По-видимому, самым простым является случай, когда клониру­емый ген способен комплементировать ауксотрофную мутацию в штамме-реципиенте. В этом случае клетки высеваются на среду, ли­шенную вещества, необходимого для роста данного штамма, и только клетки, содержащие рекомбинантную ДНК с искомым геном, способны расти на этой среде. Из таких клонов получают гомогенную культуру клеток, которую используют для получения искомого сегмента ДНК, проделывая все операции в обратном порядке (то есть из клеток выделяют вектор, из него вычленяют необходимый фрагмент ДНК и так далее).

Гораздо чаще для отбора необходимых клонов приходится при­бегать к методу ДНК-ДНК- или ДНК-РНК-гибридизации. Для этого необходимо располагать "зондами" (индивидуальными молекула­ми ДНК или РНК или их фрагментами), комплементарными нуклеотидной последовательности клонируемого гена. Это могут быть специ­ально синтезированные олигодезоксирибонуклеотиды длиной в 15-20 остатков, последовательность которых выбрана на основании полно­стью или частично известной первичной структуры гена или закодиро­ванного в нем белка. Это могут быть кДНК, синтезированные на инди­видуальных РНК-копиях данного гена (как таковые или в виде отклонированных, то есть существенно умноженных в количестве фрагментов ДНК). Наконец, это могут быть сами индивидуальные РНК, закодированные в данном гене. Ясно, что во всех случаях "зонды" должны нести радиоактивную метку (обычно 32Р) с достаточно высокой удельной активностью.

Если же индивидуальный "зонд" недоступен, то применяют методы, которые из большого числа рекомбинантов (106) позволяют выбрать сравнительно небольшую группу (около 102), включающую рекомбинант с искомым геном. Эта группа подразделяется на подгруп­пы (например, на 10) по 10 рекомбинантов. Из каждой подгруппы выделяется ДНК, которую используют для синтеза мРНК и последу­ющей трансляции ее с целью обнаружения соответствующего продукта искомого гена.

Трансляция мРНК может быть осуществлена в бесклеточной системе. Однако в случае эукариотических генов мРНК часто перено­сят в ооциты лягушки (ксенопуса) с помощью техники микроинъек­ции, где она транслируется. Продукт трансляции обычно обнаружива­ют с помощью антител.

Далее в подгруппе, где обнаружен искомый ген, тем же методом исследуется каждый клон.

При наличии зонда с чашки Петри, на которой выращены колонии клеток, делается отпечаток (реплика) на нитроцеллюлозном фильтре. Клеткам дают вырасти на фильтре, затем их разрушают, подвергают ДНК щелочной денатурации и фильтр прогревают при 80°С, после чего ДНК необратимо с ним связывается. Фильтр отмыва­ют от примесей и обрабатывают радиоактивным "зондом" в условиях, оптимальных для ДНК-ДНК- или ДНК-РНК-гибридизации. После удаления избытка "зонда" методом ауторадиографии определяют поло­жение клеточного клона, содержащего участок ДНК с нуклеотидной последовательностью, комплементарной "зонду". Этот клон становит­ся затем источником клеток для получения искомого гена или его фрагмента.

Для селекции клонов, несущих необходимый ген, достаточно широко применяются и иммунологические методы. Принцип отбора на первых этапах тот же, что и при использовании ДНК- и РНК-зондов. Далее с колоний с рекомбинантными ДНК делается реплика с помощью полимерной пластинки, на которой закреплены антитела к продукту искомого гена. Положение клонов, вырабатывающих этот белок, опре­деляется также с помощью антител, но уже меченных радиоактивным йодом (125I).

1.2.4. РАЗНООБРАЗИЕ ВЕКТОРНЫХ МОЛЕКУЛ

Под понятием "вектор" понимается молекула нуклеиновой кислоты, способная после введения в клетку к автономному существованию за счет наличия в ней сигналов репликации и транскрипции.

Векторные молекулы должны обладать следующими свой­ствами:

1) способностью автономно реплицироваться в клстке-реципиенте, то есть быть самостоятельным репликоном;

2) содержать один или несколько маркерных генов, благодаря экспрессии которых у клетки-реципиента появляются новые призна­ки, позволяющие отличить трансформированные клетки от исходных;

3) содержать по одному или, самое большее, по два участка (сайта) для различных рестриктаз в разных районах (в том числе в составе маркерных генов), но не в области, ответственной за их репликацию.

В зависимости от целей эксперимента векторы можно условно разделить на две группы: 1) используемые для клонирования и амплификации нужного гена; 2) специализированные, применяемые для экспрессии встроенных чужеродных генов. Вторая группа векторов объединяет векторы, призванные обеспечить синтез белковых продуктов клонированных генов. Векторы для экспрессии содержат последовательности ДНК, которые необходимы для транскрипции клонированных копий генов и трансляции их мРНК в штаммах клеток.

В качестве прокариотических векторов используются плазмиды, бактериофаги; в качестве эукариотических векторов применяют вирусы животных и растений, векторы на основе 2 мкм дрожжей и митохондрий и ряд искусственно сконструированных векторов, способных реплицироваться как в бактериальных, так и в эукариотических клетках (челночные векторы).

Плазмиды - это внехромосомные генетические элементы про- и эукариот, которые автономно реплицируются в клетках. Большинство плазмидных векторов получено на основе природных плазмид ColE1, pMB1 и p15A.

Бактериальные плазмиды делят на два класса. Одни плазмиды (например, хорошо изученный фактор F, определяющий пол у E.coli) сами способны переходить из клетки в клетку, другие такой способно­стью не обладают. По ряду причин, и прежде всего для предотвращения неконтролируемого распространения потенциально опасного генети­ческого материала, подавляющее большинство бактериальных плазмидных векторов создано на базе плазмид второго класса. Многие при­родные плазмиды уже содержат гены, определяющие устойчивость клеток к антибиотикам (продукты этих генов - ферменты, модифици­рующие или расщепляющие антибиотические вещества). Кроме того, в эти плазмиды при конструировании векторов вводятся дополнитель­ные гены, определяющие устойчивость к другим антибиотикам.

На рис. 4 показан один из самых распространенных плазмидных векторов E.coli - pBR322. Он сконструирован на базе детально изученной плазмиды E.coli - колициногенного фактора ColE1 - и содер­жит ориджин репликации этой плазмиды. Особенность плазмиды ColE1 (и pBR322 соответственно) состоит в том, что в присутствии ингибитора синтеза белка антибиотика хлорамфеникола (опосредо­ванно ингибирующего репликацию хозяйской хромосомы) ее число в E.coli возрастает от 20-50 до 1000 молекул на клетку, что позволяет получать большие количества клонируемого гена. При конструирова­нии вектора pBR322 из исходных плазмид был делегирован целый ряд "лишних" сайтов для рестриктаз.

В настоящее время наряду с множеством удобных векторных систем для E.coli сконструированы плазмидные векторы для ряда дру­гих грамотрицательных бактерий (в том числе таких промышленно важных, как Pseudomonas, Rhizobium и Azotobacter), грамположительных бактерий (Bacillus), низших грибов (дрожжи) и растений.

Плазмидные векторы удобны для клонирования относительно небольших фрагментов (до 10 тыс. пар оснований) геномов небольших размеров. Если же требуется получить клонотеку (или библиотеку) генов высших растений и животных, общая длина генома которых достигает огромных размеров, то обычные плазмидные векторы для этих целей непригодны. Проблему создания библиотек генов для высших эукариот удалось решить с использованием в качестве клонирующих векторов производных бактериофага l.

Среди фаговых векторов наиболее удобные системы были созда­ны на базе геномов бактериофагов l и М13 E.coli. ДНК этих фагов содержит протяженные области, которые можно делегировать или за­менить на чужеродную ДНК, не затрагивая их способности реплицироваться в клетках E.coli. При конструировании семейства векторов на базе ДНК l фага из нее сначала (путем делений коротких участков ДНК) были удалены многие сайты рестрикции из области, не сущест­венной для репликации ДНК, и оставлены такие сайты в области, предназначенной для встраивания чужеродной ДНК. В эту же область часто встраивают маркерные гены, позволяющие отличить рекомбинантную ДНК от исходного вектора. Такие векторы широко использу­ются для получения "библиотек генов". Раз­меры замещаемого фрагмента фаговой ДНК и соответственно встраи­ваемого участка чужеродной ДНК ограничены 15-17 тыс. нуклеотидных остатков, так как рекомбинантный фаго - )