4) на каждом шаге коррекции используются результаты сравнения СВР и РВР по НФВК, которые в конце предварительной коррекции могут дополняться сравнением по частным критериям (графики амплитуд и энергий, частотные спектры и др.) или с помощью дифференциальной оценки сходства.

Рассмотрим подробнее перечисленные положения.

Лекция 6

Чувствительность динамических характеристик к изменению параметров модели

Для обеспечения целенаправленности и сходимости процесса коррекции желательно, чтобы интерпретатор, принимающий решения об изменении параметров модели, руководствовался набором некоторых методических положений.

В результате обработки и анализа относительных отклонений динамических характеристик отмечены следующие закономерности.

1. Из трех динамических характеристик сейсмической записи (Е, F0 и DF) наиболее чувствительной к изменению параметров модели является энергия Е (например, при знакопеременном изменении плотности на 20% относительное изменение энергии в среднем в 8 раз выше, чем изменение ширины амплитудного спектра на уровне 0,7, и в 12 раз выше, чем изменение максимума частотного спектра F0.

2. Наиболее инертной (малочувствительной к изменению параметров модели) является преобладающая частота записи F0, например, при знакопеременном изменении плотностей, скоростей и мощностей слоев на 20% F0 изменяется в среднем на 4% при знакопеременном изменении толщин даже на 40% преобладающая частота F0 изменяется на 5%. Этот результат означает, что при интерпретации с помощью итеративного моделирования частота f0 должна уточняться на начальных шагах итеративного процесса коррекции.

3. Если изменение плотностей на одинаковую относительную величину во всех слоях и с одним знаком не изменяет самой СС и ее динамических характеристик, то аналогичное изменение скоростей, например на 20%, вызывает изменение Е в среднем на 30%, DF на 14% и F0 на 11%. В данном случае при сравнительно невысоких средних от­клонениях характеристик DF и F0 наблюдается значительно большая их дисперсия по сравнению с дисперсией этих характеристик при другом характере изменения скорости или при изменении других параметров модели. Полученный результат интересен в тех случаях, когда известно, что пластовые скорости содержат систематические погрешности: их, оче­видно, нужно устранять возможно раньше, на начальных шагах процесса коррекции.

4. Знакопеременное изменение плотностей, например на 20%, приводит к изменению энергии в среднем на 80%, DF на 17% и F0 на 10%. Аналогич­ное изменение скоростей, однако, не приводит к заметно большему изме­нению указанных характеристик, хотя в этом случае изменяются не только коэффициенты отражения, но и времена вступления волн.

5. Знакопеременное изменение толщин слоев приводит к очень слабому изменению динамических характеристик записи. Например, при изменении толщин на 20% энергия Е изменяется в среднем на 12%, DF на 7,5% и F0 на 3,5%. Необходимо подчеркнуть важ­ность данного результата, поскольку согласно ему в процессе коррекции модели даже при значительном изменении положения промежуточных границ в тонкослоистой пачке (даже до 40-50% от толщины слоя) без существенного изменения общей ее мощности не следует ожидать замет­ного изменения динамических характеристик записи. Отсюда можно сде­лать вывод: коррекцию толщин слоев целесообразно оставлять на второй этап.

6. Изменение частоты исходного сигнала f0 на ±20% приводит к сущест­венному изменению динамических характеристик: энергия Е изменяется в среднем на 38%, DF на 18% и F0 на 26%, причем наблюдается значительная дисперсия этих отклонений. Данный результат подкрепляет сделанный ранее вывод о том, что коррекция преобладающей частоты f0 исходного импульса должна выполняться на первых шагах итеративного процесса коррекции.

Приведенные оценки относительных изменений динамических характе­ристик записи касаются в основном тех случаев, когда параметры модели изменялись на 20 и 40%; естественно, изменения параметров модели на 15, 10% и менее вызывают меньшие изменения характеристик записи, но ли­нейной зависимости здесь нет.

Что касается преобладающей частоты импульса f0, то ее коррекцию необходимо осуществлять на первых шагах итера­тивного процесса коррекции, поскольку преобладающая частота записи F0 гораздо сильнее зависит от f0, чем от изменений пластовых параметров тонкослоистой пачки.

Коррекцию толщин слоев целесообразно также переносить на этап авто­матической коррекции в двух случаях. Во-первых, когда на синтетическом временном разрезе уже получены временные соотношения (интервалы меж­ду соседними отражениями или экстремумами), которые близки к вре­менным соотношениям на реальном разрезе. Во-вторых, если коррекция модели начинается с участка, расположенного в непосредственной близости к глубокой скважине, то толщины слоев принимаются достоверно извест­ными и, естественно, их грубая коррекция не требуется.

§ 3.5.2. Уточнение параметров модели в автоматическом режиме

Если исходная геологическая гипотеза верна, то геофизик-интерпретатор на первых шагах коррекции сравнительно быстро находит правильные решения и сходство СВР и РВР улучшается достаточно быстро. Затем после 10–15 итераций, когда для дальнейшего улучшения сходства разрезов требуется вводить в модель все более тонкие детали, то процесс сильно замедляется. С этого момента начинает играть значительную роль фактор времени, для преодоления которого любые средства автоматизации становятся малоэффективными.

Ниже излагается подход к постановке задачи и выбору численного метода ее решения, который ориентирован на отыскание глобального экстремума целевой функции, связывающей потрассную оценку сходства с параметрами сейсмомоделирования, причем размерность и положение области поиска при реализации данного подхода могут итеративно меняться в зависимости от достигнутого к настоящему моменту результата и суждения геофизика, ведущего процесс интерпретации.

Введем два допущения, упрощающих процесс образования сейсмического волнового поля и необходимых для построения целевой функции.

Первое допущение состоит в том, что волновое поле на временных разрезах аппроксимируется моделью, в которой возбуждение среды производится плоскими волнами, падающими по нормали к границе раздела, и практически отсутствуют многократные отражения. В этом случае можно учитывать единственный динамический фактор – коэффициент отражения.

Второе допущение состоит в том, что сейсмический сигнал аппроксимируется теоретическим импульсом Пузырева (3.1).

Глава 4. Программно-алгоритмическое обеспечение

Раздел 4.1. Решение прямой динамической задачи в лучевом приближении

§ 4.1.1. Поиск траектории нормального луча

Полный и точный учет амплитуд­ного фактора фокусировки сейсмической энергии возможен при сопостав­лении элементу отражающей границы пунктов взрыва-приема (ПВП), которые могут иметь нормальное отражение от этого элемента. Величина указан­ного элемента должна быть такой, чтобы часть среды, ограниченная норма­лями от его концов, удовлетворяла определению лучевой трубки. Всю со­вокупность траекторий нормальных лучей, необходимую для построения временного разреза, можно получить, рассмотрев все элементы всех отра­жающих границ модели среды.

Алгоритм нахождения траекторий нормальных лучей применяется в ходе просмотра с заданным шагом DX всех отражающих границ задан­ной модели. Если величина шага достаточно мала, ПВП, которые могут иметь нормальные отражения от рассматриваемого элементарного участка отражающей границы, располагаются между точками выхода нормалей, трассированных из его концевых точек. Для каждого полученного таким образом ПВП ведется поиск такого нормального луча, точка выхода кото­рого с заданной точностью совпадает с X-координатой этого ПВП. Итеративный алгоритм трассирования нормальных лучей из внутрен­них точек указанного элементарного участка позволяет завершить поиск, затратив минимальное количество трассированных лучей, что важно с точки зрения быстродействия программы. )