Сочетанное действие
физических и химических факторов
В представленных научным комитетом ООН по эффектам атомной радиации в отчетах (UNSCEAR, 1982, цит. по Ракину), выделены два класса количественной оценки эффектов сочетанного действия различных факторов: 1. Наблюдаемый эффект вызван действием обоих агентов (ИИ и кофактором). Здесь отмечаются три частных случая сочетанного действия факторов:
а. интегральный эффект равен по значению сумме эффектов раздельно-действующих софакторов (аддитивность);
б. интегральный эффект выражен менее, чем это бы имело место при сложении результатов действия факторов порознь (антагонизм);
в. интегральный эффект превышает по значению сумму эффектов, действующих независимо софакторов (синергизм).
2. Этот класс включает наблюдаемый эффект - результат модифицирования действия одного из агентов другим, неактивным самим по себе. Сюда относятся два варианта с противоположным действием:
а. резкое снижение ИЭ неактивным агентом (протекция);
б. резкое повышение эффекта неактивным агентом (сенсибилизация).
Сочетание факторов и их действия на живой объект может носить различный характер. Например, при действии лазерного излучения и гамма - лучей Со на дрожжи S. Сеrеvisae нескольких штаммов отмечен аддитивный характер взаимодействия факторов по выживаемости (Петин, 1987).
В экспериментах, выполненных на Zea mays, при действии на этот объект ультразвука и рентгеновских лучей также обозначен аддитивный эффект. Другие исследователи обнаружили синергизм действия ультразвука и ИИ на клетки кишечной палочки и млекопитающих (Martins е.а., 1977, Graid, 1977). Обнаружившие синергизм, авторы отметили, что если ультразвук вызывает мембранные повреждения, то ИИ - ядерные, то есть синергизм может быть результатом этих двух типов повреждений.
Гипертермия является сенсибилизирующим агентом. Однако клетки млекопитающих более чувствительны к воздействию температуры и ИИ по сравнению с дрожжевыми. Проведенные В.Г. Петиным исследования на диплоидных и гаплоидных штаммах дрожжей E. magnusii, Z. Bceilli, подтверждают вывод о синергичном характере взаимодействия гипертермии и ИИ.
Следует ожидать, что плотно ионизирующие излучения вызывают большую долю необратимых повреждений, чем редко ионизирующие.
Такое действие вызывает разные повреждения в клетке в частности, такая комбинация иприт и рентгеновские лучи дает сходства генетических эффектов так как они действуют непосредственно на мишень, то есть «разрывают>> хромосомы. При взаимодействии ИИ с азотной кислотой происходит в РНК - генах замена оснований. В ДНК спаривание уроцила с аденином приводит к транзиции гуанин - цитазин на аденин - тимин (Ауэрбах, 1978), так же азотная кислота может индуцировать делеции, так как она способствует поперечному сшиванию двух цепей ДНК (Schuster, 1960, цит. по Ауэрбаху).
УФ - лучи и органические перекиси вызывают мутации нуклеиновых кислот (Ауэрбах, 1978).
Существует ряд химических агентов, получивших название «супермутагенов», к которым относятся пестициды, этилметасульфонат, этиленамин и другие (Шварцман, 1973). В сочетании ИИ и супермутагены проявляют либо аддитивный либо синергический эффект, противоположным по действию являются радиопртекторы. Их действие основано на перехвате кванта энергии, электронов, либо образующегося в результате их действия свободного радикала. К этим веществам относятся тиолсодержащие соединения, витамины тиамин и цианобеламин, иденовые соединения. Радиопртекторы снижают вероятность формирования летальных повреждений и уже сформированных потенциально летальных повреждений в следствие стимуляции систем пострадиационного восстановления.
1.5. Заключение
Исследования генетических эффектов в процессе гаметогенеза, индуцированного радиацией, позволили определить радиочувствительность разных стадий этого процесса.
При изучении разных видов генетических повреждений (ДЛМ, РЛМ, ПЛМ) было обнаружено, что у самцов мышей половые клетки находящихся на разных стадиях сперматогенеза, располагаются по мере возрастания генетической радиочувствительности в следующем порядке: сперматогонии, сперматоциты, сперматозоиды, сперматиды (Померанцева, Рамайя, 1969).
Причины различной генетической радиочувствительности половых клеток, находящихся на разных стадиях гаметогенеза, еще окончательно не ясны. Результаты исследований позволили предположить, что эти причины обусловлены комплексом факторов: особенностями метаболизма клеток, степенью конденсации хромосом, уровнем насыщения клеток кислородом, относительной продолжительностью стадий ядерного цикла, чувствительностью к летальному эффекту радиации, количеством радиозащитных веществ в цитоплазме, интенсивностью работы системы репарации (Шапиро, 1964).
Сперматозоиды более чувствительные, чем оогонии, т.к. несут генетическую информацию и накапливают генетический груз. В оогониях меньше нарушений, т.к. они сразу закладываются в организме в определенном количестве и более защищены природой. Сперматозоиды являются основным вкладчиком изменчивости. В них часто возникают мутации нейтральные, но бывают неблагоприятные. Поэтому они менее конкурентоспособные при проникновении в яйцеклетку (Ватти, Тихомирова, 1976).
На радиочувствительность половых клеток большое влияние могут оказывать биохимические преобразования, происходящие в процессе гаметогенеза. Так, в сперматидах происходит замещение муцинбогатого гистона соматического типа новым типам гистона, характеризующимся высоким содержанием аргинина (Кузин, 1973).
В половых клетках самцов мышей, подвергшихся воздействию мутагенов или рентгеновских лучей, уровень диссоциации ДНП и денатурации ДНК снижается по мере трансформации сперматогониев в спермоциты и спермии. Эти изменения сопровождаются упрочнением нуклеопротеидного комплекса. (Стаканов, 1977).
При воздействии хемотерапевтических препаратов мутации проявляются в сперматогониях, т.к. они более чувствительны. Клетки на более поздних стадиях развития, когда находятся в процессе мейотического деления более резестентны. Слабо пролеферирующие стволовые сперматогонии проявляют среднюю чувствительность (Messtrich, 1984).
Стволовые сперматогонии при воздействии малых доз гамма-излучений от 0 – 8 Гр являлись в 6 раз более резистентными, чем клетки костного мозга у хомячка.
Таким образом механизмы мутагенного действия ИИ и ТМ на генетические структуры биологических объектов носят различный характер. Нарушения наследственного аппарата при действии этих веществ порознь, как правило, имеют различную природу, однако, механизмы репарации таких повреждений едины, и выход мутаций обусловлен именно способностью клетки компенсировать вред, нанесенный мутагенами. При сочетанном действии ТМ и ИИ часто вступают в силу эффекты протекции и сенсибилизации. При этом большое значение имеют дозы и концентрации (их соотношение) действующих совместно факторов (Витвицкий и др., 1996). В целом же досконально механизмы взаимодействия мутагенов не выяснены.
2. Материалы и методы
Для работы использовали мышей линии СВА в возрасте 3 – 3,5 мес. Нитрат свинца и тория в концентрациях 0.03, 0.1, 0.3 г/кг веса (в пересчете на содержание иона свинца Pb2+ и тория Th4+ вводили самцам с питьем и облучали гамма-излучением 1,8 Гр в течении месяца.
По истечении 30 суток после снятия воздействия (продолжительность сперматогенеза у мыши – 35 суток) по 5 самцов из каждой группы отсаживали индивидуально с 4 - 5-ю одновозрастными интактными самками для определения уровня ДЛМ. Через 16 – 18 дней после начала спаривания осуществляли забой самок и подсчет желтых тел в яичниках, а также живых эмбрионов и резорбций в матке. По процентному соотношению этих показателей определяли эмбриональную смертность: )