Примером глобальной задачи является синтез корпуса приспособления на основе данных об осна-щаемой детали и конструктивных элементах, которые он объединяет в единую жёсткую систему. Локальной задачей могут быть определение количетсва и рас-становка пластинчатых опор под базовой плос-костью, ограниченной контуром.

Процесс синтеза – это накопление информации, отображающее изменения пространственного образа конструкции во времени. То есть это многоэтапный процесс, который начинается в момент завершения формирования модели обрабатываемой детали, а за-канчивается формированием полного описания требу-емой конструкции приспособлений. Этапы синтеза – это части процесса, соответсвующие построению определённых групп элементов приспособлений уста-новочных, направляющих, зажимных, фиксаций и т.д.

Для большинства этапов процесс синтеза протекает в три стадии. Например, при синтезе установочных элементов на первой стадии из описания обрабаты-ваемой детали выделяется для анализа информация, характеризующая схему базирования этой детали.

На второй стадии происходит выбор схемы установ-

ки, которая представляет собой перечень наиме-нований классов установочных элементов, реализующих выбранную схему (установка на цилин-дрический палец и штыри, установка с помощью двух призм и пластинчатых опор и т.д.)

На третьей стадии осуществляется воплощение выбранной схемы установки в виде конструктивно завершённой функциональной группы установочных элементов приспособления.

Аналогичные стадии проводятся также на этапах синтеза функциональных групп зажимных, направля-ющих, делительных корпусных и других элементов.

Важным вопросом является получение рациональной конструкции. Трудности решения задач оптимизации заключаются в их многокритериальности и многопа-раметричности. Рациональные решения могут быть получены только на отдельных стадиях проектиро-вания,например, на стадии выбора схемы установки.

Конструкция должна быть работоспособной, пригод-ной для обработки оснащаемой детали и обеспечива-ющей требуемые параметры точности. Пригодность конструкции определяется рядом технических, тех-нологических, эстетических, экономических и других показателей (точности, жёсткости, дис-баланса, быстродействия, простоты и технологич-ности, удобства и безопасности, эстетичности внешнего вида и др.)

Последовательность процессов синтеза приспособ-лений строится на аналогии с практикой традици-онного конструирования. Например, для сверильных приспособлений процесс синтеза конструкций сводиться к выполнению последовательно решаемых задач, как определение типа кондукторных втулок, нахождение толщины кундукторной плиты, определе-ние габаритов поля, занятого кондукторными втулками, нахождение высот кондукторных втулок, распознование установочно-зажимной схемы приспо-соблений, проектирование установочных элементов и элементов зажима.

Завершающими этапами являются синтез несущих специальных конструктивных элементов типа кондук-торных плит и корпусов, а также проектирование вспомогатльных и нижних (подкладных) плит.

Все работы, проводимые при синтезе конструкции приспособлений можно разбить на две группы. К первой относятся работы по компоновке конструк-ций, ко второй – проектирование специальных конструктивных эелементов.

При формализации процессов компоновки конструк-ций из конструктивных элементов решаются следующие задачи:

1. Выбор определённых значений из базы по задан-ным условиям.

2. Геометрического анализа.

3. Непосредственного проектирования: определения количества и положения функциональных кон-структивных элементов, выделении параметров, от которых зависит возможность использования элементов по ГОСТ (СТП), проверка возможности применения ГОСТ (СТП).

4. Расчётного типа.

5. Построения результирующих данных по заданным требованиям.

К основным задачам проектирования специальных элементов можно отнести следующие:

1. Выбор типа элементов.

2. Расчёт конструктивных размеров.

3. Определение материала для изготовления.

4. Синтез формы конструктивных элементов.

Известно, что в базу конструктивных элементов включается отличные по форме конструктивные элементы, которые нецелесообразно членить на составляющие. В ряде случаев трудно предусмотреть необходимую форму специального элемента; она окончательно вырисовывается в процессе проектиро-вания приспособления. Поэтому в базу конструктив-ных элементов включаются также и элементы формы, с помощью которых в процессе синтеза дорабатыва-ются базовые конструктивные элементы.

Система предусматривает хорошо организованную базу данных, состоящую прежде всего из конструк-

тивных элементов.

Конструктивные элементы – это объекты со своими свойствами (форма, структура, функции, материал, и др.), колиественными праметрами (размеры, вес, допуски, состав, и др.). То есть это часть конструкции, обладающая информационной самостоя-тельностью.

В принципе, каждый конструктивный элемент обладает неисчерпаемой информацией. Поэтому отбор и классификация информации о конструктивном элементе должны осуществлятьтся с учётом необхо-димости и достаточности.Информация о конструктив- ном элементе, по смыслу содержащихся в ней сведе-ний можно разделить на метрическую (размерные ха-рактеристики), технологическую (материал, термо- обработка, точность, шероховатость), спецификаци- онную (наименования, обозначения), графическую (изображение конструктивных элементов на черте-жах, экране и т.д.). К конструктивным элементам относятся стандартные детали с постоянной геометрической формой.

3. Основные характеристики некоторых существующих CAD/CAM систем .

Одной из основных задач, вставшей с появлением ЭВМ и оборудования с ЧПУ является сокращение времени подготовки управляющей информации и уменьшение вероятности ошибок.

Впервые задача автоматизированного программиро-вания для изготовления деталей на станках с ЧПУ была поставлена и решена Ассоциацией авиакосми-ческой промышленности США в сотрудничестве с Мас-сачусетским технологическим институтом в 1959-1961 гг. Был разработан специальный проблемно – ориентированный язык программирования АРТ (Auto-matic Programming Tools) и основанная на нём система программного обеспечения. Эта система рассчитана на применение достаточно мощной для того времени ЭВМ (IBM 360/370) и охватывает

практически все возможные операции от 2-х до многокоординатной обработки. По опыту использо-вания этой системы в производстве получено снижение трудоёмкости программирования практичес-ки в 10 раз. На базе этой системы, а также по аналогии стали появляться во всех во всех странах бесконечное количество различного рода систем. Достаточно назвать некоторые из них: АРТ-1,АРТ-2, АРТ-3, и т.д.; ЕХАРТ-1,2,3; ADAPT, AUTOPRESS, CLAM, COCOMAT и т.д. Многие из них используются до сих пор с некоторыми доработками, с учётом развития вычислительной техники и адаптации этих систем к современным ЭВМ.Система АП, как правило, состоит из языка описания геометрии детали, её технологии, предпроцессора, процессора и постпроцессора.

Но разработки всё новых и новых систем автомати-зированного проектирования не прекратились. Современные САПР можно условно разделить на «лёгкие» и «тяжёлые».Их различают по объёму возможностей, а значит,и по требованиям к ЭВМ, на

котором предполагается их использование.Раличия могут выражаться в особенностях возможностей 2D (плоского) и 3D (объёмного) проектирования, наличия возможности твёрдотельного моделирования, возможности вывода полученных данных на печать, станок с ЧПУ и т.п.

Рассмотрим некоторые из CAD систем.

Успех AutoCAD.

AutoCAD – безусловно, самая широко известная, занимающее одно из ведущих мест в среде CAD/CAM система.

Компания Autodesk, которой мы обязаны этой разработкой, была основана в апреле 1982 года группой из 15 программистов. А уже осенью того же года на проходившей в Лас-Вегасе выставке Comdex компания объявила о создании новой программы, получившей название AutoCAD . Новый продукт начал продаваться на рынке в начале 1983 года, и с того момента фактически стал одним из стандар-тов в области автоматизированного проектирования. )