полоса частот в FDM-сетях или же фиксированная пропускная способность в TDM-сетях. Эти величины остаются неизменными в течение всего периода соединения. Гарантированная пропускная способность сети после установления соединения является важным свойством, необходимым для таких приложений, как передача голоса и изображения или управление объектами в реальном масштабе времени.
 При наличии всего одного физического канала связи, например, при обмене данными с помощью модемов через телефонную сеть, дуплексный режим работы организуется на основе разделения канала на два логических подканала с помощью технологий FDM или ТDМ. При использовании технологии FDM модемы для организации дуплексного режима работы на двухпроводной ли­нии работают на четырех частотах (две частоты – для кодирования единиц и нулей при передаче данных в одном направлении, а две других частоты – для кодирования при передаче в обратном направлении). В технологии ТDМ часть тайм-слотов используется для передачи данных в одном направлении, а часть – для передачи в другом направлении. Обычно тайм-слоты противоположных направлений чередуются.
  В волоконно-оптических кабелях для организации дуплексного режима работы при использовании только одного оптического волокна передача данных в одном направлении производится с помощью светового пучка одной длины волны, а в обратном – другой длины волны. Такая технология по сути относится к методу FDM, однако для волоконно-оптических кабелей она получила название технологии мультиплексирования по длине волны (Wave Division Multiplexing - WDM) или волнового мультиплексирования.
 Технология плотного волнового (спектрального) мультиплексирования (Dense Wave Division Multiplexing - DWDM) предназначена для создания оптических магистралей нового поколения, работающих на мультигигабитных и терабитных скоростях. Такой качественный скачок производительности обеспечивается за счет того, что информация в оптическом волокне передается одновременно большим количеством световых волн. Сети DWDM работают по принципу коммутации каналов, при этом каждая световая волна представляет собой отдельный спектральный канал и несет собственную информацию. Одним из основных преимуществ технологии DWDM является существенное повышение коэффициента использования частотного потенциала оптического волокна, теоретическая полоса пропускания которого составляет 25 000 ГГц.
 
 Резюме
 
 В современных телекоммуникационных системах информация передается посредством электромагнитных волн – электрических, световых или радиосигналов.
 Линии связи в зависимости от типа физической среды передачи информации могут быть кабельными (проводными) или беспроводными. В качестве линий связи применяются телефонные кабели на основе параллельных нескрученных проводников, коаксиальные кабели, кабели на основе витых пар проводников (неэкранированные и экранированные), волоконно-оптические кабели. Наиболее эффективными на сегодняшний день и перспективными в ближайшем будущем являются кабели на основе витых пар проводников и волоконно-оптические кабели. Беспроводные линии связи чаще всего реализуются посредством передачи радиосигналов в различных диапазонах радиоволн. Инфракрасная технология беспроводной передачи данных использует часть электромагнитного спектра между видимым светом и самыми короткими микроволнами. Наиболее высокоскоро­стной и помехоустойчивой является лазерная технология бес­проводной связи.
 Основные характеристики линий связи – амплитудно-частотная характеристика, полоса пропускания и затухание на определенной частоте.
 Пропускная способность линии связи характеризует максимально возможную скорость передачи данных по ней. Помехоустойчивость линии связи определяет ее способность уменьшать на внутренних проводниках уровень помех, создаваемых во внешней среде. Достоверность передачи данных характеризует вероятность искажения для каждого передаваемого бита данных.
 Представление дискретной информации в том или ином виде сигналов, подаваемых на линию связи, называется физическим кодированием. Логическое кодирование подразумевает замену бит исходной информации новой последовательностью бит, несущей ту же информацию, но обладающей дополнительными свойствами.

<< Пред.           стр. 6 (из 12)           След. >>

Список литературы по разделу