Самая большая разница между этими двумя способами заключается в интерфейсах, которые пользователь никогда не слышит, зато разработчик должен использовать какой-то из них, или оба сразу, для написания игры, чтобы задействовать звуковую карту!

Интерфейс EAX имеет преимущество в том, что он много, много проще в использовании и дает возможность для простой настройки и манипуляциями ("tweaking") параметрами reverb. Кроме того, EAX это открытый протокол, а это означает, что другие создатели 3D технологий, включая CRL/Sensaura и QSound будут поддерживать EAX одновременно и в своих API и в своих звуковых движках. Итак, с точки зрения разработчика приложений, желающих перейти на следующий уровень в воспроизведении 3D звука, EAX прост в использовании и имеет потенциал в более широкой аппаратной поддержки, чем запатентованная технология Wavetracing от Aureal.

В качестве API, EAX имеет несколько недостатков в своей первой версии, самый явный из которых это отсутствие механизма расчета прохождения звука сквозь препятствия. Правда, в EAX 2.0 этот недостаток должен быть устранен.

Промышленное объединение, называемое IASIG (в него входят QSound, Creative Labs, Aureal и другие поставщики 3D технологий, производители и т.д.) разрабатывает на основе EAX новую спецификацию. Основная идея разработки заключается в создании стандартного открытого интерфейса, который мы все сможем использовать. Есть все основания надеяться, что новый стандартный интерфейс даст разработчикам возможность так же легко создавать приложения, как это обстоит в случае с EAX. При этом новый стандартный интерфейс будет свободен от недостатков присущих EAX.

Aureal участвует в разработках IASIG, поэтому мы можем смело предполагать (или хотя бы надеяться!), что, в конечном счете, драйверы для чипсетов от Aureal будут создаваться совместимыми с новым открытым стандартом. Я ожидаю, что инженеры Aureal будут и в дальнейшем предлагать разработчикам приложений возможности по использованию геометрических расчетов для определения путей распространения звука.

Кстати, нет ничего особо исключительного в звуковых API. Очень много людей даже не представляют, что игра может использовать DS3D, EAX, A3D 2.0 или другие интерфейсы, равно как и то, что хорошее 3D звучание могут обеспечить большинство звуковых плат и лишь расширенные звуковые эффекты и нестандартные возможности будут использоваться только там, где они поддерживаются. Существующее положение вещей, когда разработчикам приходится выбирать, какой интерфейс использовать, создает массу проблем, поэтому разработки IASIG, по созданию открытого и универсального интерфейса очень важны.

Какая самая лучше схема воспроизведения: наушники, две колонки, четыре колонки .?

Лучшая схема воспроизведения звука та, что вам нравится; та, что дает вам необходимую полноту ощущений.

Каждая схема воспроизведения звука имеет сильные и слабые стороны. Наушники хороши для воспроизведения звука, источники которого расположены в вертикальной плоскости, сзади и с боков от слушателя. Однако головные телефоны слабы при воспроизведении фронтального звука, т.е. когда источники звука расположены спереди от слушателя. 3D звук на двух колонках хорошо воспроизводится при расположении источников звука спереди от слушателя и по бокам, но два динамика слабо справляются с воспроизведением звука, источники которого расположены сзади и в вертикальной плоскости. Панорамирование звука на множестве колонок хорошо справляется с расположением источников звука спереди и сзади от слушателя и слабо с боковым расположением, при этом нет воспроизведение звука исходящего из источников в вертикальной плоскости.

Главная прелесть DS3D видео игр в том, что они могут создаваться без особой заботы о том, какую схему воспроизведения вы выберете для прослушивания. До тех пор, пока игра не будет по глупости рассчитана на специальную технологию 3D звука и/или схему воспроизведения, вы сможете выбирать все, что вам угодно! В действительности, расчет звуковой сцены происходит в режиме реального времени в процессе игры, поэтому вы можете переключаться с одной схемы воспроизведения на другую, скажем с колонок на наушники, на лету, если конечно ваша звуковая карта поддерживает эту возможность.

Звуковые карты имеют много разных возможностей, из которых всего лишь одной является поддержка 3D звука. Делая выбор в пользу какой-то технологии или продукта, не забывайте о перспективах дальнейшего использования, и, что более важно, необходимо, чтобы выбор был вашим собственным, не поддавайтесь влиянию мнения ваших друзей.

6. Обзор применяемых форматов хранения цифровых аудио данных без и с потерей качества

Методы, используемые для эффективного сжатия цифрового звука

В настоящее время наиболее известны Audio MPEG, PASC и ATRAC. Все они используют так называемое "кодирование для восприятия" (perceptual coding) при котором из звукового сигнала удаляется информация, малозаметная для слуха. В результате, несмотря на изменение формы и спектра сигнала, его слуховое восприятие практически не меняется, а степень сжатия оправдывает незначительное уменьшение качества. Такое кодирование относится к методам сжатия с потерями (lossy compression), когда из сжатого сигнала уже невозможно точно восстановить исходную волновую форму.

Приемы удаления части информации базируются на особенности человеческого слуха, называемой маскированием: при наличии в спектре звука выраженных пиков (преобладающих гармоник) более слабые частотные составляющие в непосредственной близости от них слухом практически не воспринимаются (маскируются). При кодировании весь звуковой поток разбивается на мелкие кадры, каждый из которых преобразуется в спектральное представление и делится на ряд частотных полос. Внутри полос происходит определение и удаление маскируемых звуков, после чего каждый кадр подвергается адаптивному кодированию прямо в спектральной форме. Все эти операции позволяют значительно (в несколько раз) уменьшить объем данных при сохранении качества, приемлемого для большинства слушателей.

Каждый из описанных методов кодирования характеризуется скоростью битового потока (bitrate), с которой сжатая информация должна поступать в декодер при восстановлении звукового сигнала. Декодер преобразует серию сжатых мгновенных спектров сигнала в обычную цифровую волновую форму.

Audio MPEG - группа методов сжатия звука, стандартизованная MPEG (Moving Pictures Experts Group - экспертной группой по обработке движущихся изображений). Методы Audio MPEG существуют в виде нескольких типов - MPEG-1, MPEG-2 и т.д.; в настоящее время наиболее распространен тип MPEG-1.

Существует три уровня (layers) Audio MPEG-1 для сжатия стереофонических сигналов: 1 - коэффициент сжатия 1:4 при потоке данных 384 кбит/с; 2 - 1:6 1:8 при 256 192 кбит/с; 3 - 1:10 1:12 при 128 112 кбит/с.

Минимальная скорость потока данных в каждом уровне определяется в 32 кбит/с; указанные скорости потока позволяют сохранить качество сигнала примерно на уровне компакт-диска.

Все три уровня используют входное спектральное преобразование с разбиением кадра на 32 частотные полосы. Наиболее оптимальным в отношении объема данных и качества звука признан уровень 3 со скоростью потока 128 кбит/с и плотностью данных около 1 Мб/мин. При сжатии с более низкими скоростями начинается принудительное ограничение полосы частот до 15-16 кГц, а также возникают фазовые искажения каналов (эффект типа фэйзера или фленжера).

Audio MPEG используется в компьютерных звуковых системах, CD-i/DVD, "звуковых" дисках CD-ROM, цифровом радио/телевидении и других системах массовой передачи звука.

PASC (Precision Adaptive Sub-band Coding - точное адаптивное внутриполосное кодирование) - частный случай Audio MPEG-1 Layer 1 со скоростью потока 384 кбит/с (сжатие 1:4). Применяется в системе DCC.

ATRAC (Adaptive TRansform Acoustic Coding - акустическое кодирование адаптивным преобразованием) базируется на стереофоническом звуковом формате с 16-разрядным квантованием и частотой дискретизации 44.1 кГц. )