2.1. Понятие биологической продуктивности лесных ландшафтов.
Из курса географии почв мне известно, что:
мерилом естественного плодородия является уровень биологической продуктивности, т.е. количества первичной растительной массы, создаваемой за год на единицу площади (10ц/га-300ц/га). Считается, что биологическая продуктивность почв не даёт полного представления о потенциальной продуктивности почв. Потенциальная продуктивность используется в сельском хозяйстве. При определении продуктивности существует закон убывающего плодородия почв, из которого следует, что увеличение урожаев на обрабатываемых землях непропорционально затраченному труду. За последние годы затраты труда возросли в 8-10 раз, а урожайность увеличилась в 2-3 раза.
Из курса землеведения мне известно, что:
Ландшафт есть пятимерная, взаимосвязанная система, состоящая из:
1. Внутренняя компонентная составляющая(почвы, биостром, кора выветривания, здесь проходит фотосинтез).
2. Внутренняя структурно-морфологическая составляющая(районы, местности, урочища, страны, зоны, пояса).
3. Внешняя комплексная составляющая(для взаимодействия с другими комплексами).
4. Внешняя воздушная составляющая(смена типов воздушных масс, поток радиации, перенос тепла и влаги, перенос пыли, миграция птиц).
5. Подстилающая литогенная составляющая(отражает процессы происходящие в мантии и земной коре).
Последние три отражают поле взаимодействия ландшафта с окружающей средой. Так как судить в целом о биологической продуктивности лесных ландшафтов довольно трудно, учитывая нехватку материалов и литературы, я остановлюсь непосредственно на лесе (или на его доминанте)– как его обязательной составляющей.
Биологическая продуктивность искусственно созданных насаждений изучалась явно недостаточно, что, безусловно, тормозит сейчас решение актуальных теоретических и практических задач современного лесоведения. К числу таких задач относится восстановление и повышение продуктивности лесов различных ботанико-географических зон путём выращивания лесных культур с наиболее оптимальными характеристиками строения, накопления органической массы и эффективностью использования лучистой энергии, влаги и питательных веществ почвы. Для правильного и научно обоснованного решения этой задачи необходимо накопление фактических данных о зависимости биомассы, её фракционного состава годичной продукции веществ от густоты стояния и характера размещения деревьев в культурах с учетом лесорастительных условий их формирования.
Влияние густоты посадки на рост и процессы дифференциации деревьев в культурах освещены в работах В.П. Тимофеева (1959), П.С. Кондратьева (1959), Г.Р. Эйтингена (1916) и многих других, но к сожалению в этих работах не приводятся детальные характеристики биопродукционного процесса культур различной густоты.
При комплексном использовании леса не только деловая древесина, но также и тонкомерные стволы, ветви, хвоя-листья найдут применение как растительная масса, содержащая большое количество биологически активных веществ – витаминов, хлорофилла, микроэлементов, лекарственных соединений. Все части дерева являются ценным сырьём для химической промышленности; ветви идут на строительных материалов и могут быть использованы в целлюлозно-бумажной промышленности. Сейчас лесоустроители при таксации древостоев определяют не только запас стволовой древесины, но вес всех частей дерева, так как очевидно, что в ближайшем будущем все части деревьев будут использоваться в промышленности и сельском хозяйстве.
2.2. Методика исследования биологической продуктивности культур сосны
Простота видового состава, строения, одновозрастность и равномерное распределение деревьев в культуре сосны существенно упрощает и повышает точность определения важнейших характеристик биопродукционного процесса (общие запасы фитомассы и её фракционный состав, первичная продукция веществ и т.д.). Объектом исследований в данном случае служит только 1-й ярус, т.е. чистые одновозрастные ценопопуляции сосны, т.к. остальные ярусы практически отсутствуют.
Методика сводится к следующему: на пробных площадях проводится сплошной перечет деревьев по одноименным ступеням толщины. Измерение диаметров стволов проводится в двух направлениях – север-юг, запад-восток.
Важнейшие характеристики продуктивности древостоев определялись методом модельных деревьев. Модельные деревья отбирались пропорционально их представленности в ступенях толщины и высот с учетом характера развития крон. На каждой пробной площади было срублено по 20-30 модельных деревьев.
Модельные деревья детально разделывались на основные фракции (хвоя различных лет, живые и мёртвые сучья, древесина и т.д.) и был определён сырой и абсолютно сухой вес различных фракций, после чего данные были подвергнуты статистическому анализу.
Для получения дендрометрических показателей хвои и определения листового индекса у четырёх модельных деревьев с 3-, 6-, 9-й (или 8-й) мутовок брались навески хвои (10г) различного возраста. В каждой навеске подсчитывали число хвоинок. Затем образцы высушивались при температуре 80-85С до абсолютно сухого веса. Полученные данные использовались для определения влажности хвои различного возраста в зависимости от её размещения по вертикальному профилю древостоев и густоты стояния деревьев. С этих же мутовок брали по 20 хвоинок каждого возраста для определения площади хвои и листового индекса по методике А.Н. Челядиновой (1941). Для определения влажности и абсолютно сухого веса древесины и коры брались выпилы из стволов модельных деревьев на высоте ¼, ½, ¾ и 1,3 м от земли. Определялись также влажность однолетних побегов и ветвей разной толщины живых и мертвых, а также влажность хвои по возрастам.
Таким образом, для каждого отдельного дерева был послойно в кроне определён сырой и абсолютно сухой вес хвои (общий и по её возрастам), древесины ствола и ветвей живых и отмерших по мутовкам и по возрастам. Затем для модельных деревьев каждой площади были вычислены коэффициенты уравнения связи массы стволов, а также массы кроны и её частей с диаметром ствола на высоте 1,3 метра. Коэффициенты уравнений вычислялись методом наименьших квадратов для двух вариантов: 1-й – в предположении, что названные выше связи выражаются показательной функцией; 2-й – в предположении, что связи выражаются уравнением параболы 2-го порядка. Последующее сравнение этих вариантов показало, что экспериментальным данным во всех случаях соответствует параболическая связь, так как она обеспечивает меньшую сумму квадратов отклонений экспериментальных точек, полученных в результате обработки модельных деревьев от кривой, построенной по выведенному уравнению.
Используя полученные зависимости, массу отдельных частей крон (живых и отмерших ветвей, хвои) и стволов для каждого насаждения вычисляли по ступеням толщины и затем суммировали в общий итог. Полученные цифровые данные позволяли с достаточной степенью точности рассчитывать фитомассу различных фракций на единицу площади, а также построить диаграммы вертикального распределения фитомассы на деревьях различных диаметров. Для определения веса подземных частей на всех участках были заложены траншеи глубиной 1,8 метра. Площадь траншей варьировала в пределах 4,6 - 6,8 м2, а число из оказалось недостаточным для определения фитомассы корней с достаточной степенью точности. Учитывая, что 40% корней сосны залегает в верхнем 30- сантиметровом слое почвы на каждом участке было взято дополнительно по 10 монолитов, размерами 0,5*0,5*0,3 м. Монолиты распределялись равномерно на пробных площадях. Статистический анализ показал, что ошибка определения фитомассы корней составляла 5-10%.
Отпад деревьев (сухостой, снеголом) определялись в 3-, 6-, 10-, 15-, 18- и 20-летнем возрасте культур путем сплошных перечетов.
Опад тоже был учтен путем закладки на каждом опытном участке 20 площадок размером 5 м2. В дополнение к этим данным на экспериментальных участках проводились наблюдения за транспирацией и фотосинтезом хвои, содержанием влаги в почве. )