растений переход в состояние покоя происходит в период первой фазы закаливания. У древесных покой наступает в начале осени, до прохождения первой фазы закаливания.

При переходе в состояние покоя изменяется баланс фитогормо-нов: уменьшается содержание ауксина и гиббереллинов и увеличи­вается содержание абсцизовой кислоты, которая, ослабляя и инги-бируя ростовые процессы, обусловливает наступление периода покоя. Поэтому обработка растений озимой пшеницы, люцерны и других культур в этот период ингибиторами роста (например, хлор-холинхлоридом — ССС или трииодбензойной кислотой) повышает устойчивость растений к низким температурам.

Первая фаза закаливания проходит на свету и при низких положительных температурах в ночное время (днем около 10 °С, ночью около 2 °С), останавливающих рост, и умеренной влаж­ности почвы. Озимые злаки проходят первую фазу на свету при среднесуточной температуре 0,5—2 °С за 6—9 дней, древесные — за 30 дней. В эту фазу продолжается дальнейшее замедление и даже происходит полная остановка ростовых процессов.

Свет в этой фазе необходим не только для фотосинтеза, но и для поддержания ультраструктур клетки. В таких условиях за счет фотосинтеза образуются сахара, а понижение температуры в ночное время значительно снижает их расход на дыхание и процессы роста. В результате в клетках растений накапливаются сахароза, другие олигосахариды, растворимые белки и т. д., в мембранах возрастает содержание ненасыщенных жирных кис­лот, снижается точка замерзания цитоплазмы, отмечается неко­торое уменьшение внутриклеточной воды.

Благоприятные условия для прохождения первой фазы зака­ливания озимых растений складываются при солнечной и про­хладной (дневная температура до 10 °С) погоде, способствующей накоплению в тканях растений углеводов и других защитных веществ. В естественных условиях оптимальный срок первой фазы закаливания озимых злаков до двух недель. За это время количество сахаров в растениях возрастает до 70 % на сухую массу или до 22 % на сырую массу, т. е. близко содержанию Сахаров в корнеплодах лучших сортов сахарной свеклы.

Растения озимой пшеницы можно закалить и в темноте при 2 °С, если их корни или узлы кущения погрузить в раствор сахарозы. Такие растения выдерживают морозы до —20 °С (И. И. Туманов, 1979). Накапливающиеся в процессе закалива­ния сахара локализуются в клеточном соке, цитоплазме, клеточ­ных органеллах, особенно в хлоропластах. При закаливании рас­тений высокоморозоустойчивого сорта озимой пшеницы при температуре, близкой к О °С, количество Сахаров в хлоропластах листьев увеличивалось в 2,5 раза, благодаря чему хлоропласты продолжали функционировать. Повышение содержания сахаров в хлоропластах коррелирует с морозоустойчивостью растений.

В хлоропластах содержатся те же формы сахаров, что и в листьях: фруктоза, глюкоза, сахароза, олигосахара (Т. И. Труно­ва, 1970). Имеются данные, что при накоплении сахаров процесс фотофосфорилирования продолжается даже при отрицательных температурах. Более морозоустойчивые виды и сорта растений лучше накапливают сахар именно при сочетании пониженной температуры и умеренной влажности почвы. Дело в том, что в первой фазе закаливания происходит уменьшение содержания свободной воды, а излишняя влажность почвы при дождливой осени затрудняет этот процесс, повышается вероятность в после­дующем образования внутриклеточного льда и гибели растений.

Метаболические изменения, наблюдаемые во время первой фазы, могут быть вызваны изменением гормонального и энерге­тического балансов, что определяет синтез и активацию специ­фических ферментов, свойства клеточных мембран закаленных тканей. Накапливающаяся в тканях абсцизовая кислота увеличи­вает проницаемость мембран для воды, водоотдачу клеток. К концу первой фазы закаливания все зимующие растения перехо­дят в состояние покоя. Однако процессы закалки, перестройки процессов обмена веществ продолжаются.

Вторая фаза закаливания не требует света и начинается сразу же после первой фазы при температуре немного ниже О °С. Для травянистых растений она может протекать и под снегом. Длится она около двух недель при постепенном снижении температуры до -10 .-20 °С и ниже со скоростью 2—3 °С в сутки, что приво­дит к частичной потере воды клетками, освобождению клеток тканей от избыточного содержания воды или витрификации (переходу воды в стеклообразное состояние). Явление витрифи­кации воды в растительных клетках наступает при резком охлаж­дении (ниже —20 °С). Стеклообразная растительная ткань долго сохраняет свою жизнеспособность.

При постепенном понижении температуры в межклеточниках образуется лед и начинают функционировать механизмы, предо­храняющие подготовленные в первой фазе закаливания растения от чрезмерного обезвоживания. Накопившиеся в первой фазе закаливания сахара изменяют устойчивость биоколлоидов цито­плазмы к низким температурам, возрастает относительное коли­чество коллоидно-связанной воды.

Вторая фаза обеспечивает отток из цитозоля клеток почти всей воды, которая может замерзнуть при отрицательной темпе­ратуре. При критических температурах отток воды из клеток значительно ухудшается, появляется много переохлажденной воды, которая затем замерзает внутри протопласта и может при­вести к гибели клеток. Следовательно, чем менее морозоустойчи­во растение, тем медленнее должна протекать вторая фаза зака­ливания.

Действующими факторами второй фазы закаливания являют-

ся обезвоживание, вызывающее сближение молекул в цитозоле, вязкость которого соответственно увеличивается; низкая темпе­ратура, уменьшающая тепловое движение молекул в протопласте. В результате во второй фазе закаливания происходит перестрой­ка белков цитоплазмы, накапливаются низкомолекулярные водо­растворимые белки, более устойчивые к обезвоживанию, синте­зируются специфические белки. Содержание незамерзающей (связанной) воды в тканях зимостойкой пшеницы почти в 3 раза выше по сравнению с незимостойкой.

Перестройка цитоплазмы увеличивает проницаемость ее для воды, способствует более быстрому оттоку воды в межклеточни­ки, что снижает опасность внутриклеточного льдообразования. При обезвоживании, происходящем под влиянием льдообразова­ния, наблюдаются сближение и деформация белковых молекул, связи между которыми могут рваться и не восстанавливаются, что пагубно для клетки. Очевидно, при таких условиях происхо­дит быстрое смещение структурных частиц по отношению друг к другу, что приводит к разрушению субмикроскопической струк­туры протопласта (И. И. Туманов).

Цитоплазма закаленных растений более устойчива к механи­ческому давлению. Поэтому важно наличие у молекул белков сульфгидрильных и других гидрофильных группировок, которые способствуют удержанию воды, препятствуют слишком сильному сближению молекул белка. Между содержанием сульфгидриль­ных групп и морозоустойчивостью клеток растений установлена положительная связь. Благодаря изменению свойств молекул белков и межмолекулярных связей в процессе закаливания по­степенное обезвоживание приводит к переходу цитоплазмы из состояния золя в гель.

Первая фаза закаливания повышает морозоустойчивость рас­тений с —5 до -12 °С, вторая увеличивает морозоустойчивость, например, у пшеницы до —18 .—20 °С, у ржи — до —20 .—25 "С. Растения, находящиеся в глубоком органическом покое, отлича­ются способностью к закаливанию и выдерживают проморажи-вание до —195 °С. Так, черная смородина после наступления состояния глубокого покоя и завершения первой фазы закалива­ния переносила охлаждение до —253 °С (И. И. Туманов, 1979).

Не у всех растений процесс закаливания проходит в две фазы. У древесных растений, имеющих в тканях достаточное количест­во Сахаров, сразу же протекают процессы, свойственные второй фазе закаливания. Однако не все растения способны к закалива­нию. Теплолюбивые растения (хлопчатник, рис, бахчевые куль­туры) при длительном пребывании при температурах немного выше О °С не только не становятся устойчивыми, но еще силь­нее повреждаются или даже погибают, так как в них накаплива­ются ядовитые вещества, усиливающие губительное действие на растения низких температур. )