Довольно хорошо отработаны микробиологические способы разложения воды. Открыты и уже используются микроорганизмы, результат жизнедеятельности которых - водород. В специальных емкостях для них размножают корм - микроскопические водоросли определенных видов. Водоросли поглощают солнечный свет, осуществляют фотосинтез, а микроорганизмы, поедающие их, разлагают воду, выделяют водород.
Водород - это экологически чистое химическое топливо. При его сгорании получается исходный продукт - вода. Энергетический круговорот воды может продолжаться до тех пор, пока светит Солнце.
ЭЛЕКТРОСТАНЦИИ НА ОРБИТЕ, А ЕЩЕ ЛУЧШЕ .
НА ЛУНЕ !!!
Природа преподнесла нам, землянам, удивительный подарок - Солнце. Его энергии вполне хватят не только чтобы обогреть нашу планету, но и вволю напоить электричеством. Только вот энергию дневного светила надо брать не с поверхности Земли, где условия чаще всего ненадежны, а с околоземной орбиты, где Солнце светит круглосуточно, да и плотность энергия почти в 15 раз выше.
Идея создания орбитальных электростанций - не новость. Впервые ее высказал в печати еще в 1960 году наш соотечественник П. А. Варваров, а позже поддержал американец П.Е.Гпейзер.
Специалисты проанализировали как достоинства, так и недостатки способа получения энергии. Чтобы преобразовать свет в электричество и переправить его на Землю, необходимо доставить на орбиту и развернуть там огромные конструкции солнечных элементов. По предварительным расчётам, их площадь должна составлять 100 квадратных километров и более.
В космос предстоит “забросить” десятки тысяч тонн грузов. Но ни одноразовые носители типа современных ракет, включая наиболее совершенный “Протон”, ни многоразовые “шаттлы” сегодня с такой задачей не справляются.
Да и как передавать получаемую энергию на Землю? В 1965г. провели такой эксперимент. С одной горной вершины на другую была передана электроэнергия с помощью СВЧ-излучения. Правда, ее хватило лишь на то, чтобы зажечь . гирлянду лампочек. Но американские инженеры полагают, что конце XXI столетия таким способа можно будет транспортировать 100 ТВт электроэнергии! Одним словом, целую Ниагару!
Но не выгоднее ли и проще строить солнечные электростанции на Луне? Анализ поверхностного слоя грунта нашего спутника, доставленного беспилотными космическими аппаратами, “Луна” и пилотируемыми экспедиция. «Аполлонов», показал, что он мог бы послужить не только строительным материалом для эпектростанции, но и топливом для двигательных установок межорбитальных буксиров. С учетом это в настоящее время рассматривают минимум три варианта энергоснабжения Земли из космоса.
В одном из них предусматривает развертывание сотен сравнительно не больших солнечных электростанций (мощностью до 10 ГВт) на геостационарной орбите. На Луну же в таком случае достдапяетея только горнодобывающее оборудование и комплекс для переработки грунта. Изготовленные там элементы станции транспортируются орбиту с помощью многоразовых буксиров, работающих на топливе, вырабатываемом из лунного грунта. При этом лунных ракет-носителей понадобится 35 раз меньше по суммарной масс чем наземных.
Есть и такой вариант: на поверхности Луны строятся крупногабаритные энергоизлучающие СВЧ-станции с питанием антенных решеток от фотоэлектрических преобразователей. При мощности комплекса до 1 ГВт габариты антенн могут достигать 100 км. На окололунные орбиты выводятся отражатели солнечных лучей, а на околоземные - СВЧ-отражатели. С их помощью энергия передается в любой район Земли.
При сооружении такой системы не понадобится переправлять большое количество грузов с Луны на околоземную орбиту, хотя масштабы работ все же будут немалые. Для развертывания комплексов суммарной мощностью 10 ТВт потребуется в течение 30 лет переработать около 300 млн. т грунта на Луне к создать около 200 млн. т конструкции на орбитах Земли и ее спутника. Достоинство данного проекта - принципиальная возможность передачи энергии с Луны узкоприцельными пучками за счет больших размеров передающих антенн.
Наконец, прогнозируется также строительство на Луне промышленного комплекса по добыче гелия-3, который либо будет переправляться на Землю, где с его помощью на термоядерных электростанциях с экологически чистым циклом станут вырабатывать электроэнергию, либо использовать в подобных же реакторах на Луне, а уж полученную энергия переправлять на нашу планету. Этот вариант привлекателен еще и тем, что при производстве гелия-3 попутно получают водород, воду, метан, азот и другие вещества, необходимые для жизнеобеспечения лунных комплексов обитателей.
С ЧЕГО НАЧАТЬ?
Подобные проекты, понятное дело, осуществить непросто, даже при широком международном сотрудничестве. Поэтому разработчики разбили их на несколько этапов.
В 2000 - 2015 годах после завершения научно-исследовательских работ предполагается развернуть системы освещения, энерго- и теплоснабжения отдельных районов Земли из космоса, а также наладить транспортную космическую систему по маршруту Земля - Луна - Земля для обслуживания первого поселения людей на Луне со сменным экипажем численностью до 10 человек.
Кроме того, на низкой орбите (высота 1000 км, наклонение 97 градусов) создаются солнечные космические электростанции (СКЭС) мегаваттной мощности.
СКЭС массой порядка 100т. нетрудно вывести на орбиту с помощью ракетоносителя «Энергия» и доразгонного блока. Двух таких станций достаточно, чтобы обеспечить энергией несколько поселков в труднодоступных районах Заполярья или Сибири либо питать множество маяков, метеостанции, буев, использующих ныне небезопасные радиоизотопные источники.
СКЭС будут работать по накопительной схеме. Солнечная энергия, переводимая в электрическую, собирается в аккумуляторах или конденсаторах, а затем передается потребителю в виде СВЧ-энергии за те 7 - 8 минут, пока станция пролетает в пределах прямой видимости.
На следующем этапе - в 2015 - 2030 годы получит дальнейшее развитие система ночного освещения земных населенных пунктов “космическим“ электричеством. Откроется возможность подачи его в районы стихийны бедствий, где нарушено энергоснабжение. Предполагаются испытания первых транспортных средств (скажем, самолётов), которые будут получать энергию непосредственно из космоса.
Наконец, после 2030 г. можно ожидать заметного повышения мощности лунной базы. И со временем она сможет полностью обеспечивать энергией всю нашу планету.
И ПЛЮСЫ, И МИНУСЫ .
Журналистов, присутствовавших на пресс-конференции, интересовало: а не повлияют ли пагубно на все живое предлагаемые способы передачи энергии из космоса мощнейшими пучками энергии?
Академик А-С-Коротеев пояснил, что ученые рассматривают два варианта передачи энергии - по лазерному или СВЧ-пучу. Японские исследователи отдают предпочтение первому, наши - второму. КПД лазерных систем в лучшем случае составляет 15 - 20%, а СВЧ-систем - до 90%. К тому же производство лазеров технологически сложнее.
Правда, СВЧ-пуч порождает в атмосфере ионизированные каналы, но ведь от ионизации можно получать и пользу, например, выжигая фреон в ионосфере и тем самым уменьшая «парниковый» эффект.
Что же касается вредного воздействия излучения на нижние слои атмосферы и непосредственно на поверхность планеты, то специалисты надеются свести его к минимуму. Можно до биться, что ионизированные каналы будут очень небольших диаметров, а луч точно нацелен на приемные антенны. Интенсивность же излучения за пределами канала резко уменьшается. В целом негативные последствия применения новой энергетической системы будут куда меньшими, чем, скажем, от воздействия нынешних тепловых электростанций.
В космическую систему энергоснабжения предполагается включить и ныне существующие гидроэлектростанции, в том числе приливные. Но не станут передавать энергию по проводам, как это делается сейчас, а через антенны будут переправлять ее в космос, а уж оттуда, с помощью ретрансляторов, к наземным потребителям. Таким образом специалисты надеются существенно сократить потери электроэнергии при ее передаче, которые ныне составляют около 30% ! )