Старение- многопричинный процесс, вызываемый многими факторами, действие которых повторяется и накапливается в течении всей жизни. Среди них стресс, болезни, активация свободно радикального окисления и накопления перекисных продуктов метаболизма, воздействие ненобиотиков (чужеродные вещества), изменение концентрации водородных ионов, температурные повреждения, недостаточное выведение продуктов распада белков, гипоксия и др. Старение- многоочаговый процесс. Он возникает в разных структурах клетки- ядре, митохондриях, мембранах и др; в разных типах клеток- нервных, секреторных, иммунных, печёночных и др. Темп возрастных изменений определяется соотношением процессов старения и витаукта. Механизмы могут быть разделены на 2 группы.

1. Генотипические- генетически запрограммированные механизмы:

а) система антиоксидантов, связывающая свободные радикалы;

б) система микросомального окисления печени, обезвреживания токсичных веществ;

в) антигипоксическая система, предупреждающая развитие глубокого кислородного окисления;

г) система репарации ДНК, ликвидирующая повреждение этой макромолекулы.

2. Фенотипические- механизмы, возникающие в течении всей жизни благодаря процессам саморегуляции и способствующие сохранению адаптационных возможностей организма:

а) появление многоядерных клеток,

б) увеличение размеров митохондрий на фоне уменьшения числа других,

в) гипертрофия и гиперфункция отдельных клеток в условиях гибели части их,

г) повышение чувствительности к медиаторам в условиях ослабления нервного контроля.

[3]3.Проявление старения на молекулярном и клеточном уровнях.

Молекулярные механизмы старения клеток различных типов не универсальны. Нельзя объяснить молекулярные механизмы старения одних клеток данными, полученными при изучении клеток другого типа; нельзя считать последовательность изменений на молекулярном уровне в клетках одного типа общей закономерностью старения для всех клеток. Действительно, последовательность возрастных изменении в первично стареющем нейроне и, к примеру, в мышечной клетке после деструкции под- ходящего к ней нервного окончания во многом отличаются друг от друга.

В одних клетках первичные изменения наступают в регулировании генома, в других — в мембранных процессах, в энергетическом обмене и уже вторично в геноме с последующими нарушениями во всех звеньях жизнедеятельности клеток.

Старение приводит к функциональной неполноценности клеток самого различного типа. Более того, глубокие возрастные изменения метаболизма и структуры заканчиваются не только функциональной дефектностью клетки, но и в конечном итоге ее гибелью. Однако даже функционально однородные клетки стареют в неодинаковом темпе. Среди одного и того же класса клеток — нервных, мышечных, печеночных и др. можно выделить клеточные образования с грубыми изменениями структуры и функции и клетки с выраженными проявлениями гиперфункции, с комплексом адаптационных реакций. Так, во многих клетках отмечается уменьшение ядерно-цитоплазматического контраста; уменьшение числа митохондрий, их набухание, разрушение, спирализация; нарушение целостности эндоплазматического ретикулума, атрофия канальцев эндоплазматического ретикулума; уменьшение числа рибосом, увеличение числа первичных лизосом, появление вторичных лизосом, накопление липофусцина, аутофагосом и остаточных телец; появление вакуолей, ограниченных мембраной, изменение толщины; разрывы в плазматической мембране. В мышечных волокнах, кроме того, уменьшается фракционный объем саркотубулярной сети, нарушается расположение А—1-дисков, цистерны Т-систем в отдельных местах расширены и характеризуются очаговым утолщением и уплотнением мембран, наступают серьезные нарушения в самом сократительном аппарате мионов. Гистохимические методы позволили установить определенную корреляцию между степенью структурных, ультраструктурных изменений в клетке и активностью ряда ключевых ферментов, содержанием гликогена, РНК и др.

[4]Гибель клеток, уменьшение их числа неодинаково выражено в различных органах, в пределах различных клеточных популяций. Так, в мозгу, к примеру, в ряде областей коры головного мозга коры мозжечка, в скорлупе, в голубом пятне отмечается убыль клеток на 30—40%. В то же время в ряде структур гиппокампа, ствола мозга, гипоталамуса практически не отмечено потери числа нейронов. Убыль числа клеток описана в печени, почках, эндокринных железах, миокарде, скелетных мышцах.

Уменьшение числа клеток неодинаково сказывается на функции различных органов в старости. Особенное значение этот процесс имеет для функции нервных центров, ограниченная популяция клеток которых определяет важные внутри-центральные взаимоотношения, регуляцию метаболизма и функции других тканей.

Наряду с этим в старости описываются клетки, находящиеся в состоянии гиперфункции и гипертрофии. В них отмечается ряд метаболических, структурных феноменов, имеющих явно адаптивный характер — гипертрофия ядра, полиплоидия, многоядерность, увеличение площади ядерных мембран, гипертрофия митохондрий, гиперплазия структур Гольджи, появление мощной сети шероховатого ретикулума, гипертрофия миофибрилл и др. В одних клетках отмечаются отдельные компоненты витаукта в условиях возрастной деградации, в других адаптивный сдвиг характерен для всей клетки в целом. Можно полагать, что при убыли части клеток на оставшиеся ложится повышенная функциональная нагрузка. Метаболические сдвиги, происходящие при этом, активируют генетический аппарат, биосинтез белка клеток и в результате развивается гипертрофия. Развитие ее будет зависеть от степени нагрузки и выраженности возрастных изменений генетического аппарата.

Очень важно, что даже в пределах одного органа изменяется соотношение клеток различной функциональной значимости. Речь идет о нарастании глиоза во многих структурах мозга, об изменении соотношения афферентов, интернейронов, мотонейронов в спинном мозгу, о неравномерном сдвиге в количестве функционально различных клеток в гипоталамусе. Таким образом, только простой убылью клеток невозможно объяснить все многообразие функциональных изменений, наступающих в процессе старения. Важно взаимоотношение между деградировавшими клетками и возникающими адаптивными реакциями, состояние механизмов регуляции, определяющих взаимодействие клеток. Так, при старении наступают серьезные нарушения функции иммунитета. Общее содержание Т- и В-лимфоцитов, плазмати-ческих клеток, активность макрофагов, уровень иммуноглобулинов изменены мало. Для драматических изменений функции иммунитета больше дает анализ зрелых и незрелых лимфоцитов, долгоживущих и короткоживущих лимфоцитов и особенно регуляторных факторов — хелперов и супрессоров. В последние годы раскрываются все новые и новые важные стороны функции глиальных элементов, в частности их роль в регуляции трофики нейрона. Предполагается, что соединительнотканные элементы в миокарде могут регулировать пластические процессы в миокардиальных клетках. Следовательно, взаимоотношения между этими клетками в ходе возрастной эволюции не укладываются в категории «больше—меньше», а имеют существенное регуляторное и на определенном этапе адаптивное значение.

В ходе эволюции функционально-однородные клетки претерпевали определен-ные изменения. Однако фундаментальные и физиологические свойства их сохранились. Этим можно объяснить и сходство многих проявлений старения клеток, взятых от животных, находящихся на разных этапах филогенеза. Это подтверждается данными монографии о сходстве ряда структурных и физиологических изменений, возникающих в нервных клетках моллюсков и крыс при их старении.

Известна роль клеточных мембран в осуществлении функции клеток. В книге приведен обширный материал об изменении электрических и других биофизических свойств мембран клеток различного типа. Оказалось, что в процессе старения они изменяются неодинаково, например, мембранный потенциал клеток скелетных мышц, миокарда, клеток печени в среднем практически не изменяется, а гладкомышечных клеток и сосудов, ацинарных клеток околоушной слюнной железы растет. Неодинаково изменяются и другие свойства клеток, например, прямая возбудимость скелетно-мышечных клеток с возрастом падает, а мотонейронов спинного мозга растет. В неоди-наковой степени изменяется сопротивление мембран разных клеток, их проницаемость. Во многих клетках существенны изменения в течение потенциала действия. Так, в мотонейронах спинного мозга значительно растет продолжительность антидромных потенциалов действия, растет длительность потенциалов действия и скелетно-мышечных волокон. Длительность потенциала действия миокардиальных волокон с возрастом не изменяется. Однако при гиперфункции у старых животных наступают более выраженные изменения в потенциалах действия миокардиальных волокон. )