Для этой цели подходят монокристаллы дигидрофосфат аммония (NH4H2PO4) и дигидрофосфат калия (КН2РО4}, коротко они обозначаются как ADP или KDP кристаллы.
Описанным эффектом объясняется механизм действия электрооптического модулятора. Свет, покидающий газовый лазер, попутно может быть поляризован устройством в разрядной трубке оптического окна, расположенного под углом Брюстера. Поляризация может быть осуществлена также и с помощью поляризационного фильтра.
Линейная модуляция, прежде всего, преобразуется в круговую модуляцию с помощью так называемой четвертьволновой пластинки. В кристалле ADP эта модуляция в зависимости от сигнала становится более или менее эллиптической. На выходе поляризационного фильтра затем получается свет, модулированный по интенсивности. Если к электродам кристалла не приложено напряжение, то направление поляризации в кристалле не меняется и ориентация подключенного поляризационного фильтра соответствует плоскости поляризации света, выходящего из лазера (или после модулятора), причем свет проходит через все устройство практически неослабленным. Но если напряжение на электрооптическом кристалле повышается и при этом увеличивается угол поляризации выходящего света, то через поляризационный фильтр проходит уменьшающаяся часть света. При изменении поляризации на 90° второй фильтр полностью поглощает излучение и на выходе устройства образуется темнота.
Подобные модуляторы подходят также для очень быстрых изменений прилагаемого модулирующего напряжения. Они преобразуют передаваемый сигнал в полосе выше 1 ГГц, гораздо большей, чем это было возможно электрическими методами.
Модуляция интенсивности лазерного излучения без модуляции направления поляризации несомненно представляла бы собой технически более изящное решение. Кроме описанного конструктивного принципа (так называемой внешней модуляции лазера) можно реализовать другие варианты. Кристалл можно было бы, например, встроить в корпус резонатора газового лазера и обойтись значительно меньшей мощностью модулирующего сигнала (внутренняя модуляция). Тем самым устранялся бы существенный недостаток кристаллических модуляторов, обладавших в целом хорошими модуляционными характеристиками: потребность в больших напряженностях управляющего поля и соответственно высоких управляющих напряжениях (до нескольких сотен вольт).
В результате развития лазерной техники выяснилось, что для инженера простая модулируемость имеет преимущество перед когерентностью. Недостатки газового лазера, включая сложную модуляцию его излучения, уравновесили в системах связи потери в приемнике прямого усиления. Поэтому газовый лазер в основном исчез с рабочих столов инженеров по оптической технике связи и освободил место инжекционным лазерам и светоизлучающим диодам, даже с учетом ряда их недостатков, которые можно было устранить только в процессе последовательной неустанной работы по их совершенствованию.
Когда задача быстрой модуляции излучения газового лазера не была еще как следует решена, все же была ясна ее принципиальная возможность. Однако в 60-е годы еще нельзя было твердо сказать о решении важной проблемы — проблемы передачи модулированного света от одного места к другому. Только в космосе передача представляется сравнительно простой, поскольку свет в нем распространяется без ослабления. Когда удается очень сильно сфокусировать свет, т. е. получить пучок света толщиной с иглу (а это возможно для когерентного света), то можно в полном смысле слова перекрыть астрономические расстояния. (Правда, мы не говорим о скрытой стороне этого положения. Необходимо послать необычайно узкий световой луч и достигнуть далеко отстоящий пункт с максимально возможной световой мощностью, поэтому требуется очень высокая стабильность расположения передатчика, и положение приемника должно быть точно известно).
Что касается свойств атмосферы как передающего канала для модулированных световых лучей, то она является, очевидно, ненадежной средой с сильно изменяющимся и значительным ослаблением.
Несмотря на эту не совсем ободряющую ситуацию, приблизительно с 1965 по 1970 г. были испытаны все средства при рассмотрении возможностей техники оптической связи в атмосфере. Были созданы довольно простые и дешевые размером с портфель приборы, которые позволили осуществить передачу через атмосферу телевизионного изображения.
Если сравнить средние значения по многим измерениям, то можно установить: атмосферная оптическая связь рационально применима только в специальных редких случаях и только для очень коротких расстояний при весьма незначительных количествах передаваемой информации. Если речь идет только о единственном телефонном канале, то можно перекрыть несколько километров с надежностью линии передачи, равной 95 %. (Никакое управление связи и никакие телефонные абоненты не смирились бы с этим!) Приблизительно в 5% времени такая линия связи прерывается из-за погоды. Высокая надежность оптической связи в атмосфере может быть достигнута только в результате сильного уменьшения длины участка.
Следующей была мысль о вакуумированной или наполненной инертным газом трубе, которую хотели прямолинейно проложить на большие расстояния и, в которой луч света должен был распространяться, не ослабляясь в газах и из-за твердых частиц. Оптимисты говорили даже о «совместном использовании протяженных газопроводов».
Эта идея также не смогла выдержать сурового испытания. Строго прямолинейная прокладка была утопией.
Дальнейшее усовершенствование привело к так называемым линзовым световодам. Если в трубе на расстоянии приблизительно 100 м применить стеклянные линзы диаметром около 10 см с определенным показателем преломления, то можно доказать, что световой луч, входящий в трубу даже при не строго параллельном относительно оси пробеге, постоянно будет возвращаться к середине трубы (к оптической оси) и не покинет систему линз. С помощью такой конструкции можно также добиться искривления хода луча. Этот проект был исследован и экспериментально испытан. Но оказался довольно сложным т. к. даже сложных устройств, которые автоматически управляли положением отдельных линз, оказалось недостаточно, чтобы компенсировать отклонения луча, вызванные температурными колебаниями и движением земной коры. Варианты этой идеи исследовались долгие годы. Лаборатории фирмы Bell в США заменили механически регулируемые стеклянные линзы газовыми линзами. Это короткие отрезки газонаполненной трубки с внешним электрическим нагревом, в которых за счет перестраиваемых радиальных температурных градиентов можно было достигнуть требуемой фокусировки луча по центру трубы. Но эти работы также не привели к успеху.
Все вышеперечисленные этапы развития были пройдены, хотя простой способ передачи света был давно известен: передача луча по обыкновенному стеклянному стержню, который окружен средой с малым показателем преломления (например, воздухом). Световые лучи, проходящие внутри стеклянного стержня под небольшим углом к его оси, покидают его; они полностью отражаются от стенок стержня и зигзагообразно (или винтообразно) распространяются вдоль него, пока, наконец, не выйдут на конце даже в том случае, когда стеклянный стержень не прямолинеен, а изогнут.
Это явление было использовано для того, чтобы подвести через многократно изогнутый стеклянный или пластмассовый стержень свет лампы накаливания внутрь оптических приборов, в труднодоступные места с целью освещения или индикации.
Интересный вариант применения имеется в медицине: светопроводящий волоконный жгут, состоящий из множества волосяных световодов, благодаря чему достигнута такая гибкость, при которой жгут может быть введен в полости человеческого тела. Удалось даже изготовить так называемые упорядоченные жгуты: каждое отдельное светопроводящее волокно на конце жгута находилось точно на том же месте поперечного сечения, как и на противоположном конце жгута. Эти упорядоченные жгуты делают возможным передачу изображения при условии его освещения. )