Интерфейс Serial ATA обеспечивает дальнейшую возможность увеличения скорости передачи данных
Характеристика |
Поколение 1 |
Поколение 2 |
Поколение 3 |
Средняя скорость передачи данных |
150 Мб/с |
300 Мб/с |
600 Мб/с |
Средняя скорость работы шины данных |
1.5 Гб/с |
3 Гб/с |
6 Гб/с |
Ориентировочное время начала внедрения |
Конец 2002 |
Середина 2004 |
Середина 2007 |
С интерфейсом Serial ATA установка новых дисковых накопителей и модернизация системы становится удобной как никогда. Serial ATA использует простые разъемы типа socket вместо традиционных 40-штырьковых разъемов - подключить новый дисковый накопитель к системе теперь так же просто, как подключить телефон к зарядному устройству. Более тонкие и более длинные кабели более удобны в обращении, а возможность "горячего" подключения значительно упрощает переконфигурацию системы. С появлением Serial ATA исчезает необходимость переставлять крохотные джамперы master/slave на каждом дисковом накопителе. Накопители с интерфейсом Serial ATA повышают общую надежность системы, а технология "32-битной циклической избыточной проверки" (32-bit Cyclic Redundancy Checking) обеспечивает сохранность данных, команд и статусной информации. Более надежные кабельные соединения снижают вероятность наведенных помех, а небольшие размеры кабеля способствуют лучшей вентиляции системного блока.
Modem - модем (MOdulator-DEModalator модулятор-демодулятор). Устройство, которое преобразует цифровые сигналы компьютера в аналоговые сигналы для дальнейшей передачи по телефонным линиям, а затем осуществляет обратное преобразование.
Модем представляет собой устройство, имеющее, с внешней точки зрения, цифровой интерфейс c компьютером (обычно последовательный порт RS-232) и аналоговый интерфейс с каналом связи (телефонной линией) - разъем для телефонного кабеля (RJ-12). "Внутри" модем представляет собой микрокомпьютер с достаточно мощным процессором (иногда несколькими), постоянной и оперативной памятью, и аналоговой частью, ответственной за сопряжение модема с телефонной сетью - устройство набора номера, усилитель, АЦП и ЦАП - Аналого-Цифровой и Цифро-Аналоговый Преобразователи, ответственные за преобразование сигнала из аналоговой формы (непрерывный сигнал-напряжение) в цифровую (отдельные отсчеты сигнала, дискретизованные по времени и квантованные по напряжению), и наоборот, соответственно. Практически все современные модемы производят обработку информации в цифровой форме, без сколь-либо сложной аналоговой предобработки, так как это позволяет добиться высокой стабильности и в значительной степени упростить разработку и анализ алгоритмов. При этом обычно частота дискретизации (скорость следования отдельных отсчетов оцифрованного сигнала) находится в пределах 7-12 тысяч отсчетов в секунду (килоГерц, kHz). Теоретически, частота дискретизации должна быть как минимум в два раза выше максимальной частоты сигнала, для того, чтобы сигнал был представим отдельными отсчетами без потерь. Количество уровней квантования для ЦАП и АЦП современных модемов достигает десятков тысяч. Обычно, поскольку с "цифровой стороны" ЦАП и АЦП пишутся или читаются в виде числа, говорят о количестве разрядов у ЦАП/АЦП, т.е., количестве разрядов двоичного числа, требуемого для представления всех возможных уровней, например, 16-разрядный АЦП может распознавать 65536 уровней, обозначаемых числами от -32768 до +32767.
Давайте посмотрим на это устройство вот с какой стороны: понятно, что его задача - пересылать информацию с одного компьютера на другой. В случае работы в Интернете - с компьютера клиента на компьютер провайдера, и наоборот. Дабы упростить себе жизнь, будем пока считать, что модем выполняет всего одну, примитивную функцию - модулятора-демодулятора цифрового сигнала (кстати, именно отсюда и взялось сокращение - модем). Будем считать, что он уже набрал номер, установил соединение, начал передавать и принимать данные, и нам интересен пока лишь процесс, как байты информации идут от удаленной стороны к нам, и наоборот. Как же это происходит?
Рассмотрим подробнее, как же модем кодирует сигнал и как помехи этому мешают. Наиболее популярные ныне протоколы передачи данных - V.34 и V.32 - используют амплитудно-фазовую модуляцию сигнала. Базовый сигнал - несущая синусоида определенной протоколом частоты при передаче модулируется, т.е. подвергаются изменению ее амплитуда, то есть уровень, и фаза (сдвиг фазы сигнала относительно немодулированной "исходной" синусоиды). При этом состояния сигнала, характеризующиеся неизменной амплитудой и фазой, последовательно сменяют друг друга. Каждое такое состояние кодирует небольшое количество битов данных и называется одним символом (не путать с буквами и цифрами). Скорость, с которой символы сменяют друг друга, называется символьной скоростью (Symbol rate в статистике модема). Она определяется протоколом, для V.32 она всегда равна 2400 символов в секунду, для V.34 может достигать 3429 символов в секунду. Таким образом, у нас уже два параметра - символьная скорость и частота несущей.
Когда один символ сменяется другим, происходит изменение (увеличение или уменьшение) амплитуды и сдвиг фазы ("вперед" или "назад") сигнала. Мгновенно ни амплитуда, ни фаза измениться не могут - это потребовало бы бесконечной скорости изменения сигнала (напряжения и тока) в канале, т.е. неограниченной полосы пропускания канала. Обычно же требуется передать максимум информации, заняв отведенный диапазон частот. Минимальный диапазон частот, требующийся для передачи сигнала, в котором фаза меняется максимально быстро (худший случай с точки зрения занятия полосы частот) вперед или назад, то есть, на половину периода несущей за один символьный интервал, в точности равен символьной скорости в Гц. Например, если фаза сигнала должна сдвигаться вперед на половину периода несущей за время передачи одного символа, частота сигнала в ходе этого перехода как минимум должна достигать ((исходной частоты несущей) + (символьная скорость)/2). В противном случае будет накапливаться "отставание" фазы сигнала от требуемой.
Для того, чтобы "вписать" сигнал в этот минимально необходимый диапазон частот, переходы между символами сглаживаются с тем, чтобы скорость изменения сигнала (и его частота, соответственно) не превышала это ограничение. Например, если требуется существенный сдвиг фазы "вперед", этот сдвиг происходит не мгновенно, а постепенно. В течение этого переходного периода частота сигнала в канале будет выше исходной частоты несущей (слышимый тон - выше), поскольку для сдвига фазы вперед требуется более быстрое изменение сигнала. И наоборот, для сдвига фазы назад требуется замедление изменения сигнала, и слышимый ухом тон - ниже. А поскольку такие переходы происходят часто (с символьной скоростью, т.е., более 2000 раз в секунду), и требуемые величины изменения фазы сигнала достаточно случайны, в результате, когда модем передает данные, мы слышим не ровный тон, или последовательность тонов, а "шипение", т.е., в среднем все частоты в рабочей полосе используются одинаково часто. Если рассмотреть спектр сигнала за длительный период времени, он будет равномерным, с центром, совпадающим с частотой исходной несущей, простирающимся в ширину симметрично влево и вправо от центральной частоты несущей на полосы частот, равные половине символьной скорости. )