Система бинарных векторов основана на том, что область тДНК и гены vir могут распологаться на разных плазмидах [Hockemu et al., 1983]. В таких системах обычно присутствуют два элемента:

1) Ti-плазмида-помощник, в которой тДНК польностью делетирована. Эта плазмида несет в своем составе гены vir, действующие in trans.

2) Плазмида широкого круга хозяев, имеющая сайты для клонирования и маркерные гены для селекции растений, ограниченные правой и левой фланкирующими последовательностями тДНК [An et al., 1988] рис

Обе описанные выше системы векторов предполагают --------- этапах сборку нужных конструкций в промежуточных векторах, например в pAP2034 [Veltena, Sehell., 1987] или pRT103 [Topter et al., 1983] а затем перенос из в готовом виде в рецепиентные штаммы агробактерий.

1.1.3. Процессинг тДНК в бактериальной клетке

и ее перенос в клетки растений

Формы процессированной тДНК. При культивировании Agrobacterium tumefaciens с механически поврежденными частями растений, регенерирующими протопластами или в присутствии --------- из клеток бактерий можно выделить различные молекулярные формы процессированной тДНК – одноцепочечные линейные, двуцепочечные линейные и двуцепочечные кольцевые, которые могут претендовать на роль посредника в переносе генетического материала в растительную клетку [-------, 1980]. Причем кольцевая форма, образующаяся за счет гомологичной рекомбинации между правой и левой границей тДНК с образованием одной гибридной границы, встречается в очень малых количествах. При ее образовании не происходит репликативного синтеза ДНК, в то время как в случае образования двух других форм, возможно прохождение репликации тДНК в бактериах в процессе ее транспотра в растения (к появлению одноцепочечных форм может приводить прерывание, ингибирование прерывистого синтеза запаздывающей цепи). Репликация призвана обеспечить сохранение тДНК в исходной Ti-плазмиде, если только не допустить возможность существования физического вырезания материала тДНК из Ti-плазмид за счет образования двухцепочечных разрывов в границах. Исчезновение тДНК из Ti-плазмид является главным недостатком отошедшей на второй план подобной "эксцезионной модели". Тем не менее, образование двуцепочечных разрывов внутри границ и появление детектируемых количеств линейной двуцепочечной формы тДНК при культивировании бактериальных клеток в присутствии ---------- исследователи наблюдали уже через 30 минут после добавления этого индуктора в среду. Так же в условиях индукции vir-генов --------- в клетках агробактерий обнаруживается линейная одноцепочечная форма процессированной тДНК [Stachel et al., 1986].

Появление этого интермедиата обнаруживается через восемь часов после добавления индуктора, и его количество накапливается на протяжении последующих 40 часов более, чем в два раза, а затем идет на убыль, показывая, что процесс лимитирован.

Какая из форм транслоцируется через бактериальную мембрану в бактериальную клетку до сих пор остается не выясненным из-за трудности определения относительного количества каждой из форм и выявления динамики их превращения. Возможно, процессинг и транспорт тДНК не разобщены во времени и идут сопряженно подобно конъюгационному переносу плазмид, происходящему в месте контакта мембран конъюгирующих клеток [Clark and Warren, 1979]. Тогда все обнаруживаемые интермедиаты могут быть аберрантными формами прерванного на каком-то этапе неделимого процесса (или неправильно завершенного). В случае индуцированной экспрессии vir-генов ------- отсутствует главный элемент взаимодействия – контакт бактериальной клетки и растительной клетки, и, поэтому, все обнаруживаемые в этом случае формы могут претендовать на роль посредника лишь с определенными допущениями. Достоверно известно, что в растительную клетку попадает только одна цепь тДНК и конвертируется в двуцепочечную уже в растительной клетке. Обсуждается, что в случае прохождения в клетке Agrobacterium tumefaciens -------- полуконсервативной репликации тДНК вторая цепь может в процессе переноса гидролизоваться, высвобождая энергию для транспорта переносимой цепи.

1.1.4. Разработка система трансформаций растений с

помощью Agrobacterium tumefaciens

Большинство первоначальных экспериметнов по генетической трансформации растений было предпринято с помощью заражения пораненных растительных клеток с помощью агробактерий с немодифицированными Ti-плазмидами. Для сохранения стерильности часто инфицировали эксплантаты in vitro вместо целых растений. Бактерии затем удаляли, добавляли в среду цефотоксин или карбенициллин. Трансформанты отбирали на безгормональной среде.

В дальнейшем по мере создания обезоруженных векторов и новых селективных маркеров, был разработан более эффективный метод, дающий большое число трансформантов: кокультивирование агробактерий с растительными протопластами либо с эксплантантами листьев. Было показано, что кокультивирование протопластов с агробактериями, либо с бактериальными --------, приводит к образованию опухоли [Marton et al., 1979, Wullems et al., 1981]. Затем подобный подход был успешно применен для трансформации растительных клеток агробактериями, несущими в составе тДНК химерные селективные маркеры [Fraley et al., 1983, Herrera-Estrella et al., 1983].

Этот метод был в дальнейшем улучшен использованием так называемых фидерных культур [Fraley et al., 1983]. Однако, все перечисленные методы пригодны только для трансформации растений, которые можно легко регенерировать из протопластов (например, табак и петуния). Эту проблему мрожно легко преодолеть кокультивируя агробактерии с листовыми дисками вместо протопластов [Horch et al., 1985; Rogers et al., 1986; Lloyd et al., 1986]. Стерильные листовые диски --------- с агробактериями, несущими в составе обезоруженного вектора какой-либо селективный маркер устойчивости к антибиотику. Затем кусочки листьев культивируют два дня на фидерных чашках со средой для образования побегов. После этого их переносят на среду с цефотоксином для уничтожения бактерий и с каким-либо антибиотиком (например, с ---------) для отбора трансформантов. Регенерировавшие побеги дают корни, после чего растения переносят в почву для проведения дальнейших экспериментов.

Поскольку метод трансформации листовых дисков представляет собой идеальное сочетание высокой частоты трансформации с легкой и быстрой ------- и регенерацией трансформантов, этот подход стали использовать во многих лабораториях мира. Кроме того были предложены некоторые модификации метода. Для повышения частоты трансформации листовых дисков Arabiodopsis было предложено обрабатывать агробактерии --------- [Sheikholeskam a. Week S, 1987], который является индуктором генов vir [Stachel et al., 1985]. Однако метод трансформации листовых дисков применим для трансформации только тех видов растений, которые могут регенерировать побеги из недифференцированных клеток в месте поранения.

Наряду с методом трансформации листовых дисков широко используются конъюгированные агробактерии со стеблевыми сегментами [An et al., 1986], клетками суспензированной культуры [Scott a. Draper, 1987], микрокаллусами [Pollock et al, 1985] и прорастающими семенами [Feldmam a. Markis, 1987]. Метод трансформации семян агробактериями был впервые применен для арабидопсиса и заслуживает особого внимания, так как не требует работы с культурой ткани.

1.1.5. Проблема сохранения чужеродных генов, перенесенных в растение

Чужеродные ДНК, перенесенные в растительные клетки с помощью различных методов, обычно встраиваются в ядерный геном и наследуются в соответствии с законами Менделя [De Block et al., 1984; Horsch et al., 1984]. Области ингерации, по видимому, распределены случайным образом по геному. Встраивание генов по определенным сайтам было ранее описано в системах животных клеток [Smithies et al., 1985; Maniatis, 1985] и недавно подобный подход был успешно применен для трансформации растений [Paszkowski et al., 1988].

В большинстве случаев последовательности чужеродной ДНК встраиваются в один локус либо в одной копии, либо в виде кластера тандемных вставок, что было показано с помощью гибридизации in situ [Mouras et al., 1986]. Однако, часто наблюдаются множественные вставки в два или более участков на разных хромосомах [De Block et al., 1984; Peerbolte et al., 1986a, b; Feldmann a. Marus, 1987]. В связи с этим во многих случах была получена контрансформация физически несцепленных генов, сегрегация некоторых проходила в поколении F1 [De Framond et al., 1986; Simpson et al., 1986]. )