А любил он науку , авиацию и очень любил эксперимент , считая его совершенно необходимым . Н.Е.Жуковский был не только великим ученым , но и инженером " высшего ранга " , поэтому его ученики не замыкались только в науке , а стремились к созданию оригинальных конструкций планеров , вертолетов, глиссеров , самолетов на основании научной теории и результатов экспериментов . Поэтому основанные на школе Николая Егоровича Жуковского авиационные институты - это не просто учебные заведения , а еще и научные организации , работающие над созданием российского воздушного флота.

А.Н.Туполев хотел , чтобы , получая памятный курс лекций , прочитанных Жуковским в 1913 г. и иданных в 1917 г. , каждый почувствовал то уважение и тепло к Николаю Егоровичу Жуковскому , которое сохранили его ученики . Эти воспоминания А.Н.Туполева являются прекрасной характеристикой научных и личных качеств великого русского ученого .

Напомню основные этапы развития научно - исследовательских работ в области аэродинамики самолетов отечественной авиации.

В первые послереволюционные годы бурное развитие аэродинамики , как и в теоретическом , так и в прикладном смысле , и в первую очередь в изучении пограничного слоя, получило свое практическое применение. Были заложены основы норм устойчивости и управляемости , изучены флатбер и бафтинг в применении к конкретным типам летательных аппаратов , разработаны серии новых скоростных и несущих профилей крыла с механизацией.

Разработанные основы дозвуковой и трансзвуковой аэроинамики с введением в эксплуатацию новых аэродинамических труб позволили совершить скачок влетных данных самолетов. Этому способствовали и увеличение мощности двигателей, разработка воздушных винтов изменяемого шага, создание новых конструционных материалов на основе алюминия и новых технологических процессов для обработки.

Как и во всякой науке , ведущая роль в решении задач в области аэродинамики принадлежала фундаментальным теоретическим исследованиям , на базе которых строились расчетные инженерные методы, составляющие основу прикладной теории. Корифеи советской аэродинамики, такие,как Н. Е. Жуковский, С. А. Чаплыгин, Б. Н. Юрьев, В. В. Голубев, М. В. Келдыш, С. А. Христианович, Г. П. Свищев, В. В. Струминский и многие другие, находились во главе прогресса авиации.

Трудность прикладного использования теоретических исследований состояла в том, что теоретические решения могли быть найдены только для отдельных форм профилей, крыльев, тел вращения. Это означало , что почти для всех практически используемых в авиации форм из-за отсутствия в то время ЭВМ, позволяющих использовать численные методы, большая часть теоретиков была занята конкретными расчетами. Правильность базовой теории и приближенных методов решения требовали экспериментальной проверки - подтверждения, а если необходимо, то и экспериментальных поправок, что имело и имеет место и до настоящего времени.

Для таких проверок была построена экспериментальная труба ЦАГИ диаметром 3 м и затем вторая - диаметром 6 м. В создании экспериментальной базы ЦАГИ особенно ве­лика роль А.Н.Туполева. Здесь, по мнению Г.П.Свищева, с полной силой проявился талант Андрея Николаевича как организатора крупного масштаба. Создание аэродинами­ческих труб с такими размерами и высокими скоростями потока сделало возможным ис­пы­тание крупных по размерам моделей,позволяющих точно моделировать формы само­летов , отрабатывать их аэродинамические характеристики , а часто испытывать и натуральные элементы самолета, в том числе фюзеляж.

В числе первых достижений аэродинамиков тех лет была обклейка полотном гофра поверхностей фюзеляжа на самолете АНТ-4, что дало большой эффект по улучшению летных данных. В порядок допуска в воздух самолета в первый раз вмешался предшественник АТК ВВС, определивший, что без соответствующего свидетельства ЦАГИ ни одна машина не может подняться в воздух. От ЦАГИ летательный аппарат получает свой воздушный паспорт, дающий право на первый взлет.

Был создан справочник конструктора, в котрый были включены все разделы аэродинамики самолета : аэродинамика крыла и воздушных винтов, охлаждение двигателей, аэродинамический расчет, устойчивость и управляемость, проверка на штопор, методика испытаний в эродинамических трубах и методика летных испытаний.

Дальнейшим развитием этого направления было создание руководства для конструкторов, где давались рекомендации по вопросам от выбора геометрических форм самолёта до получения результатов испвтаний моделей в аэродинамической трубе позволя­­­­­­ющие учесть особенности и детали реальной конструкции самолёта.

Вторым напралением развития прикладной науки является накопление фактов. В аэродинамике, как и в любой науке, говорил А. М. Черемухин, факты для развития теории и прикладных методов расчёта приносят познание явленй природы. Эти факты, кк правильно сказано, узнаются из "Неожиданных тел", возникающих при эксплуатации самолётов и их испытаниях, а также при изучении в аэродинамических трубах. На базе осмысления фактов идёт разработка теории, а затем уже на базе теории и накопленных экспериментальных данных создаются прикладные расчётные методы.

Лётные испытания всегда являлись отличнм источником информации, т.к. они проходят в натурных условиях и являются наиболее достоверными источниками для полученя научно-практических данных. Именно поэтому уже в прошлом в отечественных КБ создавались экспериментальные самолёты начиная с самолёта АНТ-4, о котором уже говорилось.

Однако, фудаментальные испытания оставались на стороне аэродинамических труб, кторые строились в нашей стране, и их объёмы и степень совершенства были уже таковыми, что в 1944 году в трубе Т-101 ЦАГИ испытывался самолёт ТУ-2, а в кабине самолёта находился лётчик-испытатель.

С появлением турбореактивных двигателей появилась возможность преодоления " звуквого барьера " и выхода самоёта на сверхзвуковую скорость . Для исследований новых эффектов была построена трансзвуковая аэродинамическая труба , а затем введены в эксплуатацию аэродинамические трубы больших сверхзвуковых скоростей .

Особое место в аэродинамике и самолётостроении занимает познание трансзвуковой скорости полёта , стоившей жизни многим лётчикам - испытателям и ставившей в трудное положение тех , кто строит самолёты и принимает их в эксплуатацию .

Переход военной и гражданской авиации к сверхзвуковым ско­ростям полета и совершение длительных полетов потребовали реше­­­­ния многих задач . Для этого прежде всего было необходимо существенно повысить аэродинамическое качество самолета на этих скоростях и ре­шить вопросы устойчивости и балансировки самолета во всем диапазоне скоростей - от дозвуковой до сверхзвуковой . Вопросы теплостойкости конструкционных материалов , смазки и герметиков стали одними из определяющих для констукций , работающих в условиях циклического аэродинамического нагрева , характерного для высоких сверхзвуковых скоростей полета .

Последние 40-50 лет характеризовались бурным ростом скоростей, высот и значительным увеличением дальности полета на дозвуковой скорости, особенно для транспортных и пассажирских самолетов. За этот период авиация увеличила максимальные скорости примерно в 4 раза , высоту и дальность - в 2,5-3 раза. Этот скочок стал возможным благодаря широкому внедрению в авиацию реактивных двигателей.

За рубежом созданием аппаратов тяжелее воздуха занимались Хенсен, Венси, Лилиенталь, Адер, Шанют и др., а научными исследованиями в этой области и экспериментами в аэродинамических трубах - Эйфель во Франции, Кейли в Англии и Ленгли в США.

Полеты братьев Райт, Сантос - Дюмона, Блерио, Кертиса, Уточкина, Ефимова и др. положили начало систематическим полетам в воздухе.

САМОЛЕТОСТРОЕНИЕ В СОВЕТСКОЕ ВРЕМЯ

После победы революции партия и правительство очень быстро осознали необходимость создания и развития воздушного флота России. Вопросы развития авиации неоднократно были в центре внимания советских партийных и государственных органов и неоднократно рассматривались на партийных съездах , специальных заседаниях и совещаниях с участием высших советских партийных и государственных деятелей. )