При обезвоживании у растений, не приспособленных к засухе, значительно усиливается интенсивность дыхания (возможно, из-за большого количества субстратов дыхания — Сахаров), а затем постепенно снижается. У засухоустойчивых растений в этих условиях существенных изменений дыхания не наблюдается или отмечается небольшое усиление.
В условиях водного дефицита быстро тормозятся клеточное деление и особенно растяжение, что приводит к формированию мелких клеток. Вследствие этого задерживается рост самого растения, особенно листьев и стеблей. Рост корней в начале засухи даже ускоряется и снижается лишь при длительном недостатке воды в почве. Корни реагируют на засуху рядом защитных приспособлений: опробковением, суберинизацией экзодермы, ускорением дифференцировки клеток, выходящих из меристемы, и др.
Таким образом, недостаток влаги вызывает значительные и постепенно усиливающиеся изменения большинства физиологических процессов у растений.
ВЛИЯНИЕ ПЕРЕГРЕВА НА ФИЗИОЛОГИЧЕСКИЕ ПРОЦЕССЫ
Во время засухи наряду с обезвоживанием происходит перегрев растений. При действии высоких температур (35 °С и выше) наблюдаются два типа изменения вязкости цитоплазмы: чаще увеличение, реже снижение. Возрастание вязкости цитоплазмы замедляет ее движение, но процесс обратим даже при 5-минутном воздействии температуры 51 °С. Высокая температура увеличивает концентрацию клеточного сока и проницаемость клеток для мочевины, глицерина, эозина и других соединений. В результате экзоосмоса веществ, растворенных в клеточном соке, постепенно снижается осмотическое давление. Однако при температурах выше 35 °С вновь отмечается рост осмотического давления из-за усиления гидролиза крахмала и увеличения содержания моносахаров. Как следует из рис. 14.2, у листьев традесканции выход электролитов индуцируется под влиянием температуры более высокой по сравнению с температурой, меняющей вязкость цитоплазмы и ее движение. При этом потеря свойства полупроницаемости тонопласта (оцениваемая по выходу антоциана) вызывается лишь кратковременным действием очень высоких температур (57—64°С).
Процесс фотосинтеза более чувствителен к действию высоких температур, чем дыхание. Гидролиз полимеров, в частности белков, ускоряющийся при водном дефиците, значительно активируется при высокотемпературном стрессе. Распад белков идет с образованием аммиака, который может оказывать отравляющее действие на клетки у неустойчивых к перегреву растений. У жаростойких растений наблюдается увеличение содержания органических кислот, связывающих избыточный аммиак. Еще одним способом защиты от перегрева может служить усиленная транспирация, обеспечиваемая мощной корневой системой. В других случаях (суккуленты) жаростойкость определяется высокой вязкостью цитоплазмы и повышенным содержанием прочно связанной воды. При действии высоких температур в клетках растений индуцируется синтез стрессовых белков (белков теплового шока).
В сельскохозяйственной практике для повышения жароустойчивости растений применяют внекорневую обработку 0,05%-ным раствором солей цинка.
ПРИСПОСОБЛЕНИЕ РАСТЕНИЙ К ЗАСУХЕ
Как уже отмечалось, неблагоприятное действие засухи состоит в том, что растения испытывают недостаток воды или комплексное влияние обезвоживания и перегрева. У растений засушливых месторбитаний — ксерофитов — выработались приспособления, позволяющие переносить периоды засухи.
Растения используют три основных способа защиты:
1) предотвращение излишней потери воды клетками (избегание высыхания), 2) перенесение высыхания, 3) избегание периода засухи. Наиболее общими являются приспособления для сохранения воды в клетках.
Группа ксерофитов очень разнородна. По способности переносить условия засухи различают следующие их типы (по П. А. Генкелю):
1. Суккуленты (по Н. А. Максимову — ложные ксерофиты) — растения, запасающие влагу (кактусы, алоэ, очиток, молодило, молочай). Вода концентрируется в листьях или стеблях, покрытых толстой кутикулой, волосками. Транспирация, фотосинтез и рост осуществляются медленно. Они плохо переносят обезвоживание. Корневая система распространяется широко, но на небольшую глубину.
2. Несуккулентные виды по уровню транспирации делятся на несколько групп.
а) Настоящие ксерофиты (эвксерофиты — полынь, вероника беловойлочная и др.). Растения с небольшими листьями, часто опушенными, жароустойчивы, транспирация невысокая, способны выносить сильное обезвоживание, в клетках высокое осмотическое давление. )Корневая система сильно разветвлена, но на небольшой глубине.
б) Полуксерофиты (гемиксерофиты — шалфей, резак и др.). Обладают интенсивной транспирацией, которая поддерживается деятельностью глубокой корневой системы, часто достигающей грунтовых вод. Плохо переносят обезвоживание и атмосферную засуху. Вязкость цитоплазмы у них невелика.
в) Стипаксерофиты — степные злаки (ковыль и др.). Приспособлены к перенесению перегрева, быстро используют влагу летних дождей, но переносят лишь кратковременный недостаток воды в почве.
г) Пойкилоксерофиты (лишайники и др.) не способны регулировать свой водный режим и при значительном обезвоживании впадают в состояние покоя (анабиоз). Способны переносить высыхание.
3. Эфемеры—растения с коротким вегетационным периодом, совпадающим с периодом дождей (способ избегания засухи в засушливых местообитаниях).
Изучая физиологическую природу засухоустойчивости ксерофитов, Н. А. Максимов (1953) показал, что эти растения не являются сухолюбивыми: обилие воды в почве способствует их интенсивному росту. Устойчивость к засухе заключается в их способности переносить потерю воды.
Растения-мезофиты также могут приспосабливаться к засухе. Изучение приспособлений листьев к затрудненным условиям водоснабжения (В. Р. Заленский, 1904) показало, что анатомическая структура листьев различных ярусов на одном и том же растении зависит от уровня водоснабжения, освещенности и т. д. Чем выше по стеблю расположен лист, тем мельче его клетки, больше устьиц на единицу поверхности, а размер их меньше, гуще сеть проводящих пучков, сильнее развита па-лисадная паренхима и т. д. Такого рода закономерности изменений листового аппарата получили название, закона Заленского. Было выяснено, что более высоко расположенные листья часто попадают в условия худшего водоснабжения (особенно у высоких растений), но обладают более интенсивной транспирацией. Устьица у листьев верхних ярусов даже при водном дефиците дольше остаются открытыми. Это, с одной стороны, поддерживает процесс фотосинтеза, а с другой — способствует увеличению концентрации клеточного сока, что позволяет им оттягивать воду от ниже расположенных листьев. Поскольку сходные особенности строения свойственны ряду ксерофитов, такая структура листьев получила название ксероморфной. Следовательно, возникновение ксероморфной структуры листьев — одно из анатомических приспособлений к недостатку воды, так же как заглубление устьиц в ткани листа, опушенность, толстая кутикула, редукция листьев и др.
Биохимические механизмы защиты предотвращают обезвоживание клетки, обеспечивают детоксикацию продуктов распада, способствуют восстановлению нарушенных структур цитоплазмы. Высокую водоудерживающую способность цитоплазмы в условиях засухи поддерживает накопление низкомолекулярных гидрофильных белков, связывающих в виде гидратных оболочек значительные количества воды. Этому помогает также взаимодействие белков с пролином, концентрация которого значительно возрастает в условиях водного стресса , а также увеличение в цитоплазме содержания моносахаров.
Интересным приспособлением, уменьшающим потерю воды через устьица, обладают суккуленты. Благодаря особенностям процесса фотосинтеза (САМ-метаболизм) в дневные часы в условиях высокой температуры и сухости воздуха пустыни их устьица закрыты, поскольку СОз фиксируется ночью.
Детоксикация избытка образующегося при протеолизе аммиака осуществляется с участием органических кислот, количество которых возрастает в тканях при водном дефиците и высокой температуре. Процессы восстановления после прекращения действия засухи идут успешно, если сохранены от повреждения при недостатке воды и перегреве генетические системы клеток. Защита ДНК от действия засухи состоит в частичном выведении молекулы из активного состояния с помощью ядерных белков и, возможно, как в случае теплового стресса, с участием специальных стрессовых белков. Поэтому изменения количества ДНК обнаруживаются лишь при сильной длительной засухе. )