Световое излучение. По своей при­роде световое излучение ядерного взрыва — совокупность видимого све­та и близких к нему по спектру уль­трафиолетовых и инфракрасных лучей. Источник светового излучения — светящаяся область взрыва, состоящая из нагретых до высокой температуры веществ ядерного боеприпаса, воздуха и грунта (при наземном взрыве). Тем­пература светящейся области в тече­ние некоторого времени сравнима с температурой поверхности солнца (максимум 8000—10000 и минимум 1800 °С). Размеры светящейся области и ее температура быстро изменяются во времени. Продолжительность све­тового излучения зависит от мощности и вида взрыва и может продолжаться до десятков секунд. При воздушном взрыве ядерного боеприпаса мощ­ностью 20 кт световое излучение про­должается 3 с, термоядерного заряда 1Мт—10с. Поражающее действие светового излучения характеризуется световым импульсом. Световым импульсом на­зывается отношение количества свето­вой энергии к площади освещенной поверхности, расположенной перпен­дикулярно распространению световых лучей. Единица светового импульса — джоуль на квадратный метр (Дж/м2) или калория на квадратный сантиметр (кал/см2). 1 Дж/м2=23,9* 10-6кал/см2;

1 кДж/м2= 0,0239 кал/см2; 1 кал/см2 = 40 кДж/м2. Световой импульс зави­сит от мощности и вида взрыва, рас­стояния от центра взрыва и ослабле­ния светового излучения в атмосфере, а также от экранирующего воздейст­вия дыма, пыли, растительности, неровностей местности и т.д.

При наземных и надводных взры­вах световой импульс на тех же рас­стояниях меньше, чем при воздушных взрывах такой же мощности. Это объ­ясняется тем, что световой импульс излучает полусфера, хотя и большего диаметра, чем при воздушном взрыве. Что касается распространения свето­вого излучения, то большое значение имеют другие факторы. Во-первых, часть светового излучения поглощает­ся слоями водяных паров и пыли непо­средственно в районе взрыва. Во-вто­рых, большая часть световых лучей прежде, чем достичь объекта на по­верхности земли, должна будет прой­ти воздушные слои, расположенные близко к земной поверхности. В этих наиболее насыщенных слоях атмосфе­ры происходит значительное поглоще­ние светового излучения молекулами водяных паров и двуокиси углерода; рассеяние в результате наличия в воз­духе различных частиц здесь также гораздо большее. Кроме того, необхо­димо учитывать рельеф местности. Количество световой энергии, достига­ющей объекта, находящегося на опре­деленном расстоянии от наземного взрыва, может составлять для малых расстояний порядка трех четвертей, а на больших—половину импульса при воздушном взрыве такой же мощности.

При подземных или подводных взрывах поглощается почти все свето­вое излучение.

При ядерном взрыве на большой высоте рентгеновские лучи, излучае­мые исключительно сильно нагретыми продуктами взрыва, поглощаются большими толщами разреженного воз­духа. Поэтому температура огненного шара (значительно больших размеров, чем при воздушном взрыве) ниже. Для высот порядка 30—100 км на све­товой импульс расходуется около 25— 35 % всей энергии взрыва.

Обычно для целей расчета пользу­ются табличными данными зависимо­стей световых импульсов от мощности и вида взрыва и расстояния от центра (эпицентра) взрыва. Эти данные приведены для очень прозрач­ного воздуха с учетом возможности рассеяния и поглощения атмосферой энергии светового излучения.

При оценке светового импульса не­обходимо учитывать возможность воз­действия отраженных лучей. Если земная поверхность хорошо отражает свет (снежный покров, высохшая тра­ва, бетонное покрытие и др.), то пря­мое световое излучение, падающее на объект, усиливается отраженным. Суммарный световой импульс при воздушном взрыве может быть боль­ше прямого в 1,5—2 раза. Если взрыв происходит между облаками и землей, то световое излучение, отраженное от облаков, действует на объекты, за­крытые от прямого излучения.

Световой импульс, отраженный от облаков, может достигать половины прямого импульса.

Воздействие светового из­лучения на людей и сельскохозяйственных животных. Световое излучение ядерною взрыва при непосредственном воздействии вы­зывает ожоги открытых участков тела, временное ослепление или ожоги сет­чатки глаз. Возможны вторичные ожо­ги, возникающие от пламени горящих зданий, сооружений, растительности,

воспламенившейся или тлеющей оде­жды.

Независимо от причин возникнове­ния, ожоги разделяют по тяжести по­ражения организма.

Ожоги первой степени выражают­ся в болезненности, покраснении и припухлости кожи. Они не представ­ляют серьезной опасности и быстро вылечиваются без каких-либо послед­ствий. При ожогах второй степени об­разуются пузыри, заполненные проз­рачной белковой жидкостью; при по­ражении значительных участков кожи человек может потерять на некоторое время трудоспособность и нуждается в специальном лечении. Пострадавшие с ожогами первой и второй степеней, достигающими даже 50—60 % поверх­ности кожи, обычно выздоравливают. Ожоги третьей степени характеризу­ются омертвлением кожи с частичным поражением росткового слоя. Ожоги четвертой степени: омертвление кожи и более глубоких слоев тканей (подкож­ной клетчатки, мышц, сухожилий кос­тей). Поражение ожогами третьей и четвертой степени значительной части кожного покрова может привести к смертельному исходу. Одежда людей и шерстяной покров животных защищает кожу от ожогов. Поэтому ожоги чаще бывают у людей на открытых частях тела, а у живот­ных — на участках тела, покрытых ко­ротким и редким волосом. Импульсы светового излучения, необходимые для поражения кожи животных, покрытой волосяным покровом, более высокие.

Степень ожогов световым излуче­нием закрытых участков кожи зависит от характера одежды, ее цвета, плот­ности и толщины. Люди, одетые в сво­бодную одежду светлых тонов, одеж­ду из шерстяных тканей, обычно мень­ше поражены световым излучением, чем люди, одетые в плотно прилегаю­щую одежду темного цвета или про­зрачную, особенно одежду из синте­тических материалов.

Большую опасность для людей и сельскохозяйственных животных пред­ставляют пожары, возникающие на объектах народного хозяйства в ре­зультате воздействия светового излу­чения и ударной волны. По данным иностранной печати, в городах Хиро­сима и Нагасаки примерно 50 % всех смертельных случаев было вызвано ожогами; из них 20—30 % — непосред­ственно световым излучением и 70— 80 % — ожогами от пожаров.

Поражение глаз человека может быть в виде временного ослепления — под влиянием яркой световой вспыш­ки. В солнечный день ослепление длит­ся 2—5 мин, а ночью, когда зрачок сильно расширен и через него прохо­дит больше света, — до 30 мин и бо­лее. Более тяжелое (необратимое) по­ражение — ожог глазного дна — воз­никает в том случае, когда человек или животное фиксирует свой взгляд на вспышке взрыва. Такие необратимые поражения возникают в результате концентрированного (фокусируемого хрусталиком глаза) на сетчатку глаза прямо падающего потока световой энергии в количестве, достаточном для ожога тканей. Концентрация энергии, достаточной для ожога сетчатой обо­лочки, может произойти и на таких расстояниях от места взрыва, на кото­рых интенсивность светового излучения мала и не вызывает ожогов кожи. В США при испытательном взрыве мощ­ностью около 20 кт отметили случаи

ожога сетчатки на расстоянии 16 км от эпицентра взрыва, на расстоянии, где прямой световой импульс составлял примерно 6 кДж/м2 (0,15 кал/см2). При закрытых глазах временное ослеп­ление и ожоги глазного дна исключа­ются.

Защита от светового излучения бо­лее проста, чем от других поражаю­щих факторов. Световое излучение распространяется прямолинейно. Лю­бая непрозрачная преграда, любой объект, создающий тень, могут слу­жить защитой от него. Используя для укрытия ямы, канавы, бугры, насыпи, простенки между окнами, различные виды техники, кроны деревьев и т. п., можно значительно ослабить или вовсе избежать ожогов от светового излуче­ния. Полную защиту обеспечивают убежища и противорадиационные ук­рытия.

Тепловое воздействие на материалы. Энергия светового им­пульса, падая на поверхность предме­та, частично отражается его поверхно­стью, поглощается им и проходит че­рез него, если предмет прозрачный. Поэтому характер (степень) пораже­ния элементов объекта зависит как от светового импульса и времени его дей­ствия, так и от плотности, теплоемкос­ти, теплопроводности, толщины, цве­та, характера обработки материалов, расположения поверхности к падаю­щему световому излучению, — всего, что будет определять степень поглоще­ния световой энергии ядерного взры­ва. )