1S=1P+1T,

где Т- длительность земного года. Тот факт, что аномалитический месяц, длиннее сидерического, по существу означает, что сама лунная орбита как целое вращается в собственной плоскости, и линия, соединяющая перигей и апогей орбиты, называемая линией аксид поворачивается в том же направлении, в каком движется Луна. Так что Луне приходится постоянно «догонять» свой перигей. Драгонический месяц, напротив короче сидерического. Это значит, что линия узлов поворачивается навстречу движению Луны. Причина поворота большой оси лунного элипса и линии узлов была найдена лишь в 18 веке, после создания Ньютоном теории всемирного тяготения. А ещё через два столетия эта теория позволила рассчитать траекторию движения искусственных спутников Земли, обрела, так сказать вторую молодость.

ЛУННЫЕ НЕРАВЕНСТВА.

С именем древнегреческого Клавдия Птолемея обычно прежде всего связывают его геоцентрическую систему мира, против которой боролись Коперник, Джордано Бруно, Галилей, Кеплер.

ЛУННЫЕ МЕСЯЦЫ.

29, 53059 суток СИНОДИЧЕСКИЙ(от слова synodion-встреча).

27, 55455 суток АНОМАЛИТИЧЕСКИЙ( угловое расстояние Луны от её перигея называли аномалией).

27, 32166 суток СИДЕРИЧЕСКИЙ(siderium- звездный)

27, 21222 суток ДРАКОНИЧЕСКИЙ(узлы орбиты обозначают значком похожими на дракона).

Но Птолемей внес большой вклад в развитие астрономии, в частности, в теорию движения Луны, правда в тот период речь могла идти только о кинематической теории, ибо причины и истинные законы движения небесных тел известны не были. В течении длительного развития астрономической науки считалось, что небесные тела могут двигаться только равномерно по окружностям. Если движение выглядело более сложным , то его можно было представить комбинацией движений по нескольким окружностям. Именно так поступил Птолемей с Луной. Движение Луны по небу было неравномерным . Чтобы представить его комбинацией равномерных движений по окружностям, надо было сначала определить величину отклонений от равномерного движения, или так называемых неравенств. И во времена Птолемея, и даже во времена Кеплера и много позже было принято называть неравенствами отдельные компоненты отклонения положения Луны от положения воображаемой точки, движущейся по эклиптике равномерно с периодом равным сидерическому месяцу. Таким образом, слово «неравенство» в астрономии означало совсем не то, что оно означает в математике. Впрочем, в современной науке мы встречаемся с подобными примерами буквально на каждом шагу. Так, слово «элемент» означает в химии одно, а в электронике совсем другое. Никто не спутает ядро политы, ядро живой клетки и ядро атома. Все положения на небе Луны, Солнца, звезд и планет уже во времена Птолемея измерялись в системе координат напоминавших географическую долготу и широту. И назывались эти координаты почти так же: астрономическая долгота и астрономическая широта. Только широта небесных светил отсчитывалась от плоскости эклиптики, в те времена так называлась плоскость, в которой лежала орбита Солнца, обращающегося вокруг Земли, а долгота от точки весеннего равноденствия, в которой Солнце раз в год пересекает небесный экватор. Взявшись за определение лунных неравенств, Птолемей рассматривал в основном неравенства по долготе, выводя широту на колонну лунной орбиты, равному 5 градусам, именно таким определил этот угол Гепарк « муж трудолюбия и поклонник истины» как называл его Птолемей. По современным данным Гепарк ошибся всего на 8 минут дуги. Общее неравенство Е движения Луны по долготе Птолемей представил следующей формулой:

Е=6 15 sin Z+ 1 18 sin(2D+Z)+19 sin 2 Z

Здесь Z- угловое расстояние Луны от среднего перигея её орбиты, D- угловое расстояние Луны от Солнца. Из формулы Птолемея следовало, что лунные неравенства периодически и являются как бы суммой нескольких отдельных неравенств. Так первый и третий члены правой части формулы зависят от положения Луны относительно Перигея своей орбиты. Их сумма получается и носит название главного эллиптического неравенства. Но это название было дано не Птолемеем, а ученым в 17 веке, когда уже было известно, что Луна движется по эллипсу.

Второй член, в который входит угловое расстояние Луны от Солнца, связан с влиянием Солнца на движение Луны. Много позже, уже в 17 веке, он получил название эвекции, а в конце того же столетия Ньютон дал ему исчерпывающее объяснение . Но об этом чуть позже. Николай Коперник, используя свои более точные наблюдения, впрочем, он, как и Гиппарк и Птолемей, наблюдал невооруженным глазом, уточнил коэффициенты формулы Птолемея определил крайние и средние значения расстояния от Земли до Луны, причем ошибка в среднем расстоянии составляла всего 0, 1 % против современного значения. Новый шаг вперёд в создании кинематической теории движения луны сделал замечательный датский астроном- Тихо Браге. Он открыл третье по счету неравенство, получившее название вариации. В формуле для Е , это дополнительный член вида 40 sin 2 D . Затем Тихо Браге обнаружил ещё одно, четвертое лунное неравенство, выражаемое членом(-11 sin 2), где Z- угловое расстояние Солнца от перигея земной орбиты(Земля проходит перигей своей орбиты 1-2 января). Так как период последнего неравенства равен году, оно получило название годического уравнения. Здесь мы снова встречаемся с примером иного употребления всем привычного термина. Словом « уравнение» во времена Тихо Браге и вплоть до начала наших дней астрономы называли некоторые математические величины. Так, до сих пор в астрономии сохранился термин « уравнение времени» , означающий разность среднего и истинного солнечного времени. Тихо Браге открыл так же, что угол наклона лунной орбиты и эклиптики может изменятся в пределах +- 9, 5 от среднего значения 5,8 , причем наибольшего значения наклон орбиты достигает, когда направление Земля- Солнце совпадает с линией узлов лунной орбиты, а наименьшего- когда они перпендикулярны. Истинную формулу лунной орбиты установил Иоганн Кеплер доказавший, что Луна, как и планеты движется по эллипсу. На основе трёх законов планетных движений, открытых Кеплером, Исаак Ньютон вывел закон всемирного тяготения, нашел ту силу, которая заставляет небесные тела двигаться по эллиптическим или иным орбитам.

ОТ КИНЕМАТИКИ – К ДИНАМИКИ.

Развитие небесной механики, основанной на теории тяготения Ньютона, вселяло надежду, что и теория движения Луны будет построена без особого труда и все лунные неравенства получат простое объяснение. И действительно, Ньютон добился в этой области немалых успехов. Он показал, что неравенства являются следствием влияния Солнца на Луну, так называемых солнечных возмущений. Из анализа этих влияний он получил значение основных лунных неравенств. Ньютон количественно объяснил движение узлов лунной орбиты и периодическое изменение её наклона к эклиптике. Но когда он попытался вывести скорость смещения лунного перигея, то получил результат, вдвое меньше наблюдаемого. Да, теория движения Луны оказалась крепким орешком и для самого Ньютона, и для длинного ряда его последователей. В чем же состояла главная трудность? Мы знаем, что основная сила, действующая на планеты, - притяжение Солнца. Под действием этой силы планета должна описывать кеплеров эллипс. Притяжение других планет, массы которых в тысячи, сотни тысяч и миллионы раз меньше массы Солнца, приводит к небольшим отклонениям от кеплерова эллипса, которые принято называть возмущениями. Эти возмущения невелики и их нетрудно вычислить. Например известно, что по возмущениям движения Урана астрономы Дж. Адамс и Ливерье независимо вычислили положение и орбиту неизвестной до того планеты, вызывающей эти возмущения, ею оказался Нептун. В случае Луны дело обстоит совершенно иначе. Луна в своём обращении вокруг Земли постоянно подвергается возмущению со стороны самого массивного тела солнечной системы – Солнца. К тому же эти возмущения изменяются в течении аномалистического месяца, с изменением расстояния от Земли до Солнца. )