Изучив эту проблему, и проанализировав литературу и передовой опыт учителей-новаторов, мы пришли к выводу, что эта тема недостаточно изучена и представлено очень мало практических и методических разработок. В целях совершенствования преподавания математики целесообразна дальнейшая разработка новых методик для развития умения правильно мыслить, рассуждать и доказывать, используя дедуктивные умозаключения. В ходе нашей практики мы увидели необходимость систематического использования на уроках задач, способствующих формированию у учащихся познавательного интереса и самостоятельности. Целесообразно использовать на уроках задачи на сообразительность и задачи-шутки. Учитывая индивидуальные особенности учащихся, мы использовали задания различного типа, осуществляя личностно-ориентированный подход. Осуществляя целенаправленное обучение школьников математике, с помощью специально подобранных упражнений, мы учим их наблюдать, пользоваться аналогией, индукцией, дедукцией, сравнениями и делать соответствующие выводы.

На государственной практике мы выполняли различные по форме и содержанию работы, направленные на реализацию поставленных нами цели и задач. В ходе теоретического и экспериментального исследования получены следующие основные результаты:

Изучив психологические особенности учеников 4 «А» класса, мы выяснили, что целесообразно выбирать в качестве основного содержания работы систему нестандартных заданий.

Результаты, полученные в дипломной работе, позволяют сделать следующие выводы:

1. Разработанная система упражнений для учащихся по развитию умения строить дедуктивные умозаключения при решении задач, обеспечивает достаточную глубину усвоения основных математических понятий.

2. Предложенная система заданий содействует более полному раскрытию связей между различными темами учебного материала.

3. Используемые задания позволяют активизировать творческие способности учащихся при решении математических задач.

4. Рекомендуемая методика позволяет научить детей решать логические задачи, строить дедуктивные умозаключения, разрешать проблемные ситуации и добиваться оригинальности решений.

Таким образом, проведенное нами исследование позволяет утверждать, что гипотеза, выдвинутая нами в теоретической части данного исследования, подтвердилась. Наше исследование показало, что, используя дедуктивные умозаключения при решении задач, мы решаем одну из главных задач, а именно: развиваем логическое мышление школьников, учим детей правильно мыслить, аргументировать и доказывать, что важно, и даже, необходимо. Поиск новых путей активизации творческой деятельности школьников на уроках математики является одной их неотложных задач современной методики математики. Поэтому использование учителем начальной школы наших методических рекомендаций при развитии умения использовать дедукцию при решении математических задач, является не только желательным, но даже необходимым элементом обучения математике. Мы показали, что есть возможность использовать дедуктивные умозаключения в начальных классах, и это даже необходимо, так как именно они воспитывают строгость, четкость и лаконичность мышления.

Список литературы

1. Атахов Р. В. Соотношение общих закономерностей мышления и математического мышления. Вопросы психологии, №5, 1995, С. 46;

2. Гетманова А. Д. Занимательная логика. – М., «Владос», 1998, Ч. 1, С. 171;

3. Гетманова А. Д. Логика. – М., «Добросвет», 2000, С. 137;

4. Дорофеев Г. В. О принципах отбора содержания школьного математического образования. Математика в школе, №6, 1990, С. 2-5;

5. Истомина Н. Б. Методика обучения математике в начальных классах. – М., «Академия», 1998, С. 164;

6. Крутецкий В. А. Психология математических способностей школьников. М., 1968, С. 206-209, 291-293;

7. Кудрявцев Л. Д. Современная математика и ее преподавание. – М., 1980. С. 127;

8. Липина И. Развитие логического мышления на уроках математики // Начальная школа. – 1999. - № 8. С. 37-39.

9. Лехова В. П. Дедуктивные рассуждения в курсе математики начальных классов. – Начальная школа, 1988, № 5, С. 28-31;

10. Пойа Д. Математика и правдоподобные рассуждения. - М., 1975, Т. 1;

11. Саранцев Г. И. Обучение математическим доказательствам в школе. – М., «Просвещение», 2000;

12. Семенов Е. М., Горбунова Е. Д. Развитие мышления на уроках математики. Свердловск, 1966;

13. Скаткин Л. Н. Методика начального обучения математике. – М., «Просвещение», 1972, С. 35;

14. Стойлова Л. П. Математика. –М., «Академия», 1997, С. 96;

15. Стойлова Л. П., Пышкало А. М. Основы начального курса математике. – М., «Просвещение», 1988, С. 32;

16. Столяр А. А. Педагогика математики. – Минск, Вышэйшая школа, 1986;

17. Хинчин А. Я.О воспитательном эффекте уроков математики. Математика как профессия. - М., 1980. С. 36;

)