Существует детально разработанная классификация звездных классов (гарвардская). Классы обозначены буквами, подклассы - цифрами от 0 до 9 после буквы, обозначающей класс. В классе О подклассы начинаются с О5. Последовательность спектральных классов отражает непрерывное падение температуры звезд по мере перехода к все более поздним спектральным классам. Она выглядит так:
О - B - A - F - G - K - M
Среди холодных красных звезд, кроме класса М, есть две другие разновидности. В спектре одних вместо полос молекулярного поглощения окиси титана характерны полосы окиси углерода и циана (в спектрах, обозначаемых буквами R и N), а среди других характерны полосы окиси циркония (класс S).
Подавляющее большинство звезд относится к последовательности от О до М. Эта последовательность непрерывна. Цвета звезд различных классов различны: О и В - голубоватые звезды, А - белые, F и G - желтые, К - оранжевые, М - красные.
Рассмотренная выше классификация одномерная, так как основной характеристикой является температура звезды. Но среди звезд одного класса есть звезды-гиганты и звезды-карлики. Они отличаются по плотности газа в атмосфере, площади поверхности, светимости. Эти различия отражаются на спектрах звезд. Существует новая, двумерная классификация звезд. По этой классификации у каждой звезды кроме спектрального класса указывается еще класс светимости. Он обозначается римскими цифрами от I до V. I - сверхгиганты, II-III - гиганты, IV - субгиганты, V- карлики. Например, спектральный класс звезды Веги выглядит как А0V, Бетельгейзе - М2I, Сириуса - А1V.
Все сказанное выше относится к нормальным звездам. Однако существует множество нестандартных звезд с необычными спектрами. Прежде всего это эмиссионные звезды. Для их спектров характерны не только темные (абсорбционные) линии, но и светлые линии излучения, более яркие, чем непрерывный спектр. Такие линии называются эмиссионными. Присутствие в спектре таких линий обозначается буквой “е” после спектрального класса. Так, есть звезды Ве, Ае, Ме. Наличие в спектре звезды О определенных эмиссионных линий обозначается как Оf. Существуют экзотические звезды, спектры которых состоят из широких эмиссионных полос на фоне слабого непрерывного спектра. Их обозначают WC и WN, в гарвардскую классификацию они не укладываются. В последнее время были открыты инфракрасные звезды, которые почти всю свою энергию излучают в невидимой инфракрасной области спектра.
Звезды-гиганты и звезды-карлики
Среди звезд встречаются гиганты и карлики. Самые большие среди них - красные гиганты, которые, несмотря на свое слабое излучение с квадратного метра поверхности, светят в 50000 раз мощнее Солнца. Самые крупные гиганты в 2400 раз больше Солнца. Внутри у них могла бы разместиться наша Солнечная система вплоть до орбиты Сатурна. Сириус - это одна из белых звезд, он светит в 24 раза мощнее Солнца, он примерно вдвое больше Солнца в диаметре.
Но существует множество звезд карликов. Это в основном красные карлики с диаметром в половину и даже в одну пятую диаметра нашего Солнца. Солнце по своему размеру является средней звездой, таких звезд в нашей галактике миллиарды.
Особое место занимают среди звезд белые карлики. Но о них будет рассказано позже, как о конечной стадии эволюции обычной звезды.
Переменные звезды
Переменные звезды - это звезды, блеск которых изменяется. У одних переменных звезд блеск изменяется периодически, у других наблюдается беспорядочное изменение блеска. Для обозначения переменных звезд используются латинские буквы с указанием созвездия. В пределах одного созвездия переменным звездам присваивается последовательно одна латинская буква, комбинация из двух букв либо буква V с номером. Например, S Car, RT Per, V557 Sgr.
Переменные звезды делятся на три большие класса: пульсирующие, эруптивные (взрывные) и затменные.
Пульсирующие звезды обладают плавными изменениями блеска. Они обусловлены периодическим изменением радиуса и температуры поверхности. Периоды пульсирующих звезд меняются от долей дня (звезды типа RR Лиры) до десятков (цефеиды) и сотен дней (мириды - звезды типа Мира Кита). Пульсирующих звезд открыто около 14 тысяч.
Второй класс переменных звезд - взрывные, или, как их еще называют, эруптивные звезды. Сюда относятся, во-первых, сверхновые, новые, повторные новые, звезды типа И Близнецов, новоподобные и симбиотические звезды. К эруптивным звездам относятся молодые быстрые переменные звезды, звезды типа ИV Кита и ряд родственных им объектов. Число открытых эруптивных переменных превышает 2000.
Пульсирующие и эруптивные звезды называются физическими переменными звездами, поскольку изменение их видимого блеска вызваны физическими процессами, протекающими на них. При этом изменяется температура, цвет, а иногда и размер звезды.
Рассмотрим подробнее наиболее интересные типы физических переменных звезд. Например, цефеиды. Это весьма распространенный и очень важный тип физических переменных звезд. Им присущи особенности звезды d Цефея. Ее блеск непрерывно изменяется. Изменения повторяются через каждые 5 дней и 8 часов. Блеск возрастает быстрее, чем ослабевает после максимума. d Цефея - периодическая переменная звезда. Спектральные наблюдения показывают изменения лучевых скоростей и спектрального класса. Меняется также цвет звезды. Значит, в звезде происходят глубокие изменения общего характера, причина которых в пульсации внешних слоев звезды. Цефеиды - нестационарные звезды. Происходит поочередное сжатие и расширение под действием двух противоборствующих сил: силы притяжения к центру звезды и силы газового давления, выталкивающей вещество наружу. Очень важной характеристикой цефеид является период. Для каждой данной звезды он постоянен с большой точностью. Цефеиды - это звезды-гиганты и сверхгиганты с большой светимостью.
Главное, что между светимостью и периодом у цефеид существует зависимость: чем больше период блеска цефеиды, тем больше ее светимость. Таким образом, по известному из наблюдений периоду можно определить светимость или абсолютную звездную величину, а потом и расстояние до цефеиды. Вероятно, многие звезды на протяжении своей жизни некоторое время бывают цефеидами. Поэтому их изучение очень важно для понимания эволюции звезд. К тому же они помогают определить расстояние до других галактик, где они видны благодаря своей большой светимости. Цефеиды также помогают в определении размеров и формы нашей Галактики.
Другой тип правильных переменных - мириды, долгопериодичные переменные звезды, по имени звезды Миры (о Кита). Будучи огромными по своему объему, превышающему объем Солнца в миллионы и десятки миллионов раз, эти красные гиганты спектрального класса М пульсируют очень медленно, с периодами от 80 до 1000 суток. Изменение светимости в визуальных лучах у разных представителей этого типа звезд происходит от 10 до 2500 раз. Однако общая излучаемая энергия меняется лишь в 2-2,5 раза. Радиусы звезд колеблются около средних значений в пределах 5-10%, а кривые блеска похожи на цефеидные.
Как уже было сказано, далеко не у всех физических переменных звезд наблюдаются периодические изменения. Известно множество звезд, которые относятся к полуправильным или неправильным переменным. У таких звезд трудно или вообще невозможно заметить закономерности в изменении блеска.
Рассмотрим теперь третий класс переменных звезд - затменные переменные. Это двойные системы, плоскость орбиты которых параллельна лучу зрения. При движении звезд вокруг общего центра тяжести они поочередно затмевают друг друга, что и вызывает колебания их блеска. Вне затмений до наблюдателя доходит свет от обоих компонентов, а во время затмения свет ослабляется затмевающим компонентом. В тесных системах изменения суммарного блеска могут быть вызваны также искажениями формы звезд. Периоды затменных звезд - от нескольких часов до десятков лет.
Существует три основных типа затменных переменных звезд. Первый - это переменные звезды типа Алголя (b Персея). Компоненты этих звезд имеют шаровидную форму, причем размеры звезды-спутника больше, а светимость меньше главной звезды. Оба компонента либо белого цвета, либо главная звезда белого цвета, а звезда-спутник желтого. Пока затмения нет, блеск звезды практически постоянен. При затмении главной звезды блеск резко уменьшается (главный минимум), а при заходе спутника за главную звезду уменьшение блеска незначительно (вторичный минимум) или совсем не наблюдается. Из анализа кривой блеска можно вычислить радиусы и светимости компонентов. )