Удельная теплоемкость воды при 16 °С условно принята за 1 и служит, таким образом, эталоном меры для других веществ. Как и плотность, удельная теплоемкость воды в зависимости от температуры не однозначна, а двузначна. Например, при 25 и при 50 °С она одинакова — 0,99800 кал/(г-°С). Теплоемкость льда на интервале от 0 до минус 20 °С в среднем 0,5 кал/(г-°С), т. е. в два раза меньше, чем у
Только водород и аммиак обладают большей, чем вода, теплоемкостью. жидкой воды. Удельная теплоемкость спирта и глицерина—0,3 (в три раза меньше, чем у воды), железа—0,1, платины—0,03, дерева—0,6, а каменной соли и песка—0,2 кал/(г-°С). В связи со сказанным выше становится попятным, почему при одинаковом получении солнечного тепла вода в водоеме нагреется в b раз меньше, чем сухая песчаная почва на берегу, но при этом вода во столько же раз дольше будет сохранять тепло, нежели песок. Любопытно, что теплоемкость воды в переохлажденном состоянии (например, при - 7,5 °С) на 2% выше, чем при той же температуре, но уже в кристаллическом состоянии.
Мы ежедневно слышим по радио сообщения об атмосферном давлении воздуха (наряду с сообщением о температуре, влажности, силе ветра и т. д.), нормальное значение которого для высоты Ленинграда над уровнем моря 760 мм рт. ст., а для Москвы, лежащей выше уровня моря на 124 м, 758 мм рт. ст. Мы все привыкли к тому, что при падении давления ниже нормы можно ожидать дождя, а при подъеме выше нормы – сухой погоды. Хотя с метеорологической точки зрения сухая и влажная погода определяются комплексом условий, а не одним только давлением. Многие люди, вероятно, помнят, что на старых анероидах помимо шкалы с делениями на миллиметры ртутного столба, были надписи: «великая сушь», «сушь», что отвечало давлению, превышающему норму, для данной местности, «переменно» — для нормального давления, «дождь», «буря» — для давления ниже нормы.
Вдумайтесь в сказанное. Ведь конденсация водяных паров в жидкость по законам физики должна происходить при увеличении давления, а при его падении процесс должен протекать в обратном направлении, т. е. жидкость должна превращаться в пар. В чем же здесь дело? Для ответа нам придется рассмотреть особенности удельной теплоемкости паров воды. При давлении 1 атм и температуре 100 °С из 1 л воды образуется 1600 л пара. Для определения удельной теплоемкости пара ограничим его состояние двумя случаями: пар находится либо в замкнутом объеме, либо в сосуде, позволяющем пару расширяться при передаче ему тепла при сохранении постоянного давления. В последнем случае температура и объем меняются.
Теплоемкость пара для принятых условий разная, и эта разница весьма существенна, причем не только для воды, но и для многих других веществ, например у ртути до 20%. Но при этом у воды обнаруживается аномалия: при 4°С теплоемкость в обоих случаях одинакова и лишь с повышением температуры она становится разной. При этом минимальная теплоемкость наблюдается при постоянном давлении и при температуре 27 °С, а при постоянном объеме такого минимума не наблюдается и с повышением температуры теплоемкость постепенно снижается. Заметим, что одна и та же масса воды, находящейся в парообразном состоянии, может быть нагрета в два-три раза легче, чем та же масса жидкой водой. Еще раз напомним, что объемы этих двух фаз воды относятся друг к другу, как 1600 : 1.
А теперь рассмотрим эти же два случая (определение теплоемкости при постоянном объеме и при постоянном давлении) для насыщенного пара. В принятых нами условиях возможно изменение температуры и превращается в мельчайшие капельки тумана.
Проведем с насыщенным паром, следующий опыт. Сосуд с насыщенным паром защитим от случайного поступления или потери тепла (теплоизолируем). При изменении давления в сосуде, казалось, можно ожидать один из двух случаев: либо при повышении давления (и уменьшении объема пара) он станет перенасыщенным с образованием тумана, либо в результате увеличения температуры он перегреется. Что же надо сделать, чтобы привести пар в первичное состояние? При перенасыщении его следует дополнительно нагреть (т. е. сообщить положительное количество тепла), при недонасыщении нужно от него отнять тепло, охладить (т. е. сообщить ему отрицательное количество тепла). В первом случае теплоемкость будет положительной, а во втором отрицательной. И вот в действительности оказывается, что теплоемкость насыщенного водяного пара при всех температурах и давлениях всегда отрицательная!
Этот поразительный и малопонятный результат эксперимента имеет место не только в лабораторных условиях, но и в природе. При повышении давления водяной газ (пар) не образует тумана и остается прозрачным, а при разрежении туман образуется. Правда, последнее происходит при наличии центров конденсации (пылинок), но их в атмосфере всегда достаточно.
Помимо описанных аномалий у этого удивительного вещества, каким является вода, существуют и другие аномалии (например, аномальная дисперсия, рассеяние, в области электрических и световых лучей и др.), но на них, чтобы не утруждать читателя, мы останавливаться не будем.
Общеизвестно, что испарение—переход вещества из жидкого или твердого состояния в газообразное (в пар). Обычно под испарением жидкости понимают превращение ее в пар, а испарение твердых тел называется сублимацией (или возгонкой). Обратный процесс, т. е. переход вещества из газообразного состояния в жидкое, именуется конденсацией. Испарение воды с поверхности растений носит название транспирации.
При испарении молекулы переходят из жидкости в пар, преодолевая силы молекулярного сцепления в жидкости. Процесс испарения протекает изотермически, т. е. при постоянной температуре. Скорость испарения определяется массой жидкости, испаряющейся за единицу времени с единицы поверхности. Одной из количественных характеристик процесса испарения воды в атмосферу является дефицит влажности, определяемый разностью между предельной упругостью водяного пара для данной температуры и фактической упругостью.
Если воздух в помещении полностью насыщен парами воды или если из наполненного до краев стакана вода не убывает, но и не прибывает, это значит, что испарение отсутствует, т. е. мы имеем состояние динамического равновесия.
До последнего времени считалось, что лед может переходить в пар, минуя жидкую фазу, т. е. Происходит процесс сублимации. Однако последние более детальные исследования показали, что это далеко не так. В действительности поверхность льда покрыта даже при отрицательных температурах переохлажденной квазижидкой пленкой связанной воды. Таким образом, испаряется не лед, а непрерывно пополняющаяся пленочная жидкая вода за счет подплавления льда. Это обстоятельство имеет очень большое народнохозяйственное значение при строительстве самых разнообразных подземных хранилищ в условиях многолетнемерзлых грунтов.
Когда произносят слово «вода», то подразумевают обычно, что речь идет о жидкости. Но вода часто находится в твердом состоянии — в виде льда.
В первой четверти нашего века немецкий химик Г. Тамман и американский физик П. Бриджмен выявили шесть разновидностей льда, различающихся давлениями и температурами (рис. 7):
Лед I - обыкновенный лед, существующий при давлении до 2200 аты, устойчивый в нормальных условиях, при дальнейшем повышении давления (выше 2200 атм) переходит в разновидностьII.
Лед II-с уменьшением объема на 18—20% тонет в воде, его плотность 1,2 г/см3 (при 0°С), очень неустойчив, легко переходит в модификацию III.
Лед III - также тяжелее воды (его плотность больше плотности льда I, из которого непосредственно может быть получена описываемая модификация, на 5%).
Лед IV -легче воды, существует при небольшом давлении и температуре немного ниже О "С, неустойчив и легко переходит в разновидность I.
Лед V — может существовать при давлении от 3,6 до 6,3 кбар, его плотность выше плотности льда III на 5,5 и воды на 6%. )