Раскрытие закономерностей зарождения и эволюции различных объектов Вселенной входит в задачи космогонии. Эти задачи она решает путем разработки научных предположений (гипотез), основанных на астрономических наблюдениях и их теоретическом обобщении, с использованием достижений всех отраслей естествознания. Поэтому в процессе развития естествознания, по мере его обогащения научными открытиями, разрабатываются новые космогонические гипотезы, объясняющие вновь открытые факты, а прежние, не удовлетворяющие им, отвергаются.
Современная космогония в своих обобщениях опирается на достижения смежных с ней отраслей естествознания – физики, математики, химии, геологии.
Научные основы космогонии были заложены еще Н.Ньютоном, который показал, что равномерное распределение вещества в пространстве является неустойчивым и под действием собственной гравитации должно разделиться на сжимающиеся сгустки. Теория образования сгустков вещества, из которых формируются звезды, была развита в 1902 г. английским астрофизиком Дж.Джинсом (1877 – 1946). Эта теория объясняет и процесс образования галактик. Джинс доказал, что в первоначально однородной газовой среде с постоянной плотностью и температурой может возникнуть уплотнение. Если сила взаимного тяготения в нем превысит силу газового давления, то среда перестанет сжиматься, а если превалирует газовое давление, то вещество рассеется в пространстве.
Эта теория в общих чертах подтверждается наблюдениями. Так, в Галактике межзвездная среда (газ и пыль) неоднородна и имеет клочковатую структуру. В сравнительно небольших газовых облаках с массой, близкой к массе Солнца, сила газового давления уравновешивается силой гравитации, и облака не сжимаются. В крупных газопылевых туманностях, подобных Большой туманности Ориона и называемых газопылевыми комплексами, размерами 10 – 100 пк и массой в несколько тысяч солнечных масс, сила гравитации преобладает над силой газового давления. Поэтому в таких облаках возникают сгустки вещества, температура внутри которых при сжатии повышается, и они постепенно преобразуются в звезды. Следовательно, в газопылевых комплексах звезды формируются группами, образуя звездные скопления и ассоциации. На формирование звезд группами даже в нашу эпоху впервые указал еще в 1947 г. советский астрофизик В.А.Амбарцумян.
Подобным образом можно объяснить и возникновение галактик, для формирования которых условия были благоприятными на ранних этапах расширения Метагалактики, когда температура вещества была близка к 106 К. Образовывались колоссальные по своим размерам сгущения с массами порядка сотен миллиардов солнечных масс, именуемые протогалактиками. По мере их дальнейшего сжатия в них возникали условия для формирования звезд, т.е. образовывались звездные системы – галактики.
Исходя из факта расширения Метагалактики, некоторые специалисты в области космологии оценивают ее возраст величиной, обратной постоянной Хаббла, т.е. 1,3*1010 лет. Учитывая, что принятое сейчас значение постоянной Хаббла известно с небольшой точностью, считают возраст Метагалактики близким к 13 – 15 млрд. лет. Этот возраст не противоречит оценкам возраста наиболее старых звезд и шаровых звездных скоплений в нашей Галактике.
Возникшие в газопылевой среде Галактики сгущения, продолжающие сжиматься под действием собственного тяготения, получили название протозвезд. По мере сжатия плотность и температура протозвезды повышается, и она начинает обильно излучать в инфракрасном диапазоне спектра. Длительность стадии сжатия протозвезд различна: при массе меньше солнечной – сотни миллионов лет, а у массивных – всего лишь сотни тысяч лет. Когда температура в недрах протозвезды повышается до нескольких миллионов кельвинов, в них начинаются термоядерные реакции превращения водорода в гелий. При этом выделяется огромная энергия, препятствующая дальнейшему сжатию и разогревающая вещество до самосвечения – протозвезда превращается в обычную звезду.
После выгорания водорода в недрах звезды образуется гелиевое ядро, а термоядерные реакции превращения водорода в гелий начинают происходить в тонком слое у границы ядра. В самом гелиевом ядре при создавшейся температуре ядерные реакции происходить не могут, и оно резко сжимается до плотности свыше 4*106 кг/м3. Вследствие сжатия температура в ядре возрастает. Рост температуры зависит от массы. Для звезд типа Солнца температура ядра остается всегда меньше 80 млн. кельвинов. Поэтому его сжатие приводит только к более бурному выделению ядерной энергии в тонком слое у границы ядра. У более массивных звезд температура ядра при сжатии становится выше 80 млн. кельвинов, и в нем начинаются термоядерные реакции превращения гелия в углерод, а потом и в другие более тяжелые химические элементы. Выходящая из ядра и его окрестностей энергия вызывает повышение газового давления, под действием которого фотосфера звезды расширяется. Энергия, приходящая к фотосфере из недр звезды, распространяется теперь на большую площадь, чем раньше. В связи с этим температура фотосферы понижается. Звезда постепенно превращается в красного гиганта или сверхгиганта в зависимости от массы, и становится старой звездой. Проходя стадию желтого сверхгиганта, звезда может оказаться пульсирующей, т.е. физической переменной звездой, и остаться в такой стадии красного сверхгиганта.
Раздувшаяся оболочка звезды небольшой массы уже слабо притягивается ее ядром и, постепенно удаляясь от него, образует планетарную туманность. После окончательного рассеяния оболочки остается лишь горячее ядро звезды – белый карлик.
Эволюция массивных звезд происходит более бурно. В конце своей жизни такая звезда может взорваться сверхновой звездой, а ее ядро, резко сжавшись, превратится в сверхплотный объект – нейтронную звезду или даже черную дыру. Сброшенная оболочка, обогащенная гелием и другими образовавшимися в недрах звезды химическими элементами, рассеивается в пространстве и служит материалом для формирования звезд нового поколения. Следовательно, некоторые характерные различия в содержании тяжелых химических элементов в звездах тоже могут служить признаком их формирования и возраста. В частности, есть основания полагать, что Солнце – звезда второго поколения, в которой есть примеси вещества в свое время прошедшего через горячие недра звезд первого поколения.
Знать прошлое Земли практически важно для понимания строения и изменения ее недр, а последнее важно при поисках полезных ископаемых и для возможности предвидеть землетрясения.
При установлении истории развития многолетних организмов мы можем сопоставлять разные экземпляры их. Дубы и дубочки, сгнившие деревья говорят нам о жизненном пути вековых деревьев, из которых ин одно не завершает его целиком на наших глазах. Можно сравнивать друг с другом планеты в их современном состоянии и пытаться судить по ним об эволюции Земли. Но нашу Солнечную систему нам сравнивать не с чем, ибо других, подобных ей, мы не знаем.
Философ Кант в середине XVIII века четко высказывал идею об эволюции мировых тел и, опередив ученых-астрономов, набросал мыслимую картину возникновения Солнечной системы из обширной туманности. Он рисовал ее в соответствии с тем, что тогда было известно науке о строении Солнечной системы, планет и туманностей, о законах природы.
Кант смело отверг идею творения и нарисовал развитие миров происходящим в силу естественных законов природы.
Независимо от Канта математик, механик и астроном Лаплас разработал подобную же картину происхождения Солнечной системы. Его рассуждения были строже и научнее. Мировоззренческое значение этих работ Канта и Лапласа было очень велико. Современники были потрясены величественной картиной мироздания, развернутой Лапласом.
Эти работы, а также разработка идеи эволюции, в частности в области геологии, великим русским ученым М.В.Ломоносовым способствовали тому, что позднее ученые и других областей науки убедились в существовании развития в природе. Понятие об эволюции постепенно вошло и в другие науки. )