Особенно большое экологическое значение свет имеет для фотосинтезирующих растений. Из-за его недостатка они

отсутствуют на многокилометровой глубине океанических вод. Реже растения страдают от избытка света и отсутствуют в по­верхностном слое воды, если его освещенность становится че­резмерной.

Большинству животных свет нужен для распознания среды и ориентации движений. Под контролем светового фактора про­исходят грандиозные миграции, когда каждые сутки миллиарды тонн живых организмов перемещаются на сотни метров с поверх­ности в глубину и обратно. В очень большой степени от света зависит окраска гидробиоитов, которая у ряда животных может даже меняться, обеспечивая маскировку.

Ориентируясь на свет, гидробиоиты находят для себя наи­более выгодное положение в пространстве. Особенно большое значение свет имеет для организмов, совершающих суточные миграции. В большинстве случаев начало подъема и спуска оп­ределяется временем наступления той или иной освещенности.

Восприятие звука у водных животных развито относительно

лучше, чем у наземных. Звук быстрее и дольше распространя­ется в воде, чем на суше. Известное значение в жизни гидро­биоита имеют шумовые нагрузки, связанные с деятельностью че­ловека -работой лодочных и корабельных моторов, турбин, под­водным бурением и т.д. У гидробиоитов одновременно снижается скорость дыхания, темп роста и доля яйценосных самок; привы­кание к шуму не наблюдается даже после месячного содержания рыб в таких условиях.

Очевидно,весьма значительную, но еще малоизученную роль играют в жизни гидробиоитов электрические и магнитные поля. Благодаря высокой чувствительности электрорецепторов, многие гидробиоиты способны воспринимать богатейшую информацию, в частности различают особей своего вида и врагов, скорость и направление течений, температуру, солевые и газовые ингреди­енты, а также устанавливают симптомы, предшествующие ано­мальным природным явлениям.

<Экологические основы жизнедеятельности.>

В биосферном аспекте питание -один из основных про­цессов, благодаря которому осуществляется круговорот веществ в природе. В более узком плане питание выступает как процесс включения того или иного органического вещества вкакие-либо конкретные организмы, желательные или нежелательные для че­ловека. Управление этим процессом в целях усиления воспроиз­водства нужного биологического сырья, формирования высокого качества воды и охраны чистоты водоемов в условиях их комп­лексного использования -одна из актуальнейших проблем.

Пищевые адаптации водных организмов с одной стороны

направлены на добывание корма нужного количества, т.е. обуславливают выборность или элективность питания; а с дру­гой стороны обеспечивают определенный уровень интенсивности питания, т.е. добывание корма в нужных количествах и доста­точно высокую степень его переваривания.

Покровы гидробиоитов полупроницаемы. Находясь в воде они должны противостоять физико-химическим силам выравнива­ния осмотических и солевых градиентов, а временно оказываясь в воздушной среде избежать потери влаги. Для противостояния силам выравнивания водные организмы вырабатывают ряд адапта­ций, Направленных, с одной стороны, на активное поддержание нужных градиентов, а с другой- уменьшение до минимума физи­ко-химических эффектов, в частности за счет снижения прони­цаемости покровов. Последний путь, энергетически более эко­номный, используется в ограниченных пределах, поскольку растущая изоляция от среды осложняет процессы обмена веществ с нею.

Процессы регуляции водно-солевого обмена обеспечиваются работой выделительной системы, рядом морфологических и пове­денческих адаптаций. Приспособление к снижению влагоотдачи и некоторые другие предохраняют гидробиоитов от гибели вне во­ды, например в приливно-отливной зоне, в пересыхающих водое­мах, при периодических выходах на сушу. Ряд адаптаций обеспечивает защиту водных организмов от осмотического обез­воживания и обводнения, создающих угрозу механического пов­реждения клеток. В соответствии с этим решается задача регу­лирования и концентрации соотношения отдельных ионов в клет­ках тела. Совершенством адаптаций, обеспечивающих стабилиза­цию водного и солевого обмена, определяется их способность существовать в водах различной солености и выживать в осма­тически неустойчивой среде.

Помимо расширительного понимания дыхания как всякого высвобождающего энергию биологического окисления, есть и бо­лее узкое, распространяющееся только на процессы, связанные с поглощением кислорода. Аэробное дыхание в воде сложнее, чем на суше. У наземных животных влага на дыхательных по­верхностях нормальное и несколько меньшее количество раство­рееного кислорода. Если вода, омывающая дыхательные структу­ры гидробиоитов, насыщена кислородом, то условия их дыхания не хуже, а даже лучше, чем у наземных форм. Однако, гораздо чаще содержание кислорода в воде немного ниже нормального и в таких случаях распираторная обстановка для гидробиоитов крайне неблагоприятна. При этом следует учесть, что концент­рация кислорода снижается в результате жизнедеятельности са­мих гидробиоитов, и не всегда достаточно быстро восстанавли­вается за счет тех или иных внутриводоемных процессов. Слож­ность распираторных условий в воде обусловила выработку у гидробиоитов ряда морфологических, физиологических и биохи­мических реакций организма, обеспечивающих нужный уровень интенсивности дыхания в более или менее широком интервале концентраций растворенного кислорода. Регулируя интенсив­ность газообмена, гидробиоиты маневренно оптимизируют свою энергетику, экономичность процессов реализации программы роста и развития. В условиях крайнего дефицита кислорода гидробиоиты предельно снижают свою активность и некоторое время выживают благодаря использования минимума энергии. Не­большое число гидробиоитов постоянно существуют в отсутствие растворенного кислорода, извлекая его из химических соедине­ний и добывая энергию другими способами.

Росту организмов сопутствует их развитие -поступатель­ное изменение всей организации тела, направленное на дости­жение оптимального репродуктивного состояния, обеспечение необходимой эффективности размножения. В ходе онтогенеза, перестраиваясь структурно и функционально, организмы дости­гают репродуктивной зрелости. Чем больше образуется потомков и выше их выживаемость, тем успешнее реализуется жизненная стратегия вида -максимизация в биосфере, свойственной ему формы трансформации веществ и энергии, универсализация свое­го образа жизни, предельное усиление своей биогеохимической функции на Земле. Поскольку такая тенденция свойственна всем видам, это усиливает их конкуренцию на материальные и энер-

гетические ресурсы биосферы, расширяет ресурсную базу жизни, интенсифицирует в эволюционном аспекте биологический круго­ворот веществ и поток энергии в биосфере.

<Водные биоресурсы и их

рациональное использование.>

В результате роста и размножения гидробиоитов в водемах происходит непрерывное образование биомассы. Это экосистем­ное явление называют биологической продуктивностью, сам про­цесс образования биомассы -биологическим продуцированием, а новообразованную биомассу -биологической продукцией. Биоло­гическая продукция -только часть биоорганической продукции -всего органического вещества, содаваемого организмами в процессе своей жизнедеятельности. Биопродуктивность экосис­тем реализуется в форме образования организмов, полезных, безразличных или вредных для человека. В связи с этим исходя из текущих запросов практики можно говорить о биохозяйствен­ной продукции -биомассе организмов, имеющих в настоящее вре­мя промысловое значение. Вне зависимости от интересов прак­тики различают продукцию первичную и вторичную. Первая

представляет собой результат биосинтеза органического ве­щества из неорганического в процессе жизнедеятельности гид­робиантов-автотрофов. Вторичная продукция образуется в про­цессе трансформации уже имеющегося органического вещества организмами-гетеротрофами.

Биопродуктивность гидросистем можно рассматривать в двух планах: природном (биосферном) и социально экономи­ческом. В первом случае результаты продуцирования безотноси­тельно к интересам человека, как одну из особенностей круго­ворота веществ в экосистеме, как одну из функций экосистем -блоков биосферы. С социально-экономической точки зрения би­опродуктивность характеризуется величиной вылова гидробиан­тов, используемых человеком. В этом случае продуктивность определяется как свойствами самих эксплуатируемых экосистем, так и формой их хозяйственного освоения. )